Properties

Label 6975.2.a.cc.1.6
Level $6975$
Weight $2$
Character 6975.1
Self dual yes
Analytic conductor $55.696$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6975,2,Mod(1,6975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6975.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,0,7,0,0,-2,-3,0,0,-7,0,-4,-10,0,17,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.6956554098\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.75968016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 9x^{3} + 14x^{2} - 6x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2325)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.46251\) of defining polynomial
Character \(\chi\) \(=\) 6975.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46251 q^{2} +4.06395 q^{4} -3.91086 q^{7} +5.08250 q^{8} -3.77308 q^{11} +4.83704 q^{13} -9.63054 q^{14} +4.38781 q^{16} -5.89630 q^{17} +5.60730 q^{19} -9.29125 q^{22} -5.19547 q^{23} +11.9112 q^{26} -15.8936 q^{28} +6.33880 q^{29} -1.00000 q^{31} +0.640010 q^{32} -14.5197 q^{34} -11.2913 q^{37} +13.8080 q^{38} -0.663143 q^{41} +3.39308 q^{43} -15.3336 q^{44} -12.7939 q^{46} -1.31684 q^{47} +8.29486 q^{49} +19.6575 q^{52} -10.4443 q^{53} -19.8770 q^{56} +15.6093 q^{58} -7.58816 q^{59} -10.3208 q^{61} -2.46251 q^{62} -7.19958 q^{64} +10.2874 q^{67} -23.9623 q^{68} +3.68083 q^{71} -12.3909 q^{73} -27.8048 q^{74} +22.7878 q^{76} +14.7560 q^{77} -9.23657 q^{79} -1.63300 q^{82} -0.590907 q^{83} +8.35548 q^{86} -19.1767 q^{88} -15.8673 q^{89} -18.9170 q^{91} -21.1141 q^{92} -3.24273 q^{94} -3.98585 q^{97} +20.4262 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 7 q^{4} - 2 q^{7} - 3 q^{8} - 7 q^{11} - 4 q^{13} - 10 q^{14} + 17 q^{16} + 17 q^{19} - 2 q^{22} - q^{23} - 2 q^{26} - 22 q^{28} + 8 q^{29} - 6 q^{31} - 35 q^{32} - 13 q^{34} - 14 q^{37}+ \cdots + 37 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46251 1.74126 0.870629 0.491941i \(-0.163712\pi\)
0.870629 + 0.491941i \(0.163712\pi\)
\(3\) 0 0
\(4\) 4.06395 2.03198
\(5\) 0 0
\(6\) 0 0
\(7\) −3.91086 −1.47817 −0.739084 0.673613i \(-0.764741\pi\)
−0.739084 + 0.673613i \(0.764741\pi\)
\(8\) 5.08250 1.79694
\(9\) 0 0
\(10\) 0 0
\(11\) −3.77308 −1.13763 −0.568814 0.822466i \(-0.692597\pi\)
−0.568814 + 0.822466i \(0.692597\pi\)
\(12\) 0 0
\(13\) 4.83704 1.34155 0.670776 0.741660i \(-0.265961\pi\)
0.670776 + 0.741660i \(0.265961\pi\)
\(14\) −9.63054 −2.57387
\(15\) 0 0
\(16\) 4.38781 1.09695
\(17\) −5.89630 −1.43006 −0.715032 0.699092i \(-0.753588\pi\)
−0.715032 + 0.699092i \(0.753588\pi\)
\(18\) 0 0
\(19\) 5.60730 1.28640 0.643202 0.765697i \(-0.277606\pi\)
0.643202 + 0.765697i \(0.277606\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −9.29125 −1.98090
\(23\) −5.19547 −1.08333 −0.541665 0.840595i \(-0.682206\pi\)
−0.541665 + 0.840595i \(0.682206\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 11.9112 2.33599
\(27\) 0 0
\(28\) −15.8936 −3.00360
\(29\) 6.33880 1.17709 0.588543 0.808466i \(-0.299702\pi\)
0.588543 + 0.808466i \(0.299702\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0.640010 0.113139
\(33\) 0 0
\(34\) −14.5197 −2.49011
\(35\) 0 0
\(36\) 0 0
\(37\) −11.2913 −1.85627 −0.928135 0.372243i \(-0.878589\pi\)
−0.928135 + 0.372243i \(0.878589\pi\)
\(38\) 13.8080 2.23996
\(39\) 0 0
\(40\) 0 0
\(41\) −0.663143 −0.103566 −0.0517828 0.998658i \(-0.516490\pi\)
−0.0517828 + 0.998658i \(0.516490\pi\)
\(42\) 0 0
\(43\) 3.39308 0.517439 0.258720 0.965952i \(-0.416699\pi\)
0.258720 + 0.965952i \(0.416699\pi\)
\(44\) −15.3336 −2.31163
\(45\) 0 0
\(46\) −12.7939 −1.88636
\(47\) −1.31684 −0.192081 −0.0960405 0.995377i \(-0.530618\pi\)
−0.0960405 + 0.995377i \(0.530618\pi\)
\(48\) 0 0
\(49\) 8.29486 1.18498
\(50\) 0 0
\(51\) 0 0
\(52\) 19.6575 2.72600
\(53\) −10.4443 −1.43464 −0.717320 0.696744i \(-0.754632\pi\)
−0.717320 + 0.696744i \(0.754632\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −19.8770 −2.65617
\(57\) 0 0
\(58\) 15.6093 2.04961
\(59\) −7.58816 −0.987895 −0.493947 0.869492i \(-0.664446\pi\)
−0.493947 + 0.869492i \(0.664446\pi\)
\(60\) 0 0
\(61\) −10.3208 −1.32145 −0.660724 0.750629i \(-0.729751\pi\)
−0.660724 + 0.750629i \(0.729751\pi\)
\(62\) −2.46251 −0.312739
\(63\) 0 0
\(64\) −7.19958 −0.899948
\(65\) 0 0
\(66\) 0 0
\(67\) 10.2874 1.25680 0.628400 0.777890i \(-0.283710\pi\)
