Properties

Label 7.6.a.b
Level 7
Weight 6
Character orbit 7.a
Self dual yes
Analytic conductor 1.123
Analytic rank 0
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.12268673869\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{57})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 5 - \beta ) q^{2} + ( -6 + 6 \beta ) q^{3} + ( 7 - 9 \beta ) q^{4} + ( -4 - 10 \beta ) q^{5} + ( -114 + 30 \beta ) q^{6} + 49 q^{7} + ( 1 - 11 \beta ) q^{8} + ( 297 - 36 \beta ) q^{9} +O(q^{10})\) \( q + ( 5 - \beta ) q^{2} + ( -6 + 6 \beta ) q^{3} + ( 7 - 9 \beta ) q^{4} + ( -4 - 10 \beta ) q^{5} + ( -114 + 30 \beta ) q^{6} + 49 q^{7} + ( 1 - 11 \beta ) q^{8} + ( 297 - 36 \beta ) q^{9} + ( 120 - 36 \beta ) q^{10} + ( 136 + 124 \beta ) q^{11} + ( -798 + 42 \beta ) q^{12} + ( -112 - 126 \beta ) q^{13} + ( 245 - 49 \beta ) q^{14} + ( -816 - 24 \beta ) q^{15} + ( -65 + 243 \beta ) q^{16} + ( 862 + 76 \beta ) q^{17} + ( 1989 - 441 \beta ) q^{18} + ( -1642 + 18 \beta ) q^{19} + ( 1232 + 56 \beta ) q^{20} + ( -294 + 294 \beta ) q^{21} + ( -1056 + 360 \beta ) q^{22} + ( 1328 - 568 \beta ) q^{23} + ( -930 + 6 \beta ) q^{24} + ( -1709 + 180 \beta ) q^{25} + ( 1204 - 392 \beta ) q^{26} + ( -3348 + 324 \beta ) q^{27} + ( 343 - 441 \beta ) q^{28} + ( 3474 - 252 \beta ) q^{29} + ( -3744 + 720 \beta ) q^{30} + ( 260 - 540 \beta ) q^{31} + ( -3759 + 1389 \beta ) q^{32} + ( 9600 + 816 \beta ) q^{33} + ( 3246 - 558 \beta ) q^{34} + ( -196 - 490 \beta ) q^{35} + ( 6615 - 2601 \beta ) q^{36} + ( 3386 - 540 \beta ) q^{37} + ( -8462 + 1714 \beta ) q^{38} + ( -9912 - 672 \beta ) q^{39} + ( 1536 + 144 \beta ) q^{40} + ( -3570 + 1092 \beta ) q^{41} + ( -5586 + 1470 \beta ) q^{42} + ( -3904 + 4788 \beta ) q^{43} + ( -14672 - 1472 \beta ) q^{44} + ( 3852 - 2466 \beta ) q^{45} + ( 14592 - 3600 \beta ) q^{46} + ( 7724 - 3748 \beta ) q^{47} + ( 20802 - 390 \beta ) q^{48} + 2401 q^{49} + ( -11065 + 2429 \beta ) q^{50} + ( 1212 + 5172 \beta ) q^{51} + ( 15092 + 1260 \beta ) q^{52} + ( 4630 + 208 \beta ) q^{53} + ( -21276 + 4644 \beta ) q^{54} + ( -17904 - 3096 \beta ) q^{55} + ( 49 - 539 \beta ) q^{56} + ( 11364 - 9852 \beta ) q^{57} + ( 20898 - 4482 \beta ) q^{58} + ( -22994 + 2050 \beta ) q^{59} + ( -2688 + 7392 \beta ) q^{60} + ( -34780 + 4806 \beta ) q^{61} + ( 8860 - 2420 \beta ) q^{62} + ( 14553 - 1764 \beta ) q^{63} + ( -36161 + 1539 \beta ) q^{64} + ( 18088 + 2884 \beta ) q^{65} + ( 36576 - 6336 \beta ) q^{66} + ( 11420 + 1944 \beta ) q^{67} + ( -3542 - 7910 \beta ) q^{68} + ( -55680 + 7968 \beta ) q^{69} + ( 5880 - 1764 \beta ) q^{70} + ( 46608 + 4200 \beta ) q^{71} + ( 5841 - 2907 \beta ) q^{72} + ( 6098 + 5256 \beta ) q^{73} + ( 24490 - 5546 \beta ) q^{74} + ( 25374 - 10254 \beta ) q^{75} + ( -13762 + 14742 \beta ) q^{76} + ( 6664 + 6076 \beta ) q^{77} + ( -40152 + 7224 \beta ) q^{78} + ( 33080 - 14904 \beta ) q^{79} + ( -33760 - 2752 \beta ) q^{80} + ( -24867 - 11340 \beta ) q^{81} + ( -33138 + 7938 \beta ) q^{82} + ( 66654 - 15750 \beta ) q^{83} + ( -39102 + 2058 \beta ) q^{84} + ( -14088 - 9684 \beta ) q^{85} + ( -86552 + 23056 \beta ) q^{86} + ( -42012 + 20844 \beta ) q^{87} + ( -18960 - 2736 \beta ) q^{88} + ( 31034 + 22208 \beta ) q^{89} + ( 53784 - 13716 \beta ) q^{90} + ( -5488 - 6174 \beta ) q^{91} + ( 80864 - 10816 \beta ) q^{92} + ( -46920 + 1560 \beta ) q^{93} + ( 91092 - 22716 \beta ) q^{94} + ( 4048 + 16168 \beta ) q^{95} + ( 139230 - 22554 \beta ) q^{96} + ( 14798 - 8820 \beta ) q^{97} + ( 12005 - 2401 \beta ) q^{98} + ( -22104 + 27468 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 9q^{2} - 6q^{3} + 5q^{4} - 18q^{5} - 198q^{6} + 98q^{7} - 9q^{8} + 558q^{9} + O(q^{10}) \) \( 2q + 9q^{2} - 6q^{3} + 5q^{4} - 18q^{5} - 198q^{6} + 98q^{7} - 9q^{8} + 558q^{9} + 204q^{10} + 396q^{11} - 1554q^{12} - 350q^{13} + 441q^{14} - 1656q^{15} + 113q^{16} + 1800q^{17} + 3537q^{18} - 3266q^{19} + 2520q^{20} - 294q^{21} - 1752q^{22} + 2088q^{23} - 1854q^{24} - 3238q^{25} + 2016q^{26} - 6372q^{27} + 245q^{28} + 6696q^{29} - 6768q^{30} - 20q^{31} - 6129q^{32} + 20016q^{33} + 5934q^{34} - 882q^{35} + 10629q^{36} + 6232q^{37} - 15210q^{38} - 20496q^{39} + 3216q^{40} - 6048q^{41} - 9702q^{42} - 3020q^{43} - 30816q^{44} + 5238q^{45} + 25584q^{46} + 11700q^{47} + 41214q^{48} + 4802q^{49} - 19701q^{50} + 7596q^{51} + 31444q^{52} + 9468q^{53} - 37908q^{54} - 38904q^{55} - 441q^{56} + 12876q^{57} + 37314q^{58} - 43938q^{59} + 2016q^{60} - 64754q^{61} + 15300q^{62} + 27342q^{63} - 70783q^{64} + 39060q^{65} + 66816q^{66} + 24784q^{67} - 14994q^{68} - 103392q^{69} + 9996q^{70} + 97416q^{71} + 8775q^{72} + 17452q^{73} + 43434q^{74} + 40494q^{75} - 12782q^{76} + 19404q^{77} - 73080q^{78} + 51256q^{79} - 70272q^{80} - 61074q^{81} - 58338q^{82} + 117558q^{83} - 76146q^{84} - 37860q^{85} - 150048q^{86} - 63180q^{87} - 40656q^{88} + 84276q^{89} + 93852q^{90} - 17150q^{91} + 150912q^{92} - 92280q^{93} + 159468q^{94} + 24264q^{95} + 255906q^{96} + 20776q^{97} + 21609q^{98} - 16740q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.27492
−3.27492
0.725083 19.6495 −31.4743 −46.7492 14.2475 49.0000 −46.0241 143.103 −33.8970
1.2 8.27492 −25.6495 36.4743 28.7492 −212.248 49.0000 37.0241 414.897 237.897
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7.6.a.b 2
3.b odd 2 1 63.6.a.f 2
4.b odd 2 1 112.6.a.h 2
5.b even 2 1 175.6.a.c 2
5.c odd 4 2 175.6.b.c 4
7.b odd 2 1 49.6.a.f 2
7.c even 3 2 49.6.c.e 4
7.d odd 6 2 49.6.c.d 4
8.b even 2 1 448.6.a.w 2
8.d odd 2 1 448.6.a.u 2
11.b odd 2 1 847.6.a.c 2
