# Properties

 Label 7.4.c.a.2.1 Level 7 Weight 4 Character 7.2 Analytic conductor 0.413 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 7.c (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.413013370040$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 2.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 7.2 Dual form 7.4.c.a.4.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.00000 + 1.73205i) q^{2} +(-3.50000 - 6.06218i) q^{3} +(2.00000 + 3.46410i) q^{4} +(-3.50000 + 6.06218i) q^{5} +14.0000 q^{6} +(14.0000 - 12.1244i) q^{7} -24.0000 q^{8} +(-11.0000 + 19.0526i) q^{9} +O(q^{10})$$ $$q+(-1.00000 + 1.73205i) q^{2} +(-3.50000 - 6.06218i) q^{3} +(2.00000 + 3.46410i) q^{4} +(-3.50000 + 6.06218i) q^{5} +14.0000 q^{6} +(14.0000 - 12.1244i) q^{7} -24.0000 q^{8} +(-11.0000 + 19.0526i) q^{9} +(-7.00000 - 12.1244i) q^{10} +(2.50000 + 4.33013i) q^{11} +(14.0000 - 24.2487i) q^{12} -14.0000 q^{13} +(7.00000 + 36.3731i) q^{14} +49.0000 q^{15} +(8.00000 - 13.8564i) q^{16} +(10.5000 + 18.1865i) q^{17} +(-22.0000 - 38.1051i) q^{18} +(-24.5000 + 42.4352i) q^{19} -28.0000 q^{20} +(-122.500 - 42.4352i) q^{21} -10.0000 q^{22} +(79.5000 - 137.698i) q^{23} +(84.0000 + 145.492i) q^{24} +(38.0000 + 65.8179i) q^{25} +(14.0000 - 24.2487i) q^{26} -35.0000 q^{27} +(70.0000 + 24.2487i) q^{28} +58.0000 q^{29} +(-49.0000 + 84.8705i) q^{30} +(-73.5000 - 127.306i) q^{31} +(-80.0000 - 138.564i) q^{32} +(17.5000 - 30.3109i) q^{33} -42.0000 q^{34} +(24.5000 + 127.306i) q^{35} -88.0000 q^{36} +(-109.500 + 189.660i) q^{37} +(-49.0000 - 84.8705i) q^{38} +(49.0000 + 84.8705i) q^{39} +(84.0000 - 145.492i) q^{40} +350.000 q^{41} +(196.000 - 169.741i) q^{42} -124.000 q^{43} +(-10.0000 + 17.3205i) q^{44} +(-77.0000 - 133.368i) q^{45} +(159.000 + 275.396i) q^{46} +(-262.500 + 454.663i) q^{47} -112.000 q^{48} +(49.0000 - 339.482i) q^{49} -152.000 q^{50} +(73.5000 - 127.306i) q^{51} +(-28.0000 - 48.4974i) q^{52} +(-151.500 - 262.406i) q^{53} +(35.0000 - 60.6218i) q^{54} -35.0000 q^{55} +(-336.000 + 290.985i) q^{56} +343.000 q^{57} +(-58.0000 + 100.459i) q^{58} +(52.5000 + 90.9327i) q^{59} +(98.0000 + 169.741i) q^{60} +(206.500 - 357.668i) q^{61} +294.000 q^{62} +(77.0000 + 400.104i) q^{63} +448.000 q^{64} +(49.0000 - 84.8705i) q^{65} +(35.0000 + 60.6218i) q^{66} +(-207.500 - 359.401i) q^{67} +(-42.0000 + 72.7461i) q^{68} -1113.00 q^{69} +(-245.000 - 84.8705i) q^{70} -432.000 q^{71} +(264.000 - 457.261i) q^{72} +(556.500 + 963.886i) q^{73} +(-219.000 - 379.319i) q^{74} +(266.000 - 460.726i) q^{75} -196.000 q^{76} +(87.5000 + 30.3109i) q^{77} -196.000 q^{78} +(51.5000 - 89.2006i) q^{79} +(56.0000 + 96.9948i) q^{80} +(419.500 + 726.595i) q^{81} +(-350.000 + 606.218i) q^{82} +1092.00 q^{83} +(-98.0000 - 509.223i) q^{84} -147.000 q^{85} +(124.000 - 214.774i) q^{86} +(-203.000 - 351.606i) q^{87} +(-60.0000 - 103.923i) q^{88} +(164.500 - 284.922i) q^{89} +308.000 q^{90} +(-196.000 + 169.741i) q^{91} +636.000 q^{92} +(-514.500 + 891.140i) q^{93} +(-525.000 - 909.327i) q^{94} +(-171.500 - 297.047i) q^{95} +(-560.000 + 969.948i) q^{96} -882.000 q^{97} +(539.000 + 424.352i) q^{98} -110.000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{2} - 7q^{3} + 4q^{4} - 7q^{5} + 28q^{6} + 28q^{7} - 48q^{8} - 22q^{9} + O(q^{10})$$ $$2q - 2q^{2} - 7q^{3} + 4q^{4} - 7q^{5} + 28q^{6} + 28q^{7} - 48q^{8} - 22q^{9} - 14q^{10} + 5q^{11} + 28q^{12} - 28q^{13} + 14q^{14} + 98q^{15} + 16q^{16} + 21q^{17} - 44q^{18} - 49q^{19} - 56q^{20} - 245q^{21} - 20q^{22} + 159q^{23} + 168q^{24} + 76q^{25} + 28q^{26} - 70q^{27} + 140q^{28} + 116q^{29} - 98q^{30} - 147q^{31} - 160q^{32} + 35q^{33} - 84q^{34} + 49q^{35} - 176q^{36} - 219q^{37} - 98q^{38} + 98q^{39} + 168q^{40} + 700q^{41} + 392q^{42} - 248q^{43} - 20q^{44} - 154q^{45} + 318q^{46} - 525q^{47} - 224q^{48} + 98q^{49} - 304q^{50} + 147q^{51} - 56q^{52} - 303q^{53} + 70q^{54} - 70q^{55} - 672q^{56} + 686q^{57} - 116q^{58} + 105q^{59} + 196q^{60} + 413q^{61} + 588q^{62} + 154q^{63} + 896q^{64} + 98q^{65} + 70q^{66} - 415q^{67} - 84q^{68} - 2226q^{69} - 490q^{70} - 864q^{71} + 528q^{72} + 1113q^{73} - 438q^{74} + 532q^{75} - 392q^{76} + 175q^{77} - 392q^{78} + 103q^{79} + 112q^{80} + 839q^{81} - 700q^{82} + 2184q^{83} - 196q^{84} - 294q^{85} + 248q^{86} - 406q^{87} - 120q^{88} + 329q^{89} + 616q^{90} - 392q^{91} + 1272q^{92} - 1029q^{93} - 1050q^{94} - 343q^{95} - 1120q^{96} - 1764q^{97} + 1078q^{98} - 220q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/7\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 + 1.73205i −0.353553 + 0.612372i −0.986869 0.161521i $$-0.948360\pi$$
0.633316 + 0.773893i $$0.281693\pi$$
$$3$$ −3.50000 6.06218i −0.673575 1.16667i −0.976883 0.213774i $$-0.931424\pi$$
0.303308 0.952893i $$-0.401909\pi$$
$$4$$ 2.00000 + 3.46410i 0.250000 + 0.433013i
$$5$$ −3.50000 + 6.06218i −0.313050 + 0.542218i −0.979021 0.203760i $$-0.934684\pi$$
0.665971 + 0.745977i $$0.268017\pi$$
$$6$$ 14.0000 0.952579
$$7$$ 14.0000 12.1244i 0.755929 0.654654i
$$8$$ −24.0000 −1.06066
$$9$$ −11.0000 + 19.0526i −0.407407 + 0.705650i
$$10$$ −7.00000 12.1244i −0.221359 0.383406i
$$11$$ 2.50000 + 4.33013i 0.0685253 + 0.118689i 0.898252 0.439480i $$-0.144837\pi$$
−0.829727 + 0.558169i $$0.811504\pi$$
$$12$$ 14.0000 24.2487i 0.336788 0.583333i
$$13$$ −14.0000 −0.298685 −0.149342 0.988786i $$-0.547716\pi$$
−0.149342 + 0.988786i $$0.547716\pi$$
$$14$$ 7.00000 + 36.3731i 0.133631 + 0.694365i
$$15$$ 49.0000 0.843450
$$16$$ 8.00000 13.8564i 0.125000 0.216506i
$$17$$ 10.5000 + 18.1865i 0.149801 + 0.259464i 0.931154 0.364626i $$-0.118803\pi$$
−0.781353 + 0.624090i $$0.785470\pi$$
$$18$$ −22.0000 38.1051i −0.288081 0.498970i
$$19$$ −24.5000 + 42.4352i −0.295826 + 0.512385i −0.975177 0.221429i $$-0.928928\pi$$
0.679351 + 0.733813i $$0.262261\pi$$
$$20$$ −28.0000 −0.313050
$$21$$ −122.500 42.4352i −1.27294 0.440959i
$$22$$ −10.0000 −0.0969094