0.628400 + 0.777890i \(0.283710\pi\)
\(68\) −23.9623 −2.90586
\(69\) 0 0
\(70\) 0 0
\(71\) 3.68083 0.436834 0.218417 0.975856i \(-0.429911\pi\)
0.218417 + 0.975856i \(0.429911\pi\)
\(72\) 0 0
\(73\) −12.3909 −1.45025 −0.725125 0.688618i \(-0.758218\pi\)
−0.725125 + 0.688618i \(0.758218\pi\)
\(74\) −27.8048 −3.23224
\(75\) 0 0
\(76\) 22.7878 2.61394
\(77\) 14.7560 1.68160
\(78\) 0 0
\(79\) −9.23657 −1.03919 −0.519597 0.854411i \(-0.673918\pi\)
−0.519597 + 0.854411i \(0.673918\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.63300 −0.180334
\(83\) −0.590907 −0.0648605 −0.0324302 0.999474i \(-0.510325\pi\)
−0.0324302 + 0.999474i \(0.510325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.35548 0.900995
\(87\) 0 0
\(88\) −19.1767 −2.04424
\(89\) −15.8673 −1.68193 −0.840964 0.541090i \(-0.818012\pi\)
−0.840964 + 0.541090i \(0.818012\pi\)
\(90\) 0 0
\(91\) −18.9170 −1.98304
\(92\) −21.1141 −2.20130
\(93\) 0 0
\(94\) −3.24273 −0.334462
\(95\) 0 0
\(96\) 0 0
\(97\) −3.98585 −0.404701 −0.202351 0.979313i \(-0.564858\pi\)
−0.202351 + 0.979313i \(0.564858\pi\)
\(98\) 20.4262 2.06335
\(99\) 0 0
\(100\) 0 0
\(101\) 4.48372 0.446147 0.223073 0.974802i \(-0.428391\pi\)
0.223073 + 0.974802i \(0.428391\pi\)
\(102\) 0 0
\(103\) −14.9600 −1.47405 −0.737025 0.675865i \(-0.763770\pi\)
−0.737025 + 0.675865i \(0.763770\pi\)
\(104\) 24.5842 2.41068
\(105\) 0 0
\(106\) −25.7193 −2.49808
\(107\) 1.47421 0.142517 0.0712585 0.997458i \(-0.477298\pi\)
0.0712585 + 0.997458i \(0.477298\pi\)
\(108\) 0 0
\(109\) 12.7771 1.22382 0.611911 0.790927i \(-0.290401\pi\)
0.611911 + 0.790927i \(0.290401\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −17.1601 −1.62148
\(113\) −4.71980 −0.444002 −0.222001 0.975046i \(-0.571259\pi\)
−0.222001 + 0.975046i \(0.571259\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 25.7606 2.39181
\(117\) 0 0
\(118\) −18.6859 −1.72018
\(119\) 23.0596 2.11387
\(120\) 0 0
\(121\) 3.23615 0.294196
\(122\) −25.4152 −2.30098
\(123\) 0 0
\(124\) −4.06395 −0.364954
\(125\) 0 0
\(126\) 0 0
\(127\) 14.7204 1.30622 0.653111 0.757262i \(-0.273464\pi\)
0.653111 + 0.757262i \(0.273464\pi\)
\(128\) −19.0091 −1.68018
\(129\) 0 0
\(130\) 0 0
\(131\) −10.9970 −0.960810 −0.480405 0.877047i \(-0.659510\pi\)
−0.480405 + 0.877047i \(0.659510\pi\)
\(132\) 0 0
\(133\) −21.9294 −1.90152
\(134\) 25.3327 2.18841
\(135\) 0 0
\(136\) −29.9680 −2.56973
\(137\) 3.29038 0.281116 0.140558 0.990072i \(-0.455110\pi\)
0.140558 + 0.990072i \(0.455110\pi\)
\(138\) 0 0
\(139\) 11.7607 0.997527 0.498764 0.866738i \(-0.333788\pi\)
0.498764 + 0.866738i \(0.333788\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 9.06408 0.760641
\(143\) −18.2505 −1.52619
\(144\) 0 0
\(145\) 0 0
\(146\) −30.5128 −2.52526
\(147\) 0 0
\(148\) −45.8871 −3.77190
\(149\) 0.0294614 0.00241357 0.00120679 0.999999i \(-0.499616\pi\)
0.00120679 + 0.999999i \(0.499616\pi\)
\(150\) 0 0
\(151\) 12.0018 0.976689 0.488345 0.872651i \(-0.337601\pi\)
0.488345 + 0.872651i \(0.337601\pi\)
\(152\) 28.4991 2.31159
\(153\) 0 0
\(154\) 36.3368 2.92810
\(155\) 0 0
\(156\) 0 0
\(157\) −7.34191 −0.585948 −0.292974 0.956120i \(-0.594645\pi\)
−0.292974 + 0.956120i \(0.594645\pi\)
\(158\) −22.7451 −1.80951
\(159\) 0 0
\(160\) 0 0
\(161\) 20.3188 1.60134
\(162\) 0 0
\(163\) 11.3447 0.888582 0.444291 0.895882i \(-0.353456\pi\)
0.444291 + 0.895882i \(0.353456\pi\)
\(164\) −2.69498 −0.210443
\(165\) 0 0
\(166\) −1.45511 −0.112939
\(167\) −7.42413 −0.574496 −0.287248 0.957856i \(-0.592740\pi\)
−0.287248 + 0.957856i \(0.592740\pi\)
\(168\) 0 0
\(169\) 10.3969 0.799762
\(170\) 0 0
\(171\) 0 0
\(172\) 13.7893 1.05142
\(173\) 21.4708 1.63239 0.816196 0.577775i \(-0.196079\pi\)
0.816196 + 0.577775i \(0.196079\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −16.5556 −1.24792
\(177\) 0 0
\(178\) −39.0733 −2.92867
\(179\) −9.85343 −0.736480 −0.368240 0.929731i \(-0.620040\pi\)
−0.368240 + 0.929731i \(0.620040\pi\)
\(180\) 0 0
\(181\) −3.95811 −0.294204 −0.147102 0.989121i \(-0.546995\pi\)
−0.147102 + 0.989121i \(0.546995\pi\)
\(182\) −46.5833 −3.45298
\(183\) 0 0
\(184\) −26.4060 −1.94667
\(185\) 0 0
\(186\) 0 0
\(187\) 22.2472 1.62688
\(188\) −5.35158 −0.390304
\(189\) 0 0
\(190\) 0 0
\(191\) 16.6250 1.20294 0.601470 0.798896i \(-0.294582\pi\)
0.601470 + 0.798896i \(0.294582\pi\)
