Defining parameters
| Level: | \( N \) | \(=\) | \( 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(4\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(7))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 5 | 3 | 2 |
| Cusp forms | 3 | 3 | 0 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(2\) | \(1\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(3\) | \(2\) | \(1\) | \(2\) | \(2\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | |||||||
| 7.6.a.a | $1$ | $1.123$ | \(\Q\) | None | \(-10\) | \(-14\) | \(-56\) | \(-49\) | $+$ | \(q-10q^{2}-14q^{3}+68q^{4}-56q^{5}+\cdots\) | |
| 7.6.a.b | $2$ | $1.123$ | \(\Q(\sqrt{57}) \) | None | \(9\) | \(-6\) | \(-18\) | \(98\) | $-$ | \(q+(5-\beta )q^{2}+(-6+6\beta )q^{3}+(7-9\beta )q^{4}+\cdots\) | |