$$23$$ 79.5000 137.698i 0.720735 1.24835i −0.239971 0.970780i $$-0.577138\pi$$
0.960706 0.277569i $$-0.0895287\pi$$
$$24$$ 84.0000 + 145.492i 0.714435 + 1.23744i
$$25$$ 38.0000 + 65.8179i 0.304000 + 0.526543i
$$26$$ 14.0000 24.2487i 0.105601 0.182906i
$$27$$ −35.0000 −0.249472
$$28$$ 70.0000 + 24.2487i 0.472456 + 0.163663i
$$29$$ 58.0000 0.371391 0.185695 0.982607i $$-0.440546\pi$$
0.185695 + 0.982607i $$0.440546\pi$$
$$30$$ −49.0000 + 84.8705i −0.298205 + 0.516505i
$$31$$ −73.5000 127.306i −0.425838 0.737574i 0.570660 0.821186i $$-0.306687\pi$$
−0.996498 + 0.0836128i $$0.973354\pi$$
$$32$$ −80.0000 138.564i −0.441942 0.765466i
$$33$$ 17.5000 30.3109i 0.0923139 0.159892i
$$34$$ −42.0000 −0.211851
$$35$$ 24.5000 + 127.306i 0.118322 + 0.614817i
$$36$$ −88.0000 −0.407407
$$37$$ −109.500 + 189.660i −0.486532 + 0.842698i −0.999880 0.0154821i $$-0.995072\pi$$
0.513348 + 0.858181i $$0.328405\pi$$
$$38$$ −49.0000 84.8705i −0.209180 0.362311i
$$39$$ 49.0000 + 84.8705i 0.201187 + 0.348466i
$$40$$ 84.0000 145.492i 0.332039 0.575109i
$$41$$ 350.000 1.33319 0.666595 0.745420i $$-0.267751\pi$$
0.666595 + 0.745420i $$0.267751\pi$$
$$42$$ 196.000 169.741i 0.720082 0.623610i
$$43$$ −124.000 −0.439763 −0.219882 0.975527i $$-0.570567\pi$$
−0.219882 + 0.975527i $$0.570567\pi$$
$$44$$ −10.0000 + 17.3205i −0.0342627 + 0.0593447i
$$45$$ −77.0000 133.368i −0.255077 0.441807i
$$46$$ 159.000 + 275.396i 0.509636 + 0.882716i
$$47$$ −262.500 + 454.663i −0.814671 + 1.41105i 0.0948921 + 0.995488i $$0.469749\pi$$
−0.909564 + 0.415565i $$0.863584\pi$$
$$48$$ −112.000 −0.336788
$$49$$ 49.0000 339.482i 0.142857 0.989743i
$$50$$ −152.000 −0.429921
$$51$$ 73.5000 127.306i 0.201805 0.349537i
$$52$$ −28.0000 48.4974i −0.0746712 0.129334i
$$53$$ −151.500 262.406i −0.392644 0.680079i 0.600153 0.799885i $$-0.295106\pi$$
−0.992797 + 0.119806i $$0.961773\pi$$
$$54$$ 35.0000 60.6218i 0.0882018 0.152770i
$$55$$ −35.0000 −0.0858073
$$56$$ −336.000 + 290.985i −0.801784 + 0.694365i
$$57$$ 343.000 0.797043
$$58$$ −58.0000 + 100.459i −0.131306 + 0.227429i
$$59$$ 52.5000 + 90.9327i 0.115846 + 0.200651i 0.918118 0.396308i $$-0.129709\pi$$
−0.802272 + 0.596959i $$0.796375\pi$$
$$60$$ 98.0000 + 169.741i 0.210862 + 0.365224i
$$61$$ 206.500 357.668i 0.433436 0.750734i −0.563730 0.825959i $$-0.690634\pi$$
0.997167 + 0.0752252i $$0.0239676\pi$$
$$62$$ 294.000 0.602226
$$63$$ 77.0000 + 400.104i 0.153986 + 0.800132i
$$64$$ 448.000 0.875000
$$65$$ 49.0000 84.8705i 0.0935031 0.161952i
$$66$$ 35.0000 + 60.6218i 0.0652758 + 0.113061i
$$67$$ −207.500 359.401i −0.378361 0.655340i 0.612463 0.790499i $$-0.290179\pi$$
−0.990824 + 0.135159i $$0.956845\pi$$
$$68$$ −42.0000 + 72.7461i −0.0749007 + 0.129732i
$$69$$ −1113.00 −1.94188
$$70$$ −245.000 84.8705i −0.418330 0.144914i
$$71$$ −432.000 −0.722098 −0.361049 0.932547i $$-0.617581\pi$$
−0.361049 + 0.932547i $$0.617581\pi$$
$$72$$ 264.000 457.261i 0.432121 0.748455i
$$73$$ 556.500 + 963.886i 0.892238 + 1.54540i 0.837186 + 0.546919i $$0.184199\pi$$
0.0550526 + 0.998483i $$0.482467\pi$$
$$74$$ −219.000 379.319i −0.344030 0.595878i
$$75$$ 266.000 460.726i 0.409534 0.709333i
$$76$$ −196.000 −0.295826
$$77$$ 87.5000 + 30.3109i 0.129501 + 0.0448603i
$$78$$ −196.000 −0.284521
$$79$$ 51.5000 89.2006i 0.0733443 0.127036i −0.827021 0.562171i $$-0.809966\pi$$
0.900365 + 0.435135i $$0.143299\pi$$
$$80$$ 56.0000 + 96.9948i 0.0782624 + 0.135554i
$$81$$ 419.500 + 726.595i 0.575446 + 0.996701i
$$82$$ −350.000 + 606.218i −0.471354 + 0.816409i
$$83$$ 1092.00 1.44413 0.722064 0.691827i $$-0.243194\pi$$
0.722064 + 0.691827i $$0.243194\pi$$
$$84$$ −98.0000 509.223i −0.127294 0.661438i
$$85$$ −147.000 −0.187581
$$86$$ 124.000 214.774i 0.155480 0.269299i
$$87$$ −203.000 351.606i −0.250160 0.433289i
$$88$$ −60.0000 103.923i −0.0726821 0.125889i
$$89$$ 164.500 284.922i 0.195921 0.339345i −0.751281 0.659982i $$-0.770564\pi$$
0.947202 + 0.320637i $$0.103897\pi$$
$$90$$ 308.000 0.360734
$$91$$ −196.000 + 169.741i −0.225784 + 0.195535i
$$92$$ 636.000 0.720735
$$93$$ −514.500 + 891.140i −0.573668 + 0.993623i
$$94$$ −525.000 909.327i −0.576060 0.997765i
$$95$$ −171.500 297.047i −0.185216 0.320804i
$$96$$ −560.000 + 969.948i −0.595362 + 1.03120i
$$97$$ −882.000 −0.923232 −0.461616 0.887080i $$-0.652730\pi$$
−0.461616 + 0.887080i $$0.652730\pi$$
$$98$$ 539.000 + 424.352i 0.555584 + 0.437409i
$$99$$ −110.000 −0.111671
$$100$$ −152.000 + 263.272i −0.152000 + 0.263272i
$$101$$ −689.500 1194.25i −0.679285 1.17656i −0.975196 0.221341i $$-0.928957\pi$$
0.295911 0.955215i $$-0.404377\pi$$
$$102$$ 147.000 + 254.611i 0.142698 + 0.247160i
$$103$$ 339.500 588.031i 0.324776 0.562529i −0.656691 0.754160i $$-0.728044\pi$$
0.981467 + 0.191631i $$0.0613777\pi$$
$$104$$ 336.000 0.316803
$$105$$ 686.000 594.093i 0.637588 0.552167i
$$106$$ 606.000 0.555282
$$107$$ −228.500 + 395.774i −0.206448 + 0.357578i −0.950593 0.310440i $$-0.899524\pi$$
0.744145 + 0.668018i $$0.232857\pi$$
$$108$$ −70.0000 121.244i −0.0623681 0.108025i
$$109$$ 562.500 + 974.279i 0.494291 + 0.856137i 0.999978 0.00657959i $$-0.00209436\pi$$
−0.505687 + 0.862717i $$0.668761\pi$$
$$110$$ 35.0000 60.6218i 0.0303374 0.0525460i
$$111$$ 1533.00 1.31086
$$112$$ −56.0000 290.985i −0.0472456 0.245495i
$$113$$ −1538.00 −1.28038 −0.640190 0.768217i $$-0.721144\pi$$
−0.640190 + 0.768217i $$0.721144\pi$$
$$114$$ −343.000 + 594.093i −0.281797 + 0.488087i
$$115$$ 556.500 + 963.886i 0.451251 + 0.781590i
$$116$$ 116.000 + 200.918i 0.0928477 + 0.160817i
$$117$$ 154.000 266.736i 0.121686 0.210767i
$$118$$ −210.000 −0.163831
$$119$$ 367.500 + 127.306i 0.283098 + 0.0980680i
$$120$$ −1176.00 −0.894614
$$121$$ 653.000 1131.03i 0.490609 0.849759i
$$122$$ 413.000 + 715.337i 0.306486 + 0.530849i
$$123$$ −1225.00 2121.76i −0.898004 1.55539i
$$124$$ 294.000 509.223i 0.212919 0.368787i
$$125$$ −1407.00 −1.00677
$$126$$ −770.000 266.736i −0.544421 0.188593i