\(192\) 0 0
\(193\) −4.17565 −0.300570 −0.150285 0.988643i \(-0.548019\pi\)
−0.150285 + 0.988643i \(0.548019\pi\)
\(194\) −9.81518 −0.704689
\(195\) 0 0
\(196\) 33.7099 2.40785
\(197\) 10.0370 0.715108 0.357554 0.933892i \(-0.383611\pi\)
0.357554 + 0.933892i \(0.383611\pi\)
\(198\) 0 0
\(199\) 11.7746 0.834679 0.417339 0.908751i \(-0.362963\pi\)
0.417339 + 0.908751i \(0.362963\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 11.0412 0.776856
\(203\) −24.7902 −1.73993
\(204\) 0 0
\(205\) 0 0
\(206\) −36.8391 −2.56670
\(207\) 0 0
\(208\) 21.2240 1.47162
\(209\) −21.1568 −1.46345
\(210\) 0 0
\(211\) −19.9525 −1.37359 −0.686795 0.726851i \(-0.740983\pi\)
−0.686795 + 0.726851i \(0.740983\pi\)
\(212\) −42.4453 −2.91516
\(213\) 0 0
\(214\) 3.63025 0.248159
\(215\) 0 0
\(216\) 0 0
\(217\) 3.91086 0.265487
\(218\) 31.4637 2.13099
\(219\) 0 0
\(220\) 0 0
\(221\) −28.5206 −1.91851
\(222\) 0 0
\(223\) 17.5032 1.17210 0.586051 0.810274i \(-0.300682\pi\)
0.586051 + 0.810274i \(0.300682\pi\)
\(224\) −2.50299 −0.167238
\(225\) 0 0
\(226\) −11.6226 −0.773121
\(227\) 8.55366 0.567727 0.283863 0.958865i \(-0.408384\pi\)
0.283863 + 0.958865i \(0.408384\pi\)
\(228\) 0 0
\(229\) −18.2864 −1.20840 −0.604198 0.796834i \(-0.706507\pi\)
−0.604198 + 0.796834i \(0.706507\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 32.2170 2.11515
\(233\) −17.7085 −1.16012 −0.580061 0.814573i \(-0.696971\pi\)
−0.580061 + 0.814573i \(0.696971\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −30.8379 −2.00738
\(237\) 0 0
\(238\) 56.7846 3.68080
\(239\) −1.18501 −0.0766517 −0.0383258 0.999265i \(-0.512202\pi\)
−0.0383258 + 0.999265i \(0.512202\pi\)
\(240\) 0 0
\(241\) 18.0403 1.16208 0.581039 0.813876i \(-0.302646\pi\)
0.581039 + 0.813876i \(0.302646\pi\)
\(242\) 7.96906 0.512270
\(243\) 0 0
\(244\) −41.9434 −2.68515
\(245\) 0 0
\(246\) 0 0
\(247\) 27.1227 1.72578
\(248\) −5.08250 −0.322739
\(249\) 0 0
\(250\) 0 0
\(251\) 2.86868 0.181070 0.0905348 0.995893i \(-0.471142\pi\)
0.0905348 + 0.995893i \(0.471142\pi\)
\(252\) 0 0
\(253\) 19.6029 1.23243
\(254\) 36.2491 2.27447
\(255\) 0 0
\(256\) −32.4108 −2.02568
\(257\) 10.5692 0.659292 0.329646 0.944105i \(-0.393071\pi\)
0.329646 + 0.944105i \(0.393071\pi\)
\(258\) 0 0
\(259\) 44.1586 2.74388
\(260\) 0 0
\(261\) 0 0
\(262\) −27.0802 −1.67302
\(263\) −27.8993 −1.72034 −0.860171 0.510005i \(-0.829643\pi\)
−0.860171 + 0.510005i \(0.829643\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −54.0014 −3.31104
\(267\) 0 0
\(268\) 41.8073 2.55379
\(269\) 24.3497 1.48463 0.742313 0.670053i \(-0.233729\pi\)
0.742313 + 0.670053i \(0.233729\pi\)
\(270\) 0 0
\(271\) 26.2165 1.59254 0.796268 0.604943i \(-0.206804\pi\)
0.796268 + 0.604943i \(0.206804\pi\)
\(272\) −25.8718 −1.56871
\(273\) 0 0
\(274\) 8.10259 0.489495
\(275\) 0 0
\(276\) 0 0
\(277\) −5.34031 −0.320868 −0.160434 0.987047i \(-0.551289\pi\)
−0.160434 + 0.987047i \(0.551289\pi\)
\(278\) 28.9608 1.73695
\(279\) 0 0
\(280\) 0 0
\(281\) −0.305796 −0.0182422 −0.00912112 0.999958i \(-0.502903\pi\)
−0.00912112 + 0.999958i \(0.502903\pi\)
\(282\) 0 0
\(283\) 17.0008 1.01059 0.505296 0.862946i \(-0.331383\pi\)
0.505296 + 0.862946i \(0.331383\pi\)
\(284\) 14.9587 0.887637
\(285\) 0 0
\(286\) −44.9421 −2.65748
\(287\) 2.59346 0.153087
\(288\) 0 0
\(289\) 17.7664 1.04508
\(290\) 0 0
\(291\) 0 0
\(292\) −50.3562 −2.94687
\(293\) −23.8670 −1.39433 −0.697164 0.716912i \(-0.745555\pi\)
−0.697164 + 0.716912i \(0.745555\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −57.3878 −3.33560
\(297\) 0 0
\(298\) 0.0725490 0.00420265
\(299\) −25.1307 −1.45334
\(300\) 0 0
\(301\) −13.2699 −0.764862
\(302\) 29.5545 1.70067
\(303\) 0 0
\(304\) 24.6038 1.41112
\(305\) 0 0
\(306\) 0 0
\(307\) 10.0221 0.571992 0.285996 0.958231i \(-0.407676\pi\)
0.285996 + 0.958231i \(0.407676\pi\)
\(308\) 59.9677 3.41698
\(309\) 0 0
\(310\) 0 0
\(311\) 3.00341 0.170307 0.0851537 0.996368i \(-0.472862\pi\)
0.0851537 + 0.996368i \(0.472862\pi\)
\(312\) 0 0
\(313\) 10.2325 0.578374 0.289187 0.957273i \(-0.406615\pi\)
0.289187 + 0.957273i \(0.406615\pi\)
\(314\) −18.0795 −1.02029
\(315\) 0 0
\(316\) −37.5370 −2.11162
\(317\) −23.4147 −1.31510 −0.657550 0.753411i \(-0.728407\pi\)
−0.657550 + 0.753411i \(0.728407\pi\)
\(318\) 0 0
\(319\) −23.9168 −1.33908
\(320\) 0 0
\(321\) 0 0
