Properties

Label 7.18.c
Level $7$
Weight $18$
Character orbit 7.c
Rep. character $\chi_{7}(2,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $20$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 7.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(7, [\chi])\).

Total New Old
Modular forms 24 24 0
Cusp forms 20 20 0
Eisenstein series 4 4 0

Trace form

\( 20 q + 270 q^{2} + 6560 q^{3} - 551660 q^{4} + 1089798 q^{5} - 1687556 q^{6} + 14395360 q^{7} - 237823200 q^{8} - 498883228 q^{9} + 222553738 q^{10} - 148256184 q^{11} + 2808533140 q^{12} + 3578734040 q^{13}+ \cdots + 92\!\cdots\!80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(7, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
7.18.c.a 7.c 7.c $20$ $12.826$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 7.18.c.a \(270\) \(6560\) \(1089798\) \(14395360\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+3^{3}\beta _{2})q^{2}+(656-656\beta _{2}-\beta _{3}+\cdots)q^{3}+\cdots\)