$$127$$ 72.0000 0.0503068 0.0251534 0.999684i $$-0.491993\pi$$
0.0251534 + 0.999684i $$0.491993\pi$$
$$128$$ 192.000 332.554i 0.132583 0.229640i
$$129$$ 434.000 + 751.710i 0.296214 + 0.513057i
$$130$$ 98.0000 + 169.741i 0.0661167 + 0.114517i
$$131$$ −1074.50 + 1861.09i −0.716637 + 1.24125i 0.245687 + 0.969349i $$0.420986\pi$$
−0.962325 + 0.271903i $$0.912347\pi$$
$$132$$ 140.000 0.0923139
$$133$$ 171.500 + 891.140i 0.111812 + 0.580990i
$$134$$ 830.000 0.535083
$$135$$ 122.500 212.176i 0.0780972 0.135268i
$$136$$ −252.000 436.477i −0.158888 0.275203i
$$137$$ 562.500 + 974.279i 0.350786 + 0.607578i 0.986387 0.164439i $$-0.0525813\pi$$
−0.635602 + 0.772017i $$0.719248\pi$$
$$138$$ 1113.00 1927.77i 0.686557 1.18915i
$$139$$ 252.000 0.153772 0.0768862 0.997040i $$-0.475502\pi$$
0.0768862 + 0.997040i $$0.475502\pi$$
$$140$$ −392.000 + 339.482i −0.236643 + 0.204939i
$$141$$ 3675.00 2.19497
$$142$$ 432.000 748.246i 0.255300 0.442193i
$$143$$ −35.0000 60.6218i −0.0204675 0.0354507i
$$144$$ 176.000 + 304.841i 0.101852 + 0.176413i
$$145$$ −203.000 + 351.606i −0.116264 + 0.201375i
$$146$$ −2226.00 −1.26182
$$147$$ −2229.50 + 891.140i −1.25093 + 0.500000i
$$148$$ −876.000 −0.486532
$$149$$ 100.500 174.071i 0.0552569 0.0957078i −0.837074 0.547090i $$-0.815736\pi$$
0.892331 + 0.451382i $$0.149069\pi$$
$$150$$ 532.000 + 921.451i 0.289584 + 0.501574i
$$151$$ −809.500 1402.10i −0.436266 0.755635i 0.561132 0.827726i $$-0.310366\pi$$
−0.997398 + 0.0720914i $$0.977033\pi$$
$$152$$ 588.000 1018.45i 0.313770 0.543466i
$$153$$ −462.000 −0.244121
$$154$$ −140.000 + 121.244i −0.0732566 + 0.0634421i
$$155$$ 1029.00 0.533234
$$156$$ −196.000 + 339.482i −0.100593 + 0.174233i
$$157$$ −339.500 588.031i −0.172580 0.298917i 0.766741 0.641956i $$-0.221877\pi$$
−0.939321 + 0.343039i $$0.888544\pi$$
$$158$$ 103.000 + 178.401i 0.0518623 + 0.0898281i
$$159$$ −1060.50 + 1836.84i −0.528950 + 0.916169i
$$160$$ 1120.00 0.553399
$$161$$ −556.500 2891.66i −0.272412 1.41549i
$$162$$ −1678.00 −0.813803
$$163$$ 233.500 404.434i 0.112203 0.194342i −0.804455 0.594014i $$-0.797543\pi$$
0.916658 + 0.399672i $$0.130876\pi$$
$$164$$ 700.000 + 1212.44i 0.333298 + 0.577288i
$$165$$ 122.500 + 212.176i 0.0577976 + 0.100108i
$$166$$ −1092.00 + 1891.40i −0.510576 + 0.884344i
$$167$$ 1204.00 0.557894 0.278947 0.960306i $$-0.410015\pi$$
0.278947 + 0.960306i $$0.410015\pi$$
$$168$$ 2940.00 + 1018.45i 1.35015 + 0.467707i
$$169$$ −2001.00 −0.910787
$$170$$ 147.000 254.611i 0.0663199 0.114869i
$$171$$ −539.000 933.575i −0.241043 0.417499i
$$172$$ −248.000 429.549i −0.109941 0.190423i
$$173$$ 1410.50 2443.06i 0.619875 1.07365i −0.369633 0.929178i $$-0.620517\pi$$
0.989508 0.144477i $$-0.0461499\pi$$
$$174$$ 812.000 0.353779
$$175$$ 1330.00 + 460.726i 0.574506 + 0.199015i
$$176$$ 80.0000 0.0342627
$$177$$ 367.500 636.529i 0.156062 0.270307i
$$178$$ 329.000 + 569.845i 0.138537 + 0.239953i
$$179$$ 1626.50 + 2817.18i 0.679164 + 1.17635i 0.975233 + 0.221180i $$0.0709907\pi$$
−0.296069 + 0.955166i $$0.595676\pi$$
$$180$$ 308.000 533.472i 0.127539 0.220903i
$$181$$ 1582.00 0.649664 0.324832 0.945772i $$-0.394692\pi$$
0.324832 + 0.945772i $$0.394692\pi$$
$$182$$ −98.0000 509.223i −0.0399134 0.207396i
$$183$$ −2891.00 −1.16781
$$184$$ −1908.00 + 3304.75i −0.764454 + 1.32407i
$$185$$ −766.500 1327.62i −0.304617 0.527613i
$$186$$ −1029.00 1782.28i −0.405645 0.702597i
$$187$$ −52.5000 + 90.9327i −0.0205304 + 0.0355597i
$$188$$ −2100.00 −0.814671
$$189$$ −490.000 + 424.352i −0.188583 + 0.163318i
$$190$$ 686.000 0.261935
$$191$$ −1278.50 + 2214.43i −0.484340 + 0.838902i −0.999838 0.0179887i $$-0.994274\pi$$
0.515498 + 0.856891i $$0.327607\pi$$
$$192$$ −1568.00 2715.86i −0.589378 1.02083i
$$193$$ 198.500 + 343.812i 0.0740329 + 0.128229i 0.900665 0.434514i $$-0.143080\pi$$
−0.826632 + 0.562742i $$0.809746\pi$$
$$194$$ 882.000 1527.67i 0.326412 0.565362i
$$195$$ −686.000 −0.251926
$$196$$ 1274.00 509.223i 0.464286 0.185577i
$$197$$ 2914.00 1.05388 0.526939 0.849903i $$-0.323340\pi$$
0.526939 + 0.849903i $$0.323340\pi$$
$$198$$ 110.000 190.526i 0.0394816 0.0683842i
$$199$$ −1669.50 2891.66i −0.594712 1.03007i −0.993587 0.113066i $$-0.963933\pi$$
0.398875 0.917005i $$-0.369401\pi$$
$$200$$ −912.000 1579.63i −0.322441 0.558484i
$$201$$ −1452.50 + 2515.80i −0.509709 + 0.882841i
$$202$$ 2758.00 0.960654
$$203$$ 812.000 703.213i 0.280745 0.243132i
$$204$$ 588.000 0.201805
$$205$$ −1225.00 + 2121.76i −0.417355 + 0.722880i
$$206$$ 679.000 + 1176.06i 0.229651 + 0.397768i
$$207$$ 1749.00 + 3029.36i 0.587265 + 1.01717i
$$208$$ −112.000 + 193.990i −0.0373356 + 0.0646671i
$$209$$ −245.000 −0.0810861
$$210$$ 343.000 + 1782.28i 0.112711 + 0.585662i
$$211$$ 1780.00 0.580759 0.290380 0.956911i $$-0.406218\pi$$
0.290380 + 0.956911i $$0.406218\pi$$
$$212$$ 606.000 1049.62i 0.196322 0.340040i
$$213$$ 1512.00 + 2618.86i 0.486387 + 0.842448i
$$214$$ −457.000 791.547i −0.145981 0.252846i
$$215$$ 434.000 751.710i 0.137668 0.238447i
$$216$$ 840.000 0.264605
$$217$$ −2572.50 891.140i −0.804759 0.278777i
$$218$$ −2250.00 −0.699033
$$219$$ 3895.50 6747.20i 1.20198 2.08189i
$$220$$ −70.0000 121.244i −0.0214518 0.0371556i
$$221$$ −147.000 254.611i −0.0447434 0.0774978i
$$222$$ −1533.00 + 2655.23i −0.463460 + 0.802737i
$$223$$ −1400.00 −0.420408 −0.210204 0.977658i $$-0.567413\pi$$
−0.210204 + 0.977658i $$0.567413\pi$$
$$224$$ −2800.00 969.948i −0.835191 0.289319i
$$225$$ −1672.00 −0.495407
$$226$$ 1538.00 2663.89i 0.452682 0.784069i
$$227$$ 1102.50 + 1909.59i 0.322359 + 0.558342i 0.980974 0.194138i $$-0.0621908\pi$$
−0.658615 + 0.752480i $$0.728858\pi$$
$$228$$ 686.000 + 1188.19i 0.199261 + 0.345130i
$$229$$ −143.500 + 248.549i −0.0414094 + 0.0717231i −0.885987 0.463710i $$-0.846518\pi$$
0.844578 + 0.535433i $$0.179851\pi$$
$$230$$ −2226.00 −0.638166
$$231$$ −122.500 636.529i −0.0348914 0.181301i
$$232$$ −1392.00 −0.393919
$$233$$ −2293.50 + 3972.46i −0.644859 + 1.11693i 0.339475 + 0.940615i $$0.389751\pi$$
