Properties

Label 7.4.a
Level $7$
Weight $4$
Character orbit 7.a
Rep. character $\chi_{7}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $2$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(7))\).

Total New Old
Modular forms 3 1 2
Cusp forms 1 1 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)Dim
\(+\)\(1\)

Trace form

\( q - q^{2} - 2 q^{3} - 7 q^{4} + 16 q^{5} + 2 q^{6} - 7 q^{7} + 15 q^{8} - 23 q^{9} - 16 q^{10} - 8 q^{11} + 14 q^{12} + 28 q^{13} + 7 q^{14} - 32 q^{15} + 41 q^{16} + 54 q^{17} + 23 q^{18} - 110 q^{19}+ \cdots + 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7
7.4.a.a 7.a 1.a $1$ $0.413$ \(\Q\) None 7.4.a.a \(-1\) \(-2\) \(16\) \(-7\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}-7q^{4}+2^{4}q^{5}+2q^{6}+\cdots\)