\(322\) 50.0352 2.78835
\(323\) −33.0624 −1.83964
\(324\) 0 0
\(325\) 0 0
\(326\) 27.9363 1.54725
\(327\) 0 0
\(328\) −3.37043 −0.186101
\(329\) 5.14999 0.283928
\(330\) 0 0
\(331\) 20.2889 1.11518 0.557590 0.830116i \(-0.311726\pi\)
0.557590 + 0.830116i \(0.311726\pi\)
\(332\) −2.40142 −0.131795
\(333\) 0 0
\(334\) −18.2820 −1.00035
\(335\) 0 0
\(336\) 0 0
\(337\) 15.9577 0.869274 0.434637 0.900606i \(-0.356877\pi\)
0.434637 + 0.900606i \(0.356877\pi\)
\(338\) 25.6025 1.39259
\(339\) 0 0
\(340\) 0 0
\(341\) 3.77308 0.204324
\(342\) 0 0
\(343\) −5.06402 −0.273431
\(344\) 17.2453 0.929806
\(345\) 0 0
\(346\) 52.8720 2.84242
\(347\) 6.93796 0.372449 0.186224 0.982507i \(-0.440375\pi\)
0.186224 + 0.982507i \(0.440375\pi\)
\(348\) 0 0
\(349\) −9.56079 −0.511778 −0.255889 0.966706i \(-0.582368\pi\)
−0.255889 + 0.966706i \(0.582368\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.41481 −0.128710
\(353\) 12.0956 0.643783 0.321892 0.946776i \(-0.395681\pi\)
0.321892 + 0.946776i \(0.395681\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −64.4839 −3.41764
\(357\) 0 0
\(358\) −24.2642 −1.28240
\(359\) 28.8573 1.52303 0.761514 0.648148i \(-0.224456\pi\)
0.761514 + 0.648148i \(0.224456\pi\)
\(360\) 0 0
\(361\) 12.4419 0.654835
\(362\) −9.74688 −0.512284
\(363\) 0 0
\(364\) −76.8778 −4.02949
\(365\) 0 0
\(366\) 0 0
\(367\) −23.3643 −1.21961 −0.609804 0.792552i \(-0.708752\pi\)
−0.609804 + 0.792552i \(0.708752\pi\)
\(368\) −22.7967 −1.18836
\(369\) 0 0
\(370\) 0 0
\(371\) 40.8464 2.12064
\(372\) 0 0
\(373\) 16.9679 0.878563 0.439281 0.898350i \(-0.355233\pi\)
0.439281 + 0.898350i \(0.355233\pi\)
\(374\) 54.7840 2.83282
\(375\) 0 0
\(376\) −6.69285 −0.345157
\(377\) 30.6610 1.57912
\(378\) 0 0
\(379\) −23.3454 −1.19917 −0.599585 0.800311i \(-0.704668\pi\)
−0.599585 + 0.800311i \(0.704668\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 40.9391 2.09463
\(383\) −25.3541 −1.29554 −0.647768 0.761838i \(-0.724297\pi\)
−0.647768 + 0.761838i \(0.724297\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.2826 −0.523370
\(387\) 0 0
\(388\) −16.1983 −0.822343
\(389\) 12.6350 0.640622 0.320311 0.947312i \(-0.396213\pi\)
0.320311 + 0.947312i \(0.396213\pi\)
\(390\) 0 0
\(391\) 30.6340 1.54923
\(392\) 42.1587 2.12933
\(393\) 0 0
\(394\) 24.7163 1.24519
\(395\) 0 0
\(396\) 0 0
\(397\) −25.5883 −1.28424 −0.642119 0.766605i \(-0.721945\pi\)
−0.642119 + 0.766605i \(0.721945\pi\)
\(398\) 28.9950 1.45339
\(399\) 0 0
\(400\) 0 0
\(401\) −37.1198 −1.85368 −0.926838 0.375461i \(-0.877484\pi\)
−0.926838 + 0.375461i \(0.877484\pi\)
\(402\) 0 0
\(403\) −4.83704 −0.240950
\(404\) 18.2216 0.906560
\(405\) 0 0
\(406\) −61.0460 −3.02966
\(407\) 42.6028 2.11174
\(408\) 0 0
\(409\) 11.2361 0.555589 0.277794 0.960641i \(-0.410397\pi\)
0.277794 + 0.960641i \(0.410397\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −60.7966 −2.99524
\(413\) 29.6763 1.46027
\(414\) 0 0
\(415\) 0 0
\(416\) 3.09575 0.151782
\(417\) 0 0
\(418\) −52.0989 −2.54824
\(419\) 26.5740 1.29823 0.649113 0.760692i \(-0.275140\pi\)
0.649113 + 0.760692i \(0.275140\pi\)
\(420\) 0 0
\(421\) 21.5334 1.04948 0.524738 0.851264i \(-0.324163\pi\)
0.524738 + 0.851264i \(0.324163\pi\)
\(422\) −49.1333 −2.39177
\(423\) 0 0
\(424\) −53.0834 −2.57796
\(425\) 0 0
\(426\) 0 0
\(427\) 40.3634 1.95332
\(428\) 5.99111 0.289591
\(429\) 0 0
\(430\) 0 0
\(431\) −7.20557 −0.347080 −0.173540 0.984827i \(-0.555521\pi\)
−0.173540 + 0.984827i \(0.555521\pi\)
\(432\) 0 0
\(433\) 12.1236 0.582624 0.291312 0.956628i \(-0.405908\pi\)
0.291312 + 0.956628i \(0.405908\pi\)
\(434\) 9.63054 0.462281
\(435\) 0 0
\(436\) 51.9254 2.48678
\(437\) −29.1326 −1.39360
\(438\) 0 0
\(439\) 38.1847 1.82245 0.911227 0.411905i \(-0.135136\pi\)
0.911227 + 0.411905i \(0.135136\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −70.2323 −3.34061
\(443\) 24.9128 1.18364 0.591822 0.806069i \(-0.298409\pi\)
0.591822 + 0.806069i \(0.298409\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 43.1018 2.04093
\(447\) 0 0
\(448\) 28.1566 1.33027
\(449\) 14.0489 0.663007 0.331504 0.943454i \(-0.392444\pi\)
0.331504 + 0.943454i \(0.392444\pi\)
\(450\) 0 0
\(451\) 2.50209 0.117819
\(452\) −19.1811 −0.902201
\(453\) 0 0
\(454\) 21.0635 0.988558
\(455\) 0 0
\(456\) 0 0
\(457\) −40.4110 −1.89034 −0.945172 0.326572i \(-0.894106\pi\)