−0.984334 + 0.176314i $$0.943583\pi$$
$$234$$ 308.000 + 533.472i 0.0860453 + 0.149035i
$$235$$ −1837.50 3182.64i −0.510065 0.883459i
$$236$$ −210.000 + 363.731i −0.0579230 + 0.100326i
$$237$$ −721.000 −0.197612
$$238$$ −588.000 + 509.223i −0.160144 + 0.138689i
$$239$$ 1668.00 0.451439 0.225720 0.974192i $$-0.427527\pi$$
0.225720 + 0.974192i $$0.427527\pi$$
$$240$$ 392.000 678.964i 0.105431 0.182612i
$$241$$ 1704.50 + 2952.28i 0.455587 + 0.789100i 0.998722 0.0505456i $$-0.0160960\pi$$
−0.543135 + 0.839646i $$0.682763\pi$$
$$242$$ 1306.00 + 2262.06i 0.346913 + 0.600870i
$$243$$ 2464.00 4267.77i 0.650476 1.12666i
$$244$$ 1652.00 0.433436
$$245$$ 1886.50 + 1485.23i 0.491935 + 0.387298i
$$246$$ 4900.00 1.26997
$$247$$ 343.000 594.093i 0.0883586 0.153042i
$$248$$ 1764.00 + 3055.34i 0.451670 + 0.782315i
$$249$$ −3822.00 6619.90i −0.972729 1.68482i
$$250$$ 1407.00 2437.00i 0.355946 0.616517i
$$251$$ −4760.00 −1.19701 −0.598503 0.801121i $$-0.704238\pi$$
−0.598503 + 0.801121i $$0.704238\pi$$
$$252$$ −1232.00 + 1066.94i −0.307971 + 0.266711i
$$253$$ 795.000 0.197554
$$254$$ −72.0000 + 124.708i −0.0177861 + 0.0308065i
$$255$$ 514.500 + 891.140i 0.126350 + 0.218845i
$$256$$ 2176.00 + 3768.94i 0.531250 + 0.920152i
$$257$$ 402.500 697.150i 0.0976936 0.169210i −0.813036 0.582213i $$-0.802187\pi$$
0.910730 + 0.413003i $$0.135520\pi$$
$$258$$ −1736.00 −0.418909
$$259$$ 766.500 + 3982.85i 0.183892 + 0.955530i
$$260$$ 392.000 0.0935031
$$261$$ −638.000 + 1105.05i −0.151307 + 0.262072i
$$262$$ −2149.00 3722.18i −0.506739 0.877698i
$$263$$ 128.500 + 222.569i 0.0301279 + 0.0521831i 0.880696 0.473681i $$-0.157075\pi$$
−0.850568 + 0.525865i $$0.823742\pi$$
$$264$$ −420.000 + 727.461i −0.0979137 + 0.169591i
$$265$$ 2121.00 0.491668
$$266$$ −1715.00 594.093i −0.395314 0.136941i
$$267$$ −2303.00 −0.527870
$$268$$ 830.000 1437.60i 0.189180 0.327670i
$$269$$ −1795.50 3109.90i −0.406965 0.704884i 0.587583 0.809164i $$-0.300080\pi$$
−0.994548 + 0.104280i $$0.966746\pi$$
$$270$$ 245.000 + 424.352i 0.0552231 + 0.0956491i
$$271$$ −696.500 + 1206.37i −0.156123 + 0.270413i −0.933467 0.358662i $$-0.883233\pi$$
0.777344 + 0.629075i $$0.216566\pi$$
$$272$$ 336.000 0.0749007
$$273$$ 1715.00 + 594.093i 0.380207 + 0.131708i
$$274$$ −2250.00 −0.496086
$$275$$ −190.000 + 329.090i −0.0416634 + 0.0721631i
$$276$$ −2226.00 3855.55i −0.485469 0.840857i
$$277$$ −207.500 359.401i −0.0450089 0.0779577i 0.842643 0.538472i $$-0.180998\pi$$
−0.887652 + 0.460514i $$0.847665\pi$$
$$278$$ −252.000 + 436.477i −0.0543667 + 0.0941660i
$$279$$ 3234.00 0.693959
$$280$$ −588.000 3055.34i −0.125499 0.652112i
$$281$$ −4954.00 −1.05171 −0.525856 0.850574i $$-0.676255\pi$$
−0.525856 + 0.850574i $$0.676255\pi$$
$$282$$ −3675.00 + 6365.29i −0.776039 + 1.34414i
$$283$$ 2138.50 + 3703.99i 0.449190 + 0.778019i 0.998333 0.0577087i $$-0.0183795\pi$$
−0.549144 + 0.835728i $$0.685046\pi$$
$$284$$ −864.000 1496.49i −0.180525 0.312678i
$$285$$ −1200.50 + 2079.33i −0.249514 + 0.432171i
$$286$$ 140.000 0.0289454
$$287$$ 4900.00 4243.52i 1.00780 0.872778i
$$288$$ 3520.00 0.720201
$$289$$ 2236.00 3872.87i 0.455119 0.788289i
$$290$$ −406.000 703.213i −0.0822108 0.142393i
$$291$$ 3087.00 + 5346.84i 0.621866 + 1.07710i
$$292$$ −2226.00 + 3855.55i −0.446119 + 0.772701i
$$293$$ 7742.00 1.54366 0.771830 0.635829i $$-0.219342\pi$$
0.771830 + 0.635829i $$0.219342\pi$$
$$294$$ 686.000 4752.75i 0.136083 0.942809i
$$295$$ −735.000 −0.145062
$$296$$ 2628.00 4551.83i 0.516045 0.893817i
$$297$$ −87.5000 151.554i −0.0170952 0.0296097i
$$298$$ 201.000 + 348.142i 0.0390725 + 0.0676756i
$$299$$ −1113.00 + 1927.77i −0.215272 + 0.372863i
$$300$$ 2128.00 0.409534
$$301$$ −1736.00 + 1503.42i −0.332430 + 0.287893i
$$302$$ 3238.00 0.616973
$$303$$ −4826.50 + 8359.74i −0.915100 + 1.58500i
$$304$$ 392.000 + 678.964i 0.0739564 + 0.128096i
$$305$$ 1445.50 + 2503.68i 0.271374 + 0.470034i
$$306$$ 462.000 800.207i 0.0863097 0.149493i
$$307$$ −7364.00 −1.36901 −0.684504 0.729009i $$-0.739981\pi$$
−0.684504 + 0.729009i $$0.739981\pi$$
$$308$$ 70.0000 + 363.731i 0.0129501 + 0.0672905i
$$309$$ −4753.00 −0.875044
$$310$$ −1029.00 + 1782.28i −0.188527 + 0.326538i
$$311$$ −4987.50 8638.60i −0.909374 1.57508i −0.814936 0.579550i $$-0.803228\pi$$
−0.0944372 0.995531i $$-0.530105\pi$$
$$312$$ −1176.00 2036.89i −0.213391 0.369603i
$$313$$ 2376.50 4116.22i 0.429162 0.743330i −0.567637 0.823279i $$-0.692142\pi$$
0.996799 + 0.0799485i $$0.0254756\pi$$
$$314$$ 1358.00 0.244065
$$315$$ −2695.00 933.575i −0.482051 0.166987i
$$316$$ 412.000 0.0733443
$$317$$ 1738.50 3011.17i 0.308025 0.533515i −0.669905 0.742447i $$-0.733665\pi$$
0.977930 + 0.208932i $$0.0669987\pi$$
$$318$$ −2121.00 3673.68i −0.374024 0.647829i
$$319$$ 145.000 + 251.147i 0.0254497 + 0.0440801i
$$320$$ −1568.00 + 2715.86i −0.273918 + 0.474440i
$$321$$ 3199.00 0.556233
$$322$$ 5565.00 + 1927.77i 0.963122 + 0.333635i
$$323$$ −1029.00 −0.177260
$$324$$ −1678.00 + 2906.38i −0.287723 + 0.498351i
$$325$$ −532.000 921.451i −0.0908002 0.157270i
$$326$$ 467.000 + 808.868i 0.0793397 + 0.137420i
$$327$$ 3937.50 6819.95i 0.665885 1.15335i
$$328$$ −8400.00 −1.41406
$$329$$ 1837.50 + 9547.93i 0.307917 + 1.59998i
$$330$$ −490.000 −0.0817382
$$331$$ −1670.50 + 2893.39i −0.277399 + 0.480469i −0.970738 0.240143i $$-0.922806\pi$$
0.693339 + 0.720612i $$0.256139\pi$$
$$332$$ 2184.00 + 3782.80i 0.361032 + 0.625325i
$$333$$ −2409.00 4172.51i −0.396434 0.686643i
$$334$$ −1204.00 + 2085.39i −0.197245 + 0.341639i
$$335$$ 2905.00 0.473782
$$336$$ −1568.00 + 1357.93i −0.254588 + 0.220479i
$$337$$ 7366.00 1.19066 0.595329 0.803482i $$-0.297022\pi$$
0.595329 + 0.803482i $$0.297022\pi$$
$$338$$ 2001.00 3465.83i 0.322012 0.557741i
$$339$$ 5383.00 + 9323.63i 0.862432 + 1.49378i
$$340$$ −294.000 509.223i −0.0468953 0.0812250i
$$341$$ 367.500 636.529i 0.0583614 0.101085i
$$342$$ 2156.00 0.340886
