Defining parameters
Level: | \( N \) | \(=\) | \( 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 7.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(2\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(7, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6 | 6 | 0 |
Cusp forms | 2 | 2 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(7, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
7.4.c.a | $2$ | $0.413$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(-7\) | \(-7\) | \(28\) | \(q+(-2+2\zeta_{6})q^{2}-7\zeta_{6}q^{3}+4\zeta_{6}q^{4}+\cdots\) |