Properties

Label 7.4.c
Level $7$
Weight $4$
Character orbit 7.c
Rep. character $\chi_{7}(2,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $2$
Newform subspaces $1$
Sturm bound $2$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 7.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(7, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

Trace form

\( 2 q - 2 q^{2} - 7 q^{3} + 4 q^{4} - 7 q^{5} + 28 q^{6} + 28 q^{7} - 48 q^{8} - 22 q^{9} - 14 q^{10} + 5 q^{11} + 28 q^{12} - 28 q^{13} + 14 q^{14} + 98 q^{15} + 16 q^{16} + 21 q^{17} - 44 q^{18} - 49 q^{19}+ \cdots - 220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(7, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
7.4.c.a 7.c 7.c $2$ $0.413$ \(\Q(\sqrt{-3}) \) None 7.4.c.a \(-2\) \(-7\) \(-7\) \(28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}-7\zeta_{6}q^{3}+4\zeta_{6}q^{4}+\cdots\)