$$343$$ −3430.00 5346.84i −0.539949 0.841698i
$$344$$ 2976.00 0.466439
$$345$$ 3895.50 6747.20i 0.607903 1.05292i
$$346$$ 2821.00 + 4886.12i 0.438318 + 0.759188i
$$347$$ −3707.50 6421.58i −0.573571 0.993454i −0.996195 0.0871487i $$-0.972224\pi$$
0.422625 0.906305i $$-0.361109\pi$$
$$348$$ 812.000 1406.43i 0.125080 0.216645i
$$349$$ −3878.00 −0.594798 −0.297399 0.954753i $$-0.596119\pi$$
−0.297399 + 0.954753i $$0.596119\pi$$
$$350$$ −2128.00 + 1842.90i −0.324990 + 0.281449i
$$351$$ 490.000 0.0745136
$$352$$ 400.000 692.820i 0.0605684 0.104908i
$$353$$ −633.500 1097.25i −0.0955179 0.165442i 0.814307 0.580435i $$-0.197117\pi$$
−0.909825 + 0.414993i $$0.863784\pi$$
$$354$$ 735.000 + 1273.06i 0.110353 + 0.191136i
$$355$$ 1512.00 2618.86i 0.226052 0.391534i
$$356$$ 1316.00 0.195921
$$357$$ −514.500 2673.42i −0.0762751 0.396337i
$$358$$ −6506.00 −0.960483
$$359$$ −2342.50 + 4057.33i −0.344380 + 0.596484i −0.985241 0.171173i $$-0.945244\pi$$
0.640861 + 0.767657i $$0.278578\pi$$
$$360$$ 1848.00 + 3200.83i 0.270550 + 0.468607i
$$361$$ 2229.00 + 3860.74i 0.324974 + 0.562872i
$$362$$ −1582.00 + 2740.10i −0.229691 + 0.397836i
$$363$$ −9142.00 −1.32185
$$364$$ −980.000 339.482i −0.141115 0.0488838i
$$365$$ −7791.00 −1.11726
$$366$$ 2891.00 5007.36i 0.412882 0.715133i
$$367$$ 2320.50 + 4019.22i 0.330052 + 0.571667i 0.982522 0.186148i $$-0.0596004\pi$$
−0.652470 + 0.757815i $$0.726267\pi$$
$$368$$ −1272.00 2203.17i −0.180184 0.312087i
$$369$$ −3850.00 + 6668.40i −0.543152 + 0.940766i
$$370$$ 3066.00 0.430794
$$371$$ −5302.50 1836.84i −0.742027 0.257046i
$$372$$ −4116.00 −0.573668
$$373$$ 4398.50 7618.43i 0.610578 1.05755i −0.380565 0.924754i $$-0.624270\pi$$
0.991143 0.132798i $$-0.0423963\pi$$
$$374$$ −105.000 181.865i −0.0145172 0.0251445i
$$375$$ 4924.50 + 8529.48i 0.678134 + 1.17456i
$$376$$ 6300.00 10911.9i 0.864090 1.49665i
$$377$$ −812.000 −0.110929
$$378$$ −245.000 1273.06i −0.0333371 0.173225i
$$379$$ 13680.0 1.85407 0.927037 0.374969i $$-0.122347\pi$$
0.927037 + 0.374969i $$0.122347\pi$$
$$380$$ 686.000 1188.19i 0.0926080 0.160402i
$$381$$ −252.000 436.477i −0.0338854 0.0586913i
$$382$$ −2557.00 4428.85i −0.342480 0.593193i
$$383$$ −4882.50 + 8456.74i −0.651395 + 1.12825i 0.331390 + 0.943494i $$0.392482\pi$$
−0.982785 + 0.184755i $$0.940851\pi$$
$$384$$ −2688.00 −0.357217
$$385$$ −490.000 + 424.352i −0.0648642 + 0.0561740i
$$386$$ −794.000 −0.104698
$$387$$ 1364.00 2362.52i 0.179163 0.310319i
$$388$$ −1764.00 3055.34i −0.230808 0.399771i
$$389$$ −865.500 1499.09i −0.112809 0.195390i 0.804093 0.594504i $$-0.202651\pi$$
−0.916902 + 0.399113i $$0.869318\pi$$
$$390$$ 686.000 1188.19i 0.0890691 0.154272i
$$391$$ 3339.00 0.431868
$$392$$ −1176.00 + 8147.57i −0.151523 + 1.04978i
$$393$$ 15043.0 1.93084
$$394$$ −2914.00 + 5047.20i −0.372602 + 0.645366i
$$395$$ 360.500 + 624.404i 0.0459208 + 0.0795372i
$$396$$ −220.000 381.051i −0.0279177 0.0483549i
$$397$$ −5491.50 + 9511.56i −0.694233 + 1.20245i 0.276206 + 0.961099i $$0.410923\pi$$
−0.970439 + 0.241348i $$0.922410\pi$$
$$398$$ 6678.00 0.841050
$$399$$ 4802.00 4158.65i 0.602508 0.521787i
$$400$$ 1216.00 0.152000
$$401$$ −3301.50 + 5718.37i −0.411145 + 0.712124i −0.995015 0.0997232i $$-0.968204\pi$$
0.583870 + 0.811847i $$0.301538\pi$$
$$402$$ −2905.00 5031.61i −0.360418 0.624263i
$$403$$ 1029.00 + 1782.28i 0.127191 + 0.220302i
$$404$$ 2758.00 4777.00i 0.339643 0.588278i
$$405$$ −5873.00 −0.720572
$$406$$ 406.000 + 2109.64i 0.0496292 + 0.257881i
$$407$$ −1095.00 −0.133359
$$408$$ −1764.00 + 3055.34i −0.214047 + 0.370740i
$$409$$ −5477.50 9487.31i −0.662213 1.14699i −0.980033 0.198835i $$-0.936284\pi$$
0.317820 0.948151i $$-0.397049\pi$$
$$410$$ −2450.00 4243.52i −0.295114 0.511153i
$$411$$ 3937.50 6819.95i 0.472561 0.818500i
$$412$$ 2716.00 0.324776
$$413$$ 1837.50 + 636.529i 0.218928 + 0.0758391i
$$414$$ −6996.00 −0.830518
$$415$$ −3822.00 + 6619.90i −0.452083 + 0.783031i
$$416$$ 1120.00 + 1939.90i 0.132001 + 0.228633i
$$417$$ −882.000 1527.67i −0.103577 0.179401i
$$418$$ 245.000 424.352i 0.0286683 0.0496549i
$$419$$ 6636.00 0.773723 0.386861 0.922138i $$-0.373559\pi$$
0.386861 + 0.922138i $$0.373559\pi$$
$$420$$ 3430.00 + 1188.19i 0.398493 + 0.138042i
$$421$$ −16630.0 −1.92517 −0.962585 0.270980i $$-0.912652\pi$$
−0.962585 + 0.270980i $$0.912652\pi$$
$$422$$ −1780.00 + 3083.05i −0.205329 + 0.355641i
$$423$$ −5775.00 10002.6i −0.663806 1.14975i
$$424$$ 3636.00 + 6297.74i 0.416462 + 0.721333i
$$425$$ −798.000 + 1382.18i −0.0910793 + 0.157754i
$$426$$ −6048.00 −0.687856
$$427$$ −1445.50 7511.04i −0.163824 0.851252i
$$428$$ −1828.00 −0.206448
$$429$$ −245.000 + 424.352i −0.0275728 + 0.0477574i
$$430$$ 868.000 + 1503.42i 0.0973458 + 0.168608i
$$431$$ −2461.50 4263.44i −0.275096 0.476480i 0.695064 0.718948i $$-0.255376\pi$$
−0.970159 + 0.242468i $$0.922043\pi$$
$$432$$ −280.000 + 484.974i −0.0311840 + 0.0540123i
$$433$$ 8974.00 0.995988 0.497994 0.867180i $$-0.334070\pi$$
0.497994 + 0.867180i $$0.334070\pi$$
$$434$$ 4116.00 3564.56i 0.455240 0.394250i
$$435$$ 2842.00 0.313249
$$436$$ −2250.00 + 3897.11i −0.247146 + 0.428069i
$$437$$ 3895.50 + 6747.20i 0.426423 + 0.738587i
$$438$$ 7791.00 + 13494.4i 0.849928 + 1.47212i
$$439$$ 2089.50 3619.12i 0.227167 0.393465i −0.729800 0.683660i $$-0.760387\pi$$
0.956967 + 0.290195i $$0.0937203\pi$$
$$440$$ 840.000 0.0910123
$$441$$ 5929.00 + 4667.88i 0.640212 + 0.504036i
$$442$$ 588.000 0.0632767
$$443$$ 6463.50 11195.1i 0.693206 1.20067i −0.277576 0.960704i $$-0.589531\pi$$
0.970782 0.239964i $$-0.0771356\pi$$
$$444$$ 3066.00 + 5310.47i 0.327716 + 0.567621i
$$445$$ 1151.50 + 1994.46i 0.122666 + 0.212464i
$$446$$ 1400.00 2424.87i 0.148637 0.257446i
$$447$$ −1407.00 −0.148879
$$448$$ 6272.00 5431.71i 0.661438 0.572822i
$$449$$ −2826.00 −0.297032 −0.148516 0.988910i $$-0.547450\pi$$
−0.148516 + 0.988910i $$0.547450\pi$$
$$450$$ 1672.00 2895.99i 0.175153 0.303374i