−0.945172 + 0.326572i \(0.894106\pi\)
\(458\) −45.0303 −2.10413
\(459\) 0 0
\(460\) 0 0
\(461\) −13.7596 −0.640850 −0.320425 0.947274i \(-0.603826\pi\)
−0.320425 + 0.947274i \(0.603826\pi\)
\(462\) 0 0
\(463\) −23.9445 −1.11280 −0.556398 0.830916i \(-0.687817\pi\)
−0.556398 + 0.830916i \(0.687817\pi\)
\(464\) 27.8134 1.29121
\(465\) 0 0
\(466\) −43.6073 −2.02007
\(467\) −7.84527 −0.363036 −0.181518 0.983388i \(-0.558101\pi\)
−0.181518 + 0.983388i \(0.558101\pi\)
\(468\) 0 0
\(469\) −40.2324 −1.85776
\(470\) 0 0
\(471\) 0 0
\(472\) −38.5669 −1.77518
\(473\) −12.8024 −0.588653
\(474\) 0 0
\(475\) 0 0
\(476\) 93.7133 4.29534
\(477\) 0 0
\(478\) −2.91809 −0.133470
\(479\) −36.2715 −1.65729 −0.828644 0.559776i \(-0.810887\pi\)
−0.828644 + 0.559776i \(0.810887\pi\)
\(480\) 0 0
\(481\) −54.6162 −2.49028
\(482\) 44.4244 2.02348
\(483\) 0 0
\(484\) 13.1516 0.597799
\(485\) 0 0
\(486\) 0 0
\(487\) 5.83307 0.264322 0.132161 0.991228i \(-0.457808\pi\)
0.132161 + 0.991228i \(0.457808\pi\)
\(488\) −52.4557 −2.37456
\(489\) 0 0
\(490\) 0 0
\(491\) −3.76466 −0.169897 −0.0849484 0.996385i \(-0.527073\pi\)
−0.0849484 + 0.996385i \(0.527073\pi\)
\(492\) 0 0
\(493\) −37.3755 −1.68331
\(494\) 66.7900 3.00502
\(495\) 0 0
\(496\) −4.38781 −0.197018
\(497\) −14.3952 −0.645714
\(498\) 0 0
\(499\) 11.2661 0.504339 0.252169 0.967683i \(-0.418856\pi\)
0.252169 + 0.967683i \(0.418856\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 7.06416 0.315289
\(503\) 36.7533 1.63875 0.819374 0.573259i \(-0.194321\pi\)
0.819374 + 0.573259i \(0.194321\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 48.2724 2.14597
\(507\) 0 0
\(508\) 59.8229 2.65421
\(509\) −36.8000 −1.63113 −0.815565 0.578666i \(-0.803573\pi\)
−0.815565 + 0.578666i \(0.803573\pi\)
\(510\) 0 0
\(511\) 48.4593 2.14371
\(512\) −41.7939 −1.84704
\(513\) 0 0
\(514\) 26.0269 1.14800
\(515\) 0 0
\(516\) 0 0
\(517\) 4.96855 0.218517
\(518\) 108.741 4.77780
\(519\) 0 0
\(520\) 0 0
\(521\) 8.57486 0.375672 0.187836 0.982200i \(-0.439853\pi\)
0.187836 + 0.982200i \(0.439853\pi\)
\(522\) 0 0
\(523\) −6.23174 −0.272495 −0.136247 0.990675i \(-0.543504\pi\)
−0.136247 + 0.990675i \(0.543504\pi\)
\(524\) −44.6912 −1.95234
\(525\) 0 0
\(526\) −68.7022 −2.99556
\(527\) 5.89630 0.256847
\(528\) 0 0
\(529\) 3.99288 0.173603
\(530\) 0 0
\(531\) 0 0
\(532\) −89.1201 −3.86385
\(533\) −3.20765 −0.138939
\(534\) 0 0
\(535\) 0 0
\(536\) 52.2855 2.25839
\(537\) 0 0
\(538\) 59.9613 2.58512
\(539\) −31.2972 −1.34807
\(540\) 0 0
\(541\) 11.9562 0.514037 0.257018 0.966407i \(-0.417260\pi\)
0.257018 + 0.966407i \(0.417260\pi\)
\(542\) 64.5583 2.77302
\(543\) 0 0
\(544\) −3.77369 −0.161796
\(545\) 0 0
\(546\) 0 0
\(547\) −36.2669 −1.55066 −0.775330 0.631557i \(-0.782416\pi\)
−0.775330 + 0.631557i \(0.782416\pi\)
\(548\) 13.3719 0.571221
\(549\) 0 0
\(550\) 0 0
\(551\) 35.5436 1.51421
\(552\) 0 0
\(553\) 36.1230 1.53610
\(554\) −13.1506 −0.558714
\(555\) 0 0
\(556\) 47.7948 2.02695
\(557\) 36.6763 1.55403 0.777013 0.629484i \(-0.216734\pi\)
0.777013 + 0.629484i \(0.216734\pi\)
\(558\) 0 0
\(559\) 16.4124 0.694172
\(560\) 0 0
\(561\) 0 0
\(562\) −0.753025 −0.0317644
\(563\) 11.7391 0.494742 0.247371 0.968921i \(-0.420433\pi\)
0.247371 + 0.968921i \(0.420433\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 41.8646 1.75970
\(567\) 0 0
\(568\) 18.7078 0.784963
\(569\) −0.948286 −0.0397542 −0.0198771 0.999802i \(-0.506327\pi\)
−0.0198771 + 0.999802i \(0.506327\pi\)
\(570\) 0 0
\(571\) 41.3896 1.73210 0.866051 0.499956i \(-0.166651\pi\)
0.866051 + 0.499956i \(0.166651\pi\)
\(572\) −74.1693 −3.10117
\(573\) 0 0
\(574\) 6.38643 0.266564
\(575\) 0 0
\(576\) 0 0
\(577\) −11.6673 −0.485716 −0.242858 0.970062i \(-0.578085\pi\)
−0.242858 + 0.970062i \(0.578085\pi\)
\(578\) 43.7499 1.81976
\(579\) 0 0
\(580\) 0 0
\(581\) 2.31096 0.0958747
\(582\) 0 0
\(583\) 39.4074 1.63209
\(584\) −62.9770 −2.60601
\(585\) 0 0
\(586\) −58.7728 −2.42788
\(587\) −22.5741 −0.931735 −0.465867 0.884855i \(-0.654258\pi\)
−0.465867 + 0.884855i \(0.654258\pi\)
\(588\) 0 0
\(589\) −5.60730 −0.231045
\(590\) 0 0
\(591\) 0 0
\(592\) −49.5438 −2.03624
\(593\) −1.50814 −0.0619317 −0.0309659 0.999520i \(-0.509858\pi\)
−0.0309659 + 0.999520i \(0.509858\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.119730 0.00490433
