Newspace parameters
Level: | \( N \) | \(=\) | \( 7 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 7.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.44750076872\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.0.373770240.2 |
Defining polynomial: |
\( x^{4} + 368x^{2} + 2760 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{7}\cdot 3\cdot 5\cdot 7 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 368x^{2} + 2760 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -3\nu^{3} - 1254\nu ) / 13 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 2\nu^{2} + 368 ) / 13 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -35\nu^{3} - 10990\nu ) / 13 \)
|
\(\nu\) | \(=\) |
\( ( 3\beta_{3} - 35\beta_1 ) / 840 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 13\beta_{2} - 368 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -627\beta_{3} + 5495\beta_1 ) / 420 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7\mathbb{Z}\right)^\times\).
\(n\) | \(3\) |
\(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.1 |
|
−39.1293 | − | 252.583i | 507.104 | 2873.50i | 9883.42i | −2763.01 | + | 16578.3i | 20225.8 | −4749.36 | − | 112438.i | ||||||||||||||||||||||||||
6.2 | −39.1293 | 252.583i | 507.104 | − | 2873.50i | − | 9883.42i | −2763.01 | − | 16578.3i | 20225.8 | −4749.36 | 112438.i | |||||||||||||||||||||||||||
6.3 | 15.1293 | − | 262.072i | −795.104 | − | 1758.44i | − | 3964.97i | 5213.01 | − | 15978.1i | −27521.8 | −9632.64 | − | 26604.0i | |||||||||||||||||||||||||
6.4 | 15.1293 | 262.072i | −795.104 | 1758.44i | 3964.97i | 5213.01 | + | 15978.1i | −27521.8 | −9632.64 | 26604.0i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7.11.b.b | ✓ | 4 |
3.b | odd | 2 | 1 | 63.11.d.c | 4 | ||
4.b | odd | 2 | 1 | 112.11.c.b | 4 | ||
7.b | odd | 2 | 1 | inner | 7.11.b.b | ✓ | 4 |
7.c | even | 3 | 2 | 49.11.d.b | 8 | ||
7.d | odd | 6 | 2 | 49.11.d.b | 8 | ||
21.c | even | 2 | 1 | 63.11.d.c | 4 | ||
28.d | even | 2 | 1 | 112.11.c.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
7.11.b.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
7.11.b.b | ✓ | 4 | 7.b | odd | 2 | 1 | inner |
49.11.d.b | 8 | 7.c | even | 3 | 2 | ||
49.11.d.b | 8 | 7.d | odd | 6 | 2 | ||
63.11.d.c | 4 | 3.b | odd | 2 | 1 | ||
63.11.d.c | 4 | 21.c | even | 2 | 1 | ||
112.11.c.b | 4 | 4.b | odd | 2 | 1 | ||
112.11.c.b | 4 | 28.d | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 24T_{2} - 592 \)
acting on \(S_{11}^{\mathrm{new}}(7, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 24 T - 592)^{2} \)
$3$
\( T^{4} + 132480 T^{2} + \cdots + 4381776000 \)
$5$
\( T^{4} + 11349120 T^{2} + \cdots + 25531635024000 \)
$7$
\( T^{4} - 4900 T^{3} + \cdots + 79\!\cdots\!01 \)
$11$
\( (T^{2} - 42996 T - 12545617372)^{2} \)
$13$
\( T^{4} + 458156334720 T^{2} + \cdots + 48\!\cdots\!00 \)
$17$
\( T^{4} + 2988125614080 T^{2} + \cdots + 30\!\cdots\!00 \)
$19$
\( T^{4} + 10819263899520 T^{2} + \cdots + 16\!\cdots\!00 \)
$23$
\( (T^{2} + 9630876 T - 28039440658492)^{2} \)
$29$
\( (T^{2} - 11522004 T - 199771975916572)^{2} \)
$31$
\( T^{4} + \cdots + 11\!\cdots\!00 \)
$37$
\( (T^{2} + 87458444 T - 21\!\cdots\!32)^{2} \)
$41$
\( T^{4} + \cdots + 62\!\cdots\!00 \)
$43$
\( (T^{2} - 81579124 T - 22\!\cdots\!92)^{2} \)
$47$
\( T^{4} + \cdots + 78\!\cdots\!00 \)
$53$
\( (T^{2} - 846965940 T + 75\!\cdots\!64)^{2} \)
$59$
\( T^{4} + \cdots + 42\!\cdots\!00 \)
$61$
\( T^{4} + \cdots + 36\!\cdots\!00 \)
$67$
\( (T^{2} + 1032383084 T + 23\!\cdots\!88)^{2} \)
$71$
\( (T^{2} - 564529956 T - 12\!\cdots\!32)^{2} \)
$73$
\( T^{4} + \cdots + 16\!\cdots\!00 \)
$79$
\( (T^{2} - 5418147844 T + 59\!\cdots\!68)^{2} \)
$83$
\( T^{4} + \cdots + 83\!\cdots\!00 \)
$89$
\( T^{4} + \cdots + 19\!\cdots\!00 \)
$97$
\( T^{4} + \cdots + 53\!\cdots\!00 \)
show more
show less