$$451$$ 875.000 + 1515.54i 0.0913573 + 0.158235i
$$452$$ −3076.00 5327.79i −0.320095 0.554421i
$$453$$ −5666.50 + 9814.67i −0.587716 + 1.01795i
$$454$$ −4410.00 −0.455884
$$455$$ −343.000 1782.28i −0.0353409 0.183636i
$$456$$ −8232.00 −0.845392
$$457$$ −4239.50 + 7343.03i −0.433951 + 0.751625i −0.997209 0.0746560i $$-0.976214\pi$$
0.563259 + 0.826281i $$0.309547\pi$$
$$458$$ −287.000 497.099i −0.0292808 0.0507159i
$$459$$ −367.500 636.529i −0.0373713 0.0647290i
$$460$$ −2226.00 + 3855.55i −0.225626 + 0.390795i
$$461$$ 9338.00 0.943414 0.471707 0.881755i $$-0.343638\pi$$
0.471707 + 0.881755i $$0.343638\pi$$
$$462$$ 1225.00 + 424.352i 0.123360 + 0.0427330i
$$463$$ −4016.00 −0.403109 −0.201554 0.979477i $$-0.564599\pi$$
−0.201554 + 0.979477i $$0.564599\pi$$
$$464$$ 464.000 803.672i 0.0464238 0.0804084i
$$465$$ −3601.50 6237.98i −0.359173 0.622106i
$$466$$ −4587.00 7944.92i −0.455984 0.789788i
$$467$$ 2929.50 5074.04i 0.290281 0.502781i −0.683595 0.729861i $$-0.739585\pi$$
0.973876 + 0.227080i $$0.0729180\pi$$
$$468$$ 1232.00 0.121686
$$469$$ −7262.50 2515.80i −0.715034 0.247695i
$$470$$ 7350.00 0.721341
$$471$$ −2376.50 + 4116.22i −0.232491 + 0.402687i
$$472$$ −1260.00 2182.38i −0.122873 0.212823i
$$473$$ −310.000 536.936i −0.0301349 0.0521952i
$$474$$ 721.000 1248.81i 0.0698663 0.121012i
$$475$$ −3724.00 −0.359724
$$476$$ 294.000 + 1527.67i 0.0283098 + 0.147102i
$$477$$ 6666.00 0.639864
$$478$$ −1668.00 + 2889.06i −0.159608 + 0.276449i
$$479$$ −3251.50 5631.76i −0.310156 0.537206i 0.668240 0.743946i $$-0.267048\pi$$
−0.978396 + 0.206740i $$0.933715\pi$$
$$480$$ −3920.00 6789.64i −0.372756 0.645632i
$$481$$ 1533.00 2655.23i 0.145320 0.251701i
$$482$$ −6818.00 −0.644297
$$483$$ −15582.0 + 13494.4i −1.46792 + 1.27126i
$$484$$ 5224.00 0.490609
$$485$$ 3087.00 5346.84i 0.289017 0.500593i
$$486$$ 4928.00 + 8535.55i 0.459956 + 0.796667i
$$487$$ 8024.50 + 13898.8i 0.746663 + 1.29326i 0.949414 + 0.314028i $$0.101678\pi$$
−0.202751 + 0.979230i $$0.564988\pi$$
$$488$$ −4956.00 + 8584.04i −0.459729 + 0.796273i
$$489$$ −3269.00 −0.302309
$$490$$ −4459.00 + 1782.28i −0.411096 + 0.164317i
$$491$$ 8864.00 0.814718 0.407359 0.913268i $$-0.366450\pi$$
0.407359 + 0.913268i $$0.366450\pi$$
$$492$$ 4900.00 8487.05i 0.449002 0.777695i
$$493$$ 609.000 + 1054.82i 0.0556348 + 0.0963624i
$$494$$ 686.000 + 1188.19i 0.0624789 + 0.108217i
$$495$$ 385.000 666.840i 0.0349585 0.0605499i
$$496$$ −2352.00 −0.212919
$$497$$ −6048.00 + 5237.72i −0.545855 + 0.472724i
$$498$$ 15288.0 1.37565
$$499$$ 5105.50 8842.99i 0.458023 0.793319i −0.540833 0.841130i $$-0.681891\pi$$
0.998856 + 0.0478104i $$0.0152243\pi$$
$$500$$ −2814.00 4873.99i −0.251692 0.435943i
$$501$$ −4214.00 7298.86i −0.375784 0.650876i
$$502$$ 4760.00 8244.56i 0.423206 0.733014i
$$503$$ −1680.00 −0.148921 −0.0744607 0.997224i $$-0.523724\pi$$
−0.0744607 + 0.997224i $$0.523724\pi$$
$$504$$ −1848.00 9602.49i −0.163326 0.848668i
$$505$$ 9653.00 0.850600
$$506$$ −795.000 + 1376.98i −0.0698460 + 0.120977i
$$507$$ 7003.50 + 12130.4i 0.613484 + 1.06259i
$$508$$ 144.000 + 249.415i 0.0125767 + 0.0217835i
$$509$$ 4728.50 8190.00i 0.411762 0.713193i −0.583320 0.812242i $$-0.698247\pi$$
0.995083 + 0.0990489i $$0.0315800\pi$$
$$510$$ −2058.00 −0.178686
$$511$$ 19477.5 + 6747.20i 1.68617 + 0.584107i
$$512$$ −5632.00 −0.486136
$$513$$ 857.500 1485.23i 0.0738003 0.127826i
$$514$$ 805.000 + 1394.30i 0.0690798 + 0.119650i
$$515$$ 2376.50 + 4116.22i 0.203342 + 0.352199i
$$516$$ −1736.00 + 3006.84i −0.148107 + 0.256529i
$$517$$ −2625.00 −0.223302
$$518$$ −7665.00 2655.23i −0.650156 0.225221i
$$519$$ −19747.0 −1.67013
$$520$$ −1176.00 + 2036.89i −0.0991750 + 0.171776i
$$521$$ 9040.50 + 15658.6i 0.760214 + 1.31673i 0.942740 + 0.333528i $$0.108239\pi$$
−0.182526 + 0.983201i $$0.558427\pi$$
$$522$$ −1276.00 2210.10i −0.106990 0.185313i
$$523$$ −10188.5 + 17647.0i −0.851839 + 1.47543i 0.0277071 + 0.999616i $$0.491179\pi$$
−0.879546 + 0.475813i $$0.842154\pi$$
$$524$$ −8596.00 −0.716637
$$525$$ −1862.00 9675.24i −0.154789 0.804308i
$$526$$ −514.000 −0.0426073
$$527$$ 1543.50 2673.42i 0.127582 0.220979i
$$528$$ −280.000 484.974i −0.0230785 0.0399731i
$$529$$ −6557.00 11357.1i −0.538917 0.933431i
$$530$$ −2121.00 + 3673.68i −0.173831 + 0.301084i
$$531$$ −2310.00 −0.188786
$$532$$ −2744.00 + 2376.37i −0.223623 + 0.193663i
$$533$$ −4900.00 −0.398204
$$534$$ 2303.00 3988.91i 0.186630 0.323253i
$$535$$ −1599.50 2770.42i −0.129257 0.223879i
$$536$$ 4980.00 + 8625.61i 0.401312 + 0.695093i
$$537$$ 11385.5 19720.3i 0.914936 1.58472i
$$538$$ 7182.00 0.575535
$$539$$ 1592.50 636.529i 0.127261 0.0508668i
$$540$$ 980.000 0.0780972
$$541$$ 3096.50 5363.30i 0.246079 0.426222i −0.716355 0.697736i $$-0.754191\pi$$
0.962435 + 0.271514i $$0.0875243\pi$$
$$542$$ −1393.00 2412.75i −0.110396 0.191211i
$$543$$ −5537.00 9590.37i −0.437597 0.757941i
$$544$$ 1680.00 2909.85i 0.132407 0.229336i
$$545$$ −7875.00 −0.618950
$$546$$ −2744.00 + 2376.37i −0.215078 + 0.186263i
$$547$$ −18464.0 −1.44326 −0.721630 0.692279i $$-0.756607\pi$$
−0.721630 + 0.692279i $$0.756607\pi$$
$$548$$ −2250.00 + 3897.11i −0.175393 + 0.303789i
$$549$$ 4543.00 + 7868.71i 0.353170 + 0.611709i
$$550$$ −380.000 658.179i −0.0294605 0.0510270i
$$551$$ −1421.00 + 2461.24i −0.109867 + 0.190295i
$$552$$ 26712.0 2.05967
$$553$$ −360.500 1873.21i −0.0277216 0.144045i
$$554$$ 830.000 0.0636522
$$555$$ −5365.50 + 9293.32i −0.410365 + 0.710774i
$$556$$ 504.000 + 872.954i 0.0384431 + 0.0665854i
$$557$$ 4706.50 + 8151.90i 0.358027 + 0.620120i 0.987631 0.156796i $$-0.0501164\pi$$
−0.629604 + 0.776916i $$0.716783\pi$$
$$558$$ −3234.00 + 5601.45i −0.245351 + 0.424961i
$$559$$ 1736.00 0.131351
$$560$$ 1960.00 + 678.964i 0.147902 + 0.0512348i
$$561$$ 735.000 0.0553150
$$562$$ 4954.00 8580.58i 0.371836 0.644039i
$$563$$ −1599.50 2770.42i −0.119735 0.207387i 0.799928 0.600097i $$-0.204871\pi$$
−0.919663 + 0.392709i $$0.871538\pi$$