\(597\) 0 0
\(598\) −61.8845 −2.53064
\(599\) −2.77147 −0.113239 −0.0566196 0.998396i \(-0.518032\pi\)
−0.0566196 + 0.998396i \(0.518032\pi\)
\(600\) 0 0
\(601\) −18.0452 −0.736078 −0.368039 0.929810i \(-0.619971\pi\)
−0.368039 + 0.929810i \(0.619971\pi\)
\(602\) −32.6772 −1.33182
\(603\) 0 0
\(604\) 48.7746 1.98461
\(605\) 0 0
\(606\) 0 0
\(607\) 11.3139 0.459219 0.229609 0.973283i \(-0.426255\pi\)
0.229609 + 0.973283i \(0.426255\pi\)
\(608\) 3.58873 0.145542
\(609\) 0 0
\(610\) 0 0
\(611\) −6.36961 −0.257687
\(612\) 0 0
\(613\) −1.32044 −0.0533319 −0.0266659 0.999644i \(-0.508489\pi\)
−0.0266659 + 0.999644i \(0.508489\pi\)
\(614\) 24.6795 0.995985
\(615\) 0 0
\(616\) 74.9975 3.02174
\(617\) −31.4084 −1.26446 −0.632228 0.774783i \(-0.717859\pi\)
−0.632228 + 0.774783i \(0.717859\pi\)
\(618\) 0 0
\(619\) −24.2173 −0.973377 −0.486689 0.873576i \(-0.661795\pi\)
−0.486689 + 0.873576i \(0.661795\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 7.39591 0.296549
\(623\) 62.0548 2.48617
\(624\) 0 0
\(625\) 0 0
\(626\) 25.1976 1.00710
\(627\) 0 0
\(628\) −29.8372 −1.19063
\(629\) 66.5766 2.65458
\(630\) 0 0
\(631\) −16.7012 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(632\) −46.9449 −1.86737
\(633\) 0 0
\(634\) −57.6589 −2.28993
\(635\) 0 0
\(636\) 0 0
\(637\) 40.1225 1.58971
\(638\) −58.8954 −2.33169
\(639\) 0 0
\(640\) 0 0
\(641\) −45.6730 −1.80398 −0.901988 0.431762i \(-0.857892\pi\)
−0.901988 + 0.431762i \(0.857892\pi\)
\(642\) 0 0
\(643\) −36.4701 −1.43824 −0.719120 0.694886i \(-0.755455\pi\)
−0.719120 + 0.694886i \(0.755455\pi\)
\(644\) 82.5745 3.25389
\(645\) 0 0
\(646\) −81.4164 −3.20329
\(647\) −3.16329 −0.124362 −0.0621808 0.998065i \(-0.519806\pi\)
−0.0621808 + 0.998065i \(0.519806\pi\)
\(648\) 0 0
\(649\) 28.6308 1.12386
\(650\) 0 0
\(651\) 0 0
\(652\) 46.1042 1.80558
\(653\) −34.2753 −1.34130 −0.670648 0.741776i \(-0.733984\pi\)
−0.670648 + 0.741776i \(0.733984\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.90974 −0.113606
\(657\) 0 0
\(658\) 12.6819 0.494392
\(659\) −22.2146 −0.865357 −0.432679 0.901548i \(-0.642432\pi\)
−0.432679 + 0.901548i \(0.642432\pi\)
\(660\) 0 0
\(661\) −22.4547 −0.873387 −0.436693 0.899610i \(-0.643851\pi\)
−0.436693 + 0.899610i \(0.643851\pi\)
\(662\) 49.9617 1.94182
\(663\) 0 0
\(664\) −3.00329 −0.116550
\(665\) 0 0
\(666\) 0 0
\(667\) −32.9330 −1.27517
\(668\) −30.1713 −1.16736
\(669\) 0 0
\(670\) 0 0
\(671\) 38.9414 1.50332
\(672\) 0 0
\(673\) 9.90870 0.381952 0.190976 0.981595i \(-0.438835\pi\)
0.190976 + 0.981595i \(0.438835\pi\)
\(674\) 39.2961 1.51363
\(675\) 0 0
\(676\) 42.2526 1.62510
\(677\) −16.1570 −0.620963 −0.310482 0.950579i \(-0.600490\pi\)
−0.310482 + 0.950579i \(0.600490\pi\)
\(678\) 0 0
\(679\) 15.5881 0.598216
\(680\) 0 0
\(681\) 0 0
\(682\) 9.29125 0.355780
\(683\) −14.6765 −0.561583 −0.280791 0.959769i \(-0.590597\pi\)
−0.280791 + 0.959769i \(0.590597\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −12.4702 −0.476114
\(687\) 0 0
\(688\) 14.8882 0.567606
\(689\) −50.5196 −1.92465
\(690\) 0 0
\(691\) −4.78243 −0.181932 −0.0909662 0.995854i \(-0.528996\pi\)
−0.0909662 + 0.995854i \(0.528996\pi\)
\(692\) 87.2562 3.31698
\(693\) 0 0
\(694\) 17.0848 0.648529
\(695\) 0 0
\(696\) 0 0
\(697\) 3.91009 0.148105
\(698\) −23.5435 −0.891136
\(699\) 0 0
\(700\) 0 0
\(701\) −14.9186 −0.563467 −0.281734 0.959493i \(-0.590909\pi\)
−0.281734 + 0.959493i \(0.590909\pi\)
\(702\) 0 0
\(703\) −63.3135 −2.38791
\(704\) 27.1646 1.02381
\(705\) 0 0
\(706\) 29.7855 1.12099
\(707\) −17.5352 −0.659480
\(708\) 0 0
\(709\) 31.0264 1.16522 0.582611 0.812751i \(-0.302031\pi\)
0.582611 + 0.812751i \(0.302031\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −80.6455 −3.02232
\(713\) 5.19547 0.194572
\(714\) 0 0
\(715\) 0 0
\(716\) −40.0439 −1.49651
\(717\) 0 0
\(718\) 71.0613 2.65198
\(719\) −22.5881 −0.842394 −0.421197 0.906969i \(-0.638390\pi\)
−0.421197 + 0.906969i \(0.638390\pi\)
\(720\) 0 0
\(721\) 58.5064 2.17889
\(722\) 30.6382 1.14024
\(723\) 0 0
\(724\) −16.0856 −0.597815
\(725\) 0 0
\(726\) 0 0
\(727\) 30.6620 1.13719 0.568596 0.822617i \(-0.307487\pi\)
0.568596 + 0.822617i \(0.307487\pi\)
\(728\) −96.1457 −3.56340
\(729\) 0 0
\(730\) 0 0
\(731\) −20.0066 −0.739971
\(732\) 0 0
\(733\) 17.6648 0.652463 0.326232 0.945290i \(-0.394221\pi\)