12.b even 2 1 1008.6.a.bq 2
21.c even 2 1 441.6.a.l 2
28.d even 2 1 784.6.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.b 2 1.a even 1 1 trivial
49.6.a.f 2 7.b odd 2 1
49.6.c.d 4 7.d odd 6 2
49.6.c.e 4 7.c even 3 2
63.6.a.f 2 3.b odd 2 1
112.6.a.h 2 4.b odd 2 1
175.6.a.c 2 5.b even 2 1
175.6.b.c 4 5.c odd 4 2
441.6.a.l 2 21.c even 2 1
448.6.a.u 2 8.d odd 2 1
448.6.a.w 2 8.b even 2 1
784.6.a.v 2 28.d even 2 1
847.6.a.c 2 11.b odd 2 1
1008.6.a.bq 2 12.b even 2 1

Atkin-Lehner signs

\( p \) Sign
\(7\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 9 T_{2} + 6 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(7))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 9 T + 70 T^{2} - 288 T^{3} + 1024 T^{4} \)
$3$ \( 1 + 6 T - 18 T^{2} + 1458 T^{3} + 59049 T^{4} \)
$5$ \( 1 + 18 T + 4906 T^{2} + 56250 T^{3} + 9765625 T^{4} \)
$7$ \( ( 1 - 49 T )^{2} \)
$11$ \( 1 - 396 T + 142198 T^{2} - 63776196 T^{3} + 25937424601 T^{4} \)
$13$ \( 1 + 350 T + 546978 T^{2} + 129952550 T^{3} + 137858491849 T^{4} \)
$17$ \( 1 - 1800 T + 3567406 T^{2} - 2555742600 T^{3} + 2015993900449 T^{4} \)
$19$ \( 1 + 3266 T + 7614270 T^{2} + 8086939334 T^{3} + 6131066257801 T^{4} \)
$23$ \( 1 - 2088 T + 9365230 T^{2} - 13439084184 T^{3} + 41426511213649 T^{4} \)
$29$ \( 1 - 6696 T + 51326470 T^{2} - 137342653704 T^{3} + 420707233300201 T^{4} \)
$31$ \( 1 + 20 T + 53103102 T^{2} + 572583020 T^{3} + 819628286980801 T^{4} \)
$37$ \( 1 - 6232 T + 144242070 T^{2} - 432151540024 T^{3} + 4808584372417849 T^{4} \)
$41$ \( 1 + 6048 T + 223864366 T^{2} + 700698303648 T^{3} + 13422659310152401 T^{4} \)
$43$ \( 1 + 3020 T - 30383466 T^{2} + 443965497860 T^{3} + 21611482313284249 T^{4} \)
$47$ \( 1 - 11700 T + 292735582 T^{2} - 2683336581900 T^{3} + 52599132235830049 T^{4} \)
$53$ \( 1 - 9468 T + 858185230 T^{2} - 3959474927724 T^{3} + 174887470365513049 T^{4} \)
$59$ \( 1 + 43938 T + 1852599934 T^{2} + 31412343849462 T^{3} + 511116753300641401 T^{4} \)
$61$ \( 1 + 64754 T + 2408321418 T^{2} + 54690988874954 T^{3} + 713342911662882601 T^{4} \)
$67$ \( 1 - 24784 T + 2799959190 T^{2} - 33461500651888 T^{3} + 1822837804551761449 T^{4} \)
$71$ \( 1 - 97416 T + 5729557966 T^{2} - 175760806457016 T^{3} + 3255243551009881201 T^{4} \)
$73$ \( 1 - 17452 T + 3828622374 T^{2} - 36179245441036 T^{3} + 4297625829703557649 T^{4} \)
$79$ \( 1 - 51256 T + 3645565854 T^{2} - 157717602787144 T^{3} + 9468276082626847201 T^{4} \)
$83$ \( 1 - 117558 T + 7798161502 T^{2} - 463065739909794 T^{3} + 15516041187205853449 T^{4} \)
$89$ \( 1 - 84276 T + 5915697430 T^{2} - 470602194123924 T^{3} + 31181719929966183601 T^{4} \)
$97$ \( 1 - 20776 T + 16174049358 T^{2} - 178410581179432 T^{3} + 73742412689492826049 T^{4} \)
show more
show less