$$564$$ 7350.00 + 12730.6i 0.548743 + 0.950450i
$$565$$ 5383.00 9323.63i 0.400822 0.694244i
$$566$$ −8554.00 −0.635250
$$567$$ 14682.5 + 5086.17i 1.08749 + 0.376718i
$$568$$ 10368.0 0.765901
$$569$$ −10791.5 + 18691.4i −0.795085 + 1.37713i 0.127701 + 0.991813i $$0.459240\pi$$
−0.922785 + 0.385314i $$0.874093\pi$$
$$570$$ −2401.00 4158.65i −0.176433 0.305591i
$$571$$ −10133.5 17551.7i −0.742686 1.28637i −0.951268 0.308365i $$-0.900218\pi$$
0.208582 0.978005i $$-0.433115\pi$$
$$572$$ 140.000 242.487i 0.0102337 0.0177253i
$$573$$ 17899.0 1.30496
$$574$$ 2450.00 + 12730.6i 0.178155 + 0.925721i
$$575$$ 12084.0 0.876413
$$576$$ −4928.00 + 8535.55i −0.356481 + 0.617444i
$$577$$ −6975.50 12081.9i −0.503282 0.871710i −0.999993 0.00379418i $$-0.998792\pi$$
0.496711 0.867916i $$-0.334541\pi$$
$$578$$ 4472.00 + 7745.73i 0.321818 + 0.557405i
$$579$$ 1389.50 2406.68i 0.0997334 0.172743i
$$580$$ −1624.00 −0.116264
$$581$$ 15288.0 13239.8i 1.09166 0.945403i
$$582$$ −12348.0 −0.879452
$$583$$ 757.500 1312.03i 0.0538121 0.0932053i
$$584$$ −13356.0 23133.3i −0.946362 1.63915i
$$585$$ 1078.00 + 1867.15i 0.0761877 + 0.131961i
$$586$$ −7742.00 + 13409.5i −0.545766 + 0.945295i
$$587$$ −20972.0 −1.47463 −0.737314 0.675550i $$-0.763906\pi$$
−0.737314 + 0.675550i $$0.763906\pi$$
$$588$$ −7546.00 5940.93i −0.529238 0.416667i
$$589$$ 7203.00 0.503895
$$590$$ 735.000 1273.06i 0.0512872 0.0888321i
$$591$$ −10199.0 17665.2i −0.709866 1.22952i
$$592$$ 1752.00 + 3034.55i 0.121633 + 0.210675i
$$593$$ 94.5000 163.679i 0.00654410 0.0113347i −0.862735 0.505657i $$-0.831250\pi$$
0.869279 + 0.494322i $$0.164584\pi$$
$$594$$ 350.000 0.0241762
$$595$$ −2058.00 + 1782.28i −0.141798 + 0.122801i
$$596$$ 804.000 0.0552569
$$597$$ −11686.5 + 20241.6i −0.801167 + 1.38766i
$$598$$ −2226.00 3855.55i −0.152221 0.263654i
$$599$$ 5140.50 + 8903.61i 0.350643 + 0.607331i 0.986362 0.164589i $$-0.0526297\pi$$
−0.635719 + 0.771920i $$0.719296\pi$$
$$600$$ −6384.00 + 11057.4i −0.434376 + 0.752362i
$$601$$ −6090.00 −0.413338 −0.206669 0.978411i $$-0.566262\pi$$
−0.206669 + 0.978411i $$0.566262\pi$$
$$602$$ −868.000 4510.26i −0.0587658 0.305356i
$$603$$ 9130.00 0.616588
$$604$$ 3238.00 5608.38i 0.218133 0.377817i
$$605$$ 4571.00 + 7917.20i 0.307170 + 0.532033i
$$606$$ −9653.00 16719.5i −0.647073 1.12076i
$$607$$ −2474.50 + 4285.96i −0.165464 + 0.286593i −0.936820 0.349812i $$-0.886246\pi$$
0.771356 + 0.636404i $$0.219579\pi$$
$$608$$ 7840.00 0.522951
$$609$$ −7105.00 2461.24i −0.472757 0.163768i
$$610$$ −5782.00 −0.383781
$$611$$ 3675.00 6365.29i 0.243330 0.421460i
$$612$$ −924.000 1600.41i −0.0610302 0.105707i
$$613$$ 7898.50 + 13680.6i 0.520420 + 0.901394i 0.999718 + 0.0237416i $$0.00755791\pi$$
−0.479298 + 0.877652i $$0.659109\pi$$
$$614$$ 7364.00 12754.8i 0.484018 0.838343i
$$615$$ 17150.0 1.12448
$$616$$ −2100.00 727.461i −0.137356 0.0475816i
$$617$$ −9378.00 −0.611903 −0.305951 0.952047i $$-0.598975\pi$$
−0.305951 + 0.952047i $$0.598975\pi$$
$$618$$ 4753.00 8232.44i 0.309375 0.535853i
$$619$$ 12176.5 + 21090.3i 0.790654 + 1.36945i 0.925562 + 0.378595i $$0.123593\pi$$
−0.134908 + 0.990858i $$0.543074\pi$$
$$620$$ 2058.00 + 3564.56i 0.133308 + 0.230897i
$$621$$ −2782.50 + 4819.43i −0.179803 + 0.311429i
$$622$$ 19950.0 1.28605
$$623$$ −1151.50 5983.37i −0.0740512 0.384781i
$$624$$ 1568.00 0.100593
$$625$$ 174.500 302.243i 0.0111680 0.0193435i
$$626$$ 4753.00 + 8232.44i 0.303463 + 0.525614i
$$627$$ 857.500 + 1485.23i 0.0546176 + 0.0946005i
$$628$$ 1358.00 2352.12i 0.0862900 0.149459i
$$629$$ −4599.00 −0.291533
$$630$$ 4312.00 3734.30i 0.272689 0.236156i
$$631$$ −12640.0 −0.797449 −0.398725 0.917071i $$-0.630547\pi$$
−0.398725 + 0.917071i $$0.630547\pi$$
$$632$$ −1236.00 + 2140.81i −0.0777934 + 0.134742i
$$633$$ −6230.00 10790.7i −0.391185 0.677553i
$$634$$ 3477.00 + 6022.34i 0.217806 + 0.377252i
$$635$$ −252.000 + 436.477i −0.0157485 + 0.0272772i
$$636$$ −8484.00 −0.528950
$$637$$ −686.000 + 4752.75i −0.0426692 + 0.295621i
$$638$$ −580.000 −0.0359913
$$639$$ 4752.00 8230.71i 0.294188 0.509549i
$$640$$ 1344.00 + 2327.88i 0.0830098 + 0.143777i
$$641$$ 520.500 + 901.532i 0.0320726 + 0.0555513i 0.881616 0.471967i $$-0.156456\pi$$
−0.849544 + 0.527518i $$0.823123\pi$$
$$642$$ −3199.00 + 5540.83i −0.196658 + 0.340622i
$$643$$ 9548.00 0.585593 0.292797 0.956175i $$-0.405414\pi$$
0.292797 + 0.956175i $$0.405414\pi$$
$$644$$ 8904.00 7711.09i 0.544824 0.471832i
$$645$$ −6076.00 −0.370918
$$646$$ 1029.00 1782.28i 0.0626710 0.108549i
$$647$$ 1620.50 + 2806.79i 0.0984674 + 0.170551i 0.911050 0.412295i $$-0.135273\pi$$
−0.812583 + 0.582845i $$0.801939\pi$$
$$648$$ −10068.0 17438.3i −0.610352 1.05716i
$$649$$ −262.500 + 454.663i −0.0158768 + 0.0274994i
$$650$$ 2128.00 0.128411
$$651$$ 3601.50 + 18713.9i 0.216826 + 1.12666i
$$652$$ 1868.00 0.112203
$$653$$ 4426.50 7666.92i 0.265272 0.459464i −0.702363 0.711819i $$-0.747872\pi$$
0.967635 + 0.252355i $$0.0812051\pi$$
$$654$$ 7875.00 + 13639.9i 0.470851 + 0.815539i
$$655$$ −7521.50 13027.6i −0.448686 0.777147i
$$656$$ 2800.00 4849.74i 0.166649 0.288644i
$$657$$ −24486.0 −1.45402
$$658$$ −18375.0 6365.29i −1.08865 0.377120i
$$659$$ 7044.00 0.416381 0.208191 0.978088i $$-0.433243\pi$$
0.208191 + 0.978088i $$0.433243\pi$$
$$660$$ −490.000 + 848.705i −0.0288988 + 0.0500542i
$$661$$ 6044.50 + 10469.4i 0.355679 + 0.616054i 0.987234 0.159277i $$-0.0509163\pi$$
−0.631555 + 0.775331i $$0.717583\pi$$
$$662$$ −3341.00 5786.78i −0.196151 0.339743i
$$663$$ −1029.00 + 1782.28i −0.0602761 + 0.104401i
$$664$$ −26208.0 −1.53173
$$665$$ −6002.50 2079.33i −0.350026 0.121252i
$$666$$ 9636.00 0.560642
$$667$$ 4611.00 7986.49i 0.267674 0.463625i
$$668$$ 2408.00 + 4170.78i 0.139474 + 0.241575i
$$669$$ 4900.00 + 8487.05i 0.283176 + 0.490476i
$$670$$ −2905.00 + 5031.61i −0.167507 + 0.290131i
$$671$$ 2065.00 0.118805
$$672$$ 3920.00 + 20368.9i 0.225026 + 1.16927i
$$673$$ 982.000 0.0562456 0.0281228 0.999604i $$-0.491047\pi$$