0.326232 + 0.945290i \(0.394221\pi\)
\(734\) −57.5349 −2.12365
\(735\) 0 0
\(736\) −3.32515 −0.122567
\(737\) −38.8150 −1.42977
\(738\) 0 0
\(739\) 34.0146 1.25125 0.625623 0.780126i \(-0.284845\pi\)
0.625623 + 0.780126i \(0.284845\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 100.585 3.69258
\(743\) 1.10230 0.0404394 0.0202197 0.999796i \(-0.493563\pi\)
0.0202197 + 0.999796i \(0.493563\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 41.7835 1.52980
\(747\) 0 0
\(748\) 90.4117 3.30578
\(749\) −5.76543 −0.210664
\(750\) 0 0
\(751\) 29.9534 1.09302 0.546508 0.837454i \(-0.315957\pi\)
0.546508 + 0.837454i \(0.315957\pi\)
\(752\) −5.77804 −0.210704
\(753\) 0 0
\(754\) 75.5030 2.74966
\(755\) 0 0
\(756\) 0 0
\(757\) −20.3970 −0.741340 −0.370670 0.928765i \(-0.620872\pi\)
−0.370670 + 0.928765i \(0.620872\pi\)
\(758\) −57.4882 −2.08806
\(759\) 0 0
\(760\) 0 0
\(761\) 42.3063 1.53360 0.766802 0.641884i \(-0.221847\pi\)
0.766802 + 0.641884i \(0.221847\pi\)
\(762\) 0 0
\(763\) −49.9694 −1.80901
\(764\) 67.5630 2.44435
\(765\) 0 0
\(766\) −62.4348 −2.25586
\(767\) −36.7042 −1.32531
\(768\) 0 0
\(769\) −2.54358 −0.0917239 −0.0458620 0.998948i \(-0.514603\pi\)
−0.0458620 + 0.998948i \(0.514603\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −16.9697 −0.610751
\(773\) −43.4158 −1.56156 −0.780778 0.624808i \(-0.785177\pi\)
−0.780778 + 0.624808i \(0.785177\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −20.2581 −0.727222
\(777\) 0 0
\(778\) 31.1139 1.11549
\(779\) −3.71845 −0.133227
\(780\) 0 0
\(781\) −13.8881 −0.496955
\(782\) 75.4366 2.69761
\(783\) 0 0
\(784\) 36.3962 1.29987
\(785\) 0 0
\(786\) 0 0
\(787\) 11.5860 0.412997 0.206498 0.978447i \(-0.433793\pi\)
0.206498 + 0.978447i \(0.433793\pi\)
\(788\) 40.7900 1.45308
\(789\) 0 0
\(790\) 0 0
\(791\) 18.4585 0.656309
\(792\) 0 0
\(793\) −49.9223 −1.77279
\(794\) −63.0114 −2.23619
\(795\) 0 0
\(796\) 47.8514 1.69605
\(797\) 37.0975 1.31406 0.657030 0.753864i \(-0.271812\pi\)
0.657030 + 0.753864i \(0.271812\pi\)
\(798\) 0 0
\(799\) 7.76449 0.274688
\(800\) 0 0
\(801\) 0 0
\(802\) −91.4079 −3.22773
\(803\) 46.7520 1.64984
\(804\) 0 0
\(805\) 0 0
\(806\) −11.9112 −0.419556
\(807\) 0 0
\(808\) 22.7885 0.801697
\(809\) 22.2275 0.781479 0.390739 0.920501i \(-0.372219\pi\)
0.390739 + 0.920501i \(0.372219\pi\)
\(810\) 0 0
\(811\) 4.80625 0.168770 0.0843852 0.996433i \(-0.473107\pi\)
0.0843852 + 0.996433i \(0.473107\pi\)
\(812\) −100.746 −3.53550
\(813\) 0 0
\(814\) 104.910 3.67709
\(815\) 0 0
\(816\) 0 0
\(817\) 19.0260 0.665636
\(818\) 27.6690 0.967423
\(819\) 0 0
\(820\) 0 0
\(821\) −54.7778 −1.91176 −0.955880 0.293758i \(-0.905094\pi\)
−0.955880 + 0.293758i \(0.905094\pi\)
\(822\) 0 0
\(823\) −40.1760 −1.40045 −0.700224 0.713924i \(-0.746916\pi\)
−0.700224 + 0.713924i \(0.746916\pi\)
\(824\) −76.0341 −2.64877
\(825\) 0 0
\(826\) 73.0781 2.54271
\(827\) −1.84956 −0.0643154 −0.0321577 0.999483i \(-0.510238\pi\)
−0.0321577 + 0.999483i \(0.510238\pi\)
\(828\) 0 0
\(829\) 12.8593 0.446622 0.223311 0.974747i \(-0.428313\pi\)
0.223311 + 0.974747i \(0.428313\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −34.8246 −1.20733
\(833\) −48.9090 −1.69460
\(834\) 0 0
\(835\) 0 0
\(836\) −85.9803 −2.97369
\(837\) 0 0
\(838\) 65.4388 2.26054
\(839\) 49.4500 1.70720 0.853601 0.520927i \(-0.174414\pi\)
0.853601 + 0.520927i \(0.174414\pi\)
\(840\) 0 0
\(841\) 11.1803 0.385529
\(842\) 53.0263 1.82741
\(843\) 0 0
\(844\) −81.0862 −2.79110
\(845\) 0 0
\(846\) 0 0
\(847\) −12.6562 −0.434871
\(848\) −45.8278 −1.57373
\(849\) 0 0
\(850\) 0 0
\(851\) 58.6633 2.01095
\(852\) 0 0
\(853\) −17.9548 −0.614762 −0.307381 0.951587i \(-0.599453\pi\)
−0.307381 + 0.951587i \(0.599453\pi\)
\(854\) 99.3953 3.40124
\(855\) 0 0
\(856\) 7.49267 0.256094
\(857\) 28.9951 0.990452 0.495226 0.868764i \(-0.335085\pi\)
0.495226 + 0.868764i \(0.335085\pi\)
\(858\) 0 0
\(859\) −39.3399 −1.34226 −0.671130 0.741339i \(-0.734191\pi\)
−0.671130 + 0.741339i \(0.734191\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −17.7438 −0.604356
\(863\) 25.2944 0.861032 0.430516 0.902583i \(-0.358332\pi\)
0.430516 + 0.902583i \(0.358332\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 29.8545 1.01450
\(867\) 0 0
\(868\) 15.8936 0.539463
\(869\) 34.8503 1.18222
\(870\) 0 0
\(871\) 49.7603 1.68606
