Properties

Label 7.6.a
Level $7$
Weight $6$
Character orbit 7.a
Rep. character $\chi_{7}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $4$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(4\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(7))\).

Total New Old
Modular forms 5 3 2
Cusp forms 3 3 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(2\)\(1\)\(1\)\(1\)\(1\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(3\)\(2\)\(1\)\(2\)\(2\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 3 q - q^{2} - 20 q^{3} + 73 q^{4} - 74 q^{5} - 58 q^{6} + 49 q^{7} - 369 q^{8} + 511 q^{9} + 764 q^{10} + 628 q^{11} - 2506 q^{12} - 490 q^{13} + 931 q^{14} - 872 q^{15} + 1537 q^{16} + 78 q^{17} + 4007 q^{18}+ \cdots - 27644 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7
7.6.a.a 7.a 1.a $1$ $1.123$ \(\Q\) None 7.6.a.a \(-10\) \(-14\) \(-56\) \(-49\) $+$ $\mathrm{SU}(2)$ \(q-10q^{2}-14q^{3}+68q^{4}-56q^{5}+\cdots\)
7.6.a.b 7.a 1.a $2$ $1.123$ \(\Q(\sqrt{57}) \) None 7.6.a.b \(9\) \(-6\) \(-18\) \(98\) $-$ $\mathrm{SU}(2)$ \(q+(5-\beta )q^{2}+(-6+6\beta )q^{3}+(7-9\beta )q^{4}+\cdots\)