0.0281228 + 0.999604i $$0.491047\pi$$
$$674$$ −7366.00 + 12758.3i −0.420961 + 0.729126i
$$675$$ −1330.00 2303.63i −0.0758396 0.131358i
$$676$$ −4002.00 6931.67i −0.227697 0.394383i
$$677$$ 15256.5 26425.0i 0.866108 1.50014i 0.000164659 1.00000i $$-0.499948\pi$$
0.865943 0.500143i $$-0.166719\pi$$
$$678$$ −21532.0 −1.21966
$$679$$ −12348.0 + 10693.7i −0.697898 + 0.604397i
$$680$$ 3528.00 0.198960
$$681$$ 7717.50 13367.1i 0.434266 0.752171i
$$682$$ 735.000 + 1273.06i 0.0412677 + 0.0714778i
$$683$$ −5737.50 9937.64i −0.321434 0.556740i 0.659350 0.751836i $$-0.270831\pi$$
−0.980784 + 0.195096i $$0.937498\pi$$
$$684$$ 2156.00 3734.30i 0.120522 0.208749i
$$685$$ −7875.00 −0.439253
$$686$$ 12691.0 594.093i 0.706333 0.0330650i
$$687$$ 2009.00 0.111569
$$688$$ −992.000 + 1718.19i −0.0549704 + 0.0952116i
$$689$$ 2121.00 + 3673.68i 0.117277 + 0.203129i
$$690$$ 7791.00 + 13494.4i 0.429853 + 0.744527i
$$691$$ 14157.5 24521.5i 0.779416 1.34999i −0.152862 0.988248i $$-0.548849\pi$$
0.932279 0.361741i $$-0.117818\pi$$
$$692$$ 11284.0 0.619875
$$693$$ −1540.00 + 1333.68i −0.0844152 + 0.0731057i
$$694$$ 14830.0 0.811151
$$695$$ −882.000 + 1527.67i −0.0481384 + 0.0833781i
$$696$$ 4872.00 + 8438.55i 0.265334 + 0.459573i
$$697$$ 3675.00 + 6365.29i 0.199714 + 0.345915i
$$698$$ 3878.00 6716.89i 0.210293 0.364238i
$$699$$ 32109.0 1.73744
$$700$$ 1064.00 + 5528.71i 0.0574506 + 0.298522i
$$701$$ 10614.0 0.571876 0.285938 0.958248i $$-0.407695\pi$$
0.285938 + 0.958248i $$0.407695\pi$$
$$702$$ −490.000 + 848.705i −0.0263445 + 0.0456301i
$$703$$ −5365.50 9293.32i −0.287857 0.498583i
$$704$$ 1120.00 + 1939.90i 0.0599596 + 0.103853i
$$705$$ −12862.5 + 22278.5i −0.687134 + 1.19015i
$$706$$ 2534.00 0.135083
$$707$$ −24132.5 8359.74i −1.28373 0.444697i
$$708$$ 2940.00 0.156062
$$709$$ −5149.50 + 8919.20i −0.272769 + 0.472451i −0.969570 0.244814i $$-0.921273\pi$$
0.696801 + 0.717265i $$0.254606\pi$$
$$710$$ 3024.00 + 5237.72i 0.159843 + 0.276857i
$$711$$ 1133.00 + 1962.41i 0.0597621 + 0.103511i
$$712$$ −3948.00 + 6838.14i −0.207806 + 0.359930i
$$713$$ −23373.0 −1.22767
$$714$$ 5145.00 + 1782.28i 0.269673 + 0.0934176i
$$715$$ 490.000 0.0256293
$$716$$ −6506.00 + 11268.7i −0.339582 + 0.588173i
$$717$$ −5838.00 10111.7i −0.304078 0.526679i
$$718$$ −4685.00 8114.66i −0.243513 0.421778i
$$719$$ −16264.5 + 28170.9i −0.843621 + 1.46119i 0.0431924 + 0.999067i $$0.486247\pi$$
−0.886813 + 0.462128i $$0.847086\pi$$
$$720$$ −2464.00 −0.127539
$$721$$ −2376.50 12348.7i −0.122754 0.637847i
$$722$$ −8916.00 −0.459583
$$723$$ 11931.5 20666.0i 0.613744 1.06304i
$$724$$ 3164.00 + 5480.21i 0.162416 + 0.281313i
$$725$$ 2204.00 + 3817.44i 0.112903 + 0.195553i
$$726$$ 9142.00 15834.4i 0.467344 0.809463i
$$727$$ 29456.0 1.50270 0.751350 0.659904i $$-0.229403\pi$$
0.751350 + 0.659904i $$0.229403\pi$$
$$728$$ 4704.00 4073.78i 0.239481 0.207396i
$$729$$ −11843.0 −0.601687
$$730$$ 7791.00 13494.4i 0.395011 0.684179i
$$731$$ −1302.00 2255.13i −0.0658772 0.114103i
$$732$$ −5782.00 10014.7i −0.291952 0.505676i
$$733$$ −13933.5 + 24133.5i −0.702109 + 1.21609i 0.265616 + 0.964079i $$0.414425\pi$$
−0.967725 + 0.252009i $$0.918909\pi$$
$$734$$ −9282.00 −0.466764
$$735$$ 2401.00 16634.6i 0.120493 0.834799i
$$736$$ −25440.0 −1.27409
$$737$$ 1037.50 1797.00i 0.0518546 0.0898147i
$$738$$ −7700.00 13336.8i −0.384066 0.665222i
$$739$$ −9769.50 16921.3i −0.486302 0.842299i 0.513574 0.858045i $$-0.328321\pi$$
−0.999876 + 0.0157460i $$0.994988\pi$$
$$740$$ 3066.00 5310.47i 0.152309 0.263806i
$$741$$ −4802.00 −0.238065
$$742$$ 8484.00 7347.36i 0.419754 0.363518i
$$743$$ 1248.00 0.0616214 0.0308107 0.999525i $$-0.490191\pi$$
0.0308107 + 0.999525i $$0.490191\pi$$
$$744$$ 12348.0 21387.4i 0.608467 1.05390i
$$745$$ 703.500 + 1218.50i 0.0345963 + 0.0599226i
$$746$$ 8797.00 + 15236.9i 0.431744 + 0.747803i
$$747$$ −12012.0 + 20805.4i −0.588348 + 1.01905i
$$748$$ −420.000 −0.0205304
$$749$$ 1599.50 + 8311.25i 0.0780300 + 0.405456i
$$750$$ −19698.0 −0.959026
$$751$$ −14046.5 + 24329.3i −0.682509 + 1.18214i 0.291704 + 0.956509i $$0.405778\pi$$
−0.974213 + 0.225631i $$0.927556\pi$$
$$752$$ 4200.00 + 7274.61i 0.203668 + 0.352763i
$$753$$ 16660.0 + 28856.0i 0.806274 + 1.39651i
$$754$$ 812.000 1406.43i 0.0392192 0.0679297i
$$755$$ 11333.0 0.546292
$$756$$ −2450.00 848.705i −0.117865 0.0408295i
$$757$$ 35954.0 1.72625 0.863124 0.504991i $$-0.168504\pi$$
0.863124 + 0.504991i $$0.168504\pi$$
$$758$$ −13680.0 + 23694.5i −0.655514 + 1.13538i
$$759$$ −2782.50 4819.43i −0.133068 0.230480i
$$760$$ 4116.00 + 7129.12i 0.196451 + 0.340264i
$$761$$ 430.500 745.648i 0.0205067 0.0355187i −0.855590 0.517654i $$-0.826805\pi$$
0.876097 + 0.482136i $$0.160139\pi$$
$$762$$ 1008.00 0.0479212
$$763$$ 19687.5 + 6819.95i 0.934122 + 0.323589i
$$764$$ −10228.0 −0.484340
$$765$$ 1617.00 2800.73i 0.0764219 0.132367i
$$766$$ −9765.00 16913.5i −0.460605 0.797792i
$$767$$ −735.000 1273.06i −0.0346014 0.0599315i
$$768$$ 15232.0 26382.6i 0.715674 1.23958i
$$769$$ 24710.0 1.15873 0.579366 0.815067i $$-0.303300\pi$$
0.579366 + 0.815067i $$0.303300\pi$$
$$770$$ −245.000 1273.06i −0.0114665 0.0595816i
$$771$$ −5635.00 −0.263216
$$772$$ −794.000 + 1375.25i −0.0370164 + 0.0641143i
$$773$$ −8249.50 14288.6i −0.383847 0.664843i 0.607761 0.794120i $$-0.292068\pi$$
−0.991609 + 0.129277i $$0.958734\pi$$
$$774$$ 2728.00 + 4725.03i 0.126687 + 0.219429i
$$775$$ 5586.00 9675.24i 0.258910 0.448445i
$$776$$ 21168.0 0.979236
$$777$$ 21462.0 18586.6i 0.990920 0.858162i
$$778$$ 3462.00 0.159536
$$779$$ −8575.00 + 14852.3i −0.394392 + 0.683107i
$$780$$ −1372.00 2376.37i −0.0629814 0.109087i
$$781$$ −1080.00 1870.61i −0.0494820 0.0857053i
$$782$$ −3339.00 + 5783.32i −0.152688 + 0.264464i
$$783$$ −2030.00 −0.0926517
$$784$$ −4312.00 3394.82i −0.196429 0.154647i
$$785$$ 4753.00 0.216104
$$786$$ −15043.0 + 26055.2i −0.682654 + 1.18239i
$$787$$ −8235.50 14264.3i