\(872\) 64.9395 2.19913
\(873\) 0 0
\(874\) −71.7392 −2.42662
\(875\) 0 0
\(876\) 0 0
\(877\) −45.7315 −1.54424 −0.772121 0.635476i \(-0.780804\pi\)
−0.772121 + 0.635476i \(0.780804\pi\)
\(878\) 94.0301 3.17336
\(879\) 0 0
\(880\) 0 0
\(881\) 7.69529 0.259261 0.129630 0.991562i \(-0.458621\pi\)
0.129630 + 0.991562i \(0.458621\pi\)
\(882\) 0 0
\(883\) 5.44217 0.183144 0.0915719 0.995798i \(-0.470811\pi\)
0.0915719 + 0.995798i \(0.470811\pi\)
\(884\) −115.906 −3.89836
\(885\) 0 0
\(886\) 61.3481 2.06103
\(887\) 45.0909 1.51400 0.757002 0.653412i \(-0.226663\pi\)
0.757002 + 0.653412i \(0.226663\pi\)
\(888\) 0 0
\(889\) −57.5694 −1.93081
\(890\) 0 0
\(891\) 0 0
\(892\) 71.1322 2.38168
\(893\) −7.38393 −0.247094
\(894\) 0 0
\(895\) 0 0
\(896\) 74.3419 2.48359
\(897\) 0 0
\(898\) 34.5955 1.15447
\(899\) −6.33880 −0.211411
\(900\) 0 0
\(901\) 61.5830 2.05163
\(902\) 6.16143 0.205153
\(903\) 0 0
\(904\) −23.9884 −0.797843
\(905\) 0 0
\(906\) 0 0
\(907\) −25.3635 −0.842180 −0.421090 0.907019i \(-0.638352\pi\)
−0.421090 + 0.907019i \(0.638352\pi\)
\(908\) 34.7617 1.15361
\(909\) 0 0
\(910\) 0 0
\(911\) 2.49514 0.0826676 0.0413338 0.999145i \(-0.486839\pi\)
0.0413338 + 0.999145i \(0.486839\pi\)
\(912\) 0 0
\(913\) 2.22954 0.0737871
\(914\) −99.5124 −3.29158
\(915\) 0 0
\(916\) −74.3149 −2.45543
\(917\) 43.0077 1.42024
\(918\) 0 0
\(919\) 17.7435 0.585306 0.292653 0.956219i \(-0.405462\pi\)
0.292653 + 0.956219i \(0.405462\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −33.8832 −1.11588
\(923\) 17.8043 0.586036
\(924\) 0 0
\(925\) 0 0
\(926\) −58.9636 −1.93766
\(927\) 0 0
\(928\) 4.05689 0.133174
\(929\) −28.5183 −0.935654 −0.467827 0.883820i \(-0.654963\pi\)
−0.467827 + 0.883820i \(0.654963\pi\)
\(930\) 0 0
\(931\) 46.5118 1.52436
\(932\) −71.9665 −2.35734
\(933\) 0 0
\(934\) −19.3191 −0.632139
\(935\) 0 0
\(936\) 0 0
\(937\) 7.18881 0.234848 0.117424 0.993082i \(-0.462536\pi\)
0.117424 + 0.993082i \(0.462536\pi\)
\(938\) −99.0728 −3.23484
\(939\) 0 0
\(940\) 0 0
\(941\) 4.41233 0.143838 0.0719189 0.997410i \(-0.477088\pi\)
0.0719189 + 0.997410i \(0.477088\pi\)
\(942\) 0 0
\(943\) 3.44534 0.112196
\(944\) −33.2954 −1.08367
\(945\) 0 0
\(946\) −31.5259 −1.02500
\(947\) −46.3158 −1.50506 −0.752530 0.658558i \(-0.771167\pi\)
−0.752530 + 0.658558i \(0.771167\pi\)
\(948\) 0 0
\(949\) −59.9354 −1.94558
\(950\) 0 0
\(951\) 0 0
\(952\) 117.201 3.79850
\(953\) −56.1358 −1.81842 −0.909209 0.416341i \(-0.863312\pi\)
−0.909209 + 0.416341i \(0.863312\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −4.81581 −0.155754
\(957\) 0 0
\(958\) −89.3189 −2.88576
\(959\) −12.8682 −0.415537
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −134.493 −4.33622
\(963\) 0 0
\(964\) 73.3149 2.36132
\(965\) 0 0
\(966\) 0 0
\(967\) 21.4773 0.690664 0.345332 0.938481i \(-0.387766\pi\)
0.345332 + 0.938481i \(0.387766\pi\)
\(968\) 16.4478 0.528651
\(969\) 0 0
\(970\) 0 0
\(971\) −23.1016 −0.741366 −0.370683 0.928759i \(-0.620876\pi\)
−0.370683 + 0.928759i \(0.620876\pi\)
\(972\) 0 0
\(973\) −45.9944 −1.47451
\(974\) 14.3640 0.460252
\(975\) 0 0
\(976\) −45.2859 −1.44957
\(977\) 14.3103 0.457827 0.228913 0.973447i \(-0.426483\pi\)
0.228913 + 0.973447i \(0.426483\pi\)
\(978\) 0 0
\(979\) 59.8686 1.91341
\(980\) 0 0
\(981\) 0 0
\(982\) −9.27052 −0.295834
\(983\) −32.1775 −1.02630 −0.513152 0.858298i \(-0.671522\pi\)
−0.513152 + 0.858298i \(0.671522\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −92.0374 −2.93107
\(987\) 0 0
\(988\) 110.226 3.50674
\(989\) −17.6286 −0.560557
\(990\) 0 0
\(991\) −50.8207 −1.61437 −0.807186 0.590298i \(-0.799010\pi\)
−0.807186 + 0.590298i \(0.799010\pi\)
\(992\) −0.640010 −0.0203203
\(993\) 0 0
\(994\) −35.4484 −1.12435
\(995\) 0 0
\(996\) 0 0
\(997\) 39.1814 1.24089 0.620444 0.784251i \(-0.286952\pi\)
0.620444 + 0.784251i \(0.286952\pi\)
\(998\) 27.7428 0.878183
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6975.2.a.cc.1.6 6
3.2 odd 2 2325.2.a.y.1.1 6
5.4 even 2 6975.2.a.ca.1.1 6
15.2 even 4 2325.2.c.r.1024.2 12
15.8 even 4 2325.2.c.r.1024.11 12
15.14 odd 2 2325.2.a.bb.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.1 6 3.2 odd 2
2325.2.a.bb.1.6 yes 6 15.14 odd 2
2325.2.c.r.1024.2 12 15.2 even 4
2325.2.c.r.1024.11 12 15.8 even 4
6975.2.a.ca.1.1 6 5.4 even 2
6975.2.a.cc.1.6 6 1.1 even 1 trivial