Properties

Label 6975.2.a.bv.1.1
Level $6975$
Weight $2$
Character 6975.1
Self dual yes
Analytic conductor $55.696$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6975,2,Mod(1,6975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6975.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,3,0,3,0,0,-8,9,0,0,0,0,-6,-16,0,3,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.6956554098\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.126032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 6x^{3} + 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.33253\) of defining polynomial
Character \(\chi\) \(=\) 6975.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.39276 q^{2} -0.0602300 q^{4} +0.392756 q^{7} +2.86940 q^{8} +2.96404 q^{11} -2.92963 q^{13} -0.547014 q^{14} -3.87591 q^{16} -0.739663 q^{17} -3.50091 q^{19} -4.12818 q^{22} +7.61557 q^{23} +4.08026 q^{26} -0.0236557 q^{28} -0.883778 q^{29} -1.00000 q^{31} -0.340595 q^{32} +1.03017 q^{34} +1.01775 q^{37} +4.87591 q^{38} +0.566932 q^{41} -4.98562 q^{43} -0.178524 q^{44} -10.6066 q^{46} +2.22210 q^{47} -6.84574 q^{49} +0.176452 q^{52} -7.23391 q^{53} +1.12697 q^{56} +1.23089 q^{58} +4.56679 q^{59} -2.23789 q^{61} +1.39276 q^{62} +8.22619 q^{64} -3.28668 q^{67} +0.0445499 q^{68} -9.31452 q^{71} +15.6910 q^{73} -1.41748 q^{74} +0.210860 q^{76} +1.16414 q^{77} -10.7258 q^{79} -0.789599 q^{82} +5.97573 q^{83} +6.94375 q^{86} +8.50500 q^{88} +2.02861 q^{89} -1.15063 q^{91} -0.458686 q^{92} -3.09484 q^{94} -2.14846 q^{97} +9.53445 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 3 q^{4} - 8 q^{7} + 9 q^{8} - 6 q^{13} - 16 q^{14} + 3 q^{16} + 8 q^{17} - 4 q^{19} - 6 q^{22} + 4 q^{23} + 6 q^{26} - 18 q^{28} - 4 q^{29} - 5 q^{31} + q^{32} + 6 q^{34} + 4 q^{37} + 2 q^{38}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39276 −0.984827 −0.492414 0.870361i \(-0.663885\pi\)
−0.492414 + 0.870361i \(0.663885\pi\)
\(3\) 0 0
\(4\) −0.0602300 −0.0301150
\(5\) 0 0
\(6\) 0 0
\(7\) 0.392756 0.148448 0.0742240 0.997242i \(-0.476352\pi\)
0.0742240 + 0.997242i \(0.476352\pi\)
\(8\) 2.86940 1.01449
\(9\) 0 0
\(10\) 0 0
\(11\) 2.96404 0.893691 0.446845 0.894611i \(-0.352547\pi\)
0.446845 + 0.894611i \(0.352547\pi\)
\(12\) 0 0
\(13\) −2.92963 −0.812533 −0.406266 0.913755i \(-0.633169\pi\)
−0.406266 + 0.913755i \(0.633169\pi\)
\(14\) −0.547014 −0.146196
\(15\) 0 0
\(16\) −3.87591 −0.968978
\(17\) −0.739663 −0.179395 −0.0896973 0.995969i \(-0.528590\pi\)
−0.0896973 + 0.995969i \(0.528590\pi\)
\(18\) 0 0
\(19\) −3.50091 −0.803164 −0.401582 0.915823i \(-0.631539\pi\)
−0.401582 + 0.915823i \(0.631539\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.12818 −0.880131
\(23\) 7.61557 1.58796 0.793979 0.607946i \(-0.208006\pi\)
0.793979 + 0.607946i \(0.208006\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.08026 0.800204
\(27\) 0 0
\(28\) −0.0236557 −0.00447051
\(29\) −0.883778 −0.164114 −0.0820568 0.996628i \(-0.526149\pi\)
−0.0820568 + 0.996628i \(0.526149\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −0.340595 −0.0602093
\(33\) 0 0
\(34\) 1.03017 0.176673
\(35\) 0 0
\(36\) 0 0
\(37\) 1.01775 0.167317 0.0836587 0.996494i \(-0.473339\pi\)
0.0836587 + 0.996494i \(0.473339\pi\)
\(38\) 4.87591 0.790977
\(39\) 0 0
\(40\) 0 0
\(41\) 0.566932 0.0885400 0.0442700 0.999020i \(-0.485904\pi\)
0.0442700 + 0.999020i \(0.485904\pi\)
\(42\) 0 0
\(43\) −4.98562 −0.760300 −0.380150 0.924925i \(-0.624128\pi\)
−0.380150 + 0.924925i \(0.624128\pi\)
\(44\) −0.178524 −0.0269135
\(45\) 0 0
\(46\) −10.6066 −1.56386
\(47\) 2.22210 0.324126 0.162063 0.986780i \(-0.448185\pi\)
0.162063 + 0.986780i \(0.448185\pi\)
\(48\) 0 0
\(49\) −6.84574 −0.977963
\(50\) 0 0
\(51\) 0 0
\(52\) 0.176452 0.0244694
\(53\) −7.23391 −0.993654 −0.496827 0.867850i \(-0.665502\pi\)
−0.496827 + 0.867850i \(0.665502\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.12697 0.150598
\(57\) 0 0
\(58\) 1.23089 0.161624
\(59\) 4.56679 0.594545 0.297272 0.954793i \(-0.403923\pi\)
0.297272 + 0.954793i \(0.403923\pi\)
\(60\) 0 0
\(61\) −2.23789 −0.286532 −0.143266 0.989684i \(-0.545760\pi\)
−0.143266 + 0.989684i \(0.545760\pi\)
\(62\) 1.39276 0.176880
\(63\) 0 0
\(64\) 8.22619 1.02827
\(65\) 0 0
\(66\) 0 0
\(67\) −3.28668 −0.401531 −0.200766 0.979639i \(-0.564343\pi\)
−0.200766 + 0.979639i \(0.564343\pi\)
\(68\) 0.0445499 0.00540247
\(69\) 0 0
\(70\) 0 0
\(71\) −9.31452 −1.10543 −0.552715 0.833370i \(-0.686408\pi\)
−0.552715 + 0.833370i \(0.686408\pi\)
\(72\) 0 0
\(73\) 15.6910 1.83649 0.918246 0.396011i \(-0.129606\pi\)
0.918246 + 0.396011i \(0.129606\pi\)
\(74\) −1.41748 −0.164779
\(75\) 0 0
\(76\) 0.210860 0.0241873
\(77\) 1.16414 0.132667
\(78\) 0 0
\(79\) −10.7258 −1.20675 −0.603373 0.797459i \(-0.706177\pi\)
−0.603373 + 0.797459i \(0.706177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −0.789599 −0.0871966
\(83\) 5.97573 0.655922 0.327961 0.944691i \(-0.393639\pi\)
0.327961 + 0.944691i \(0.393639\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.94375 0.748764
\(87\) 0 0
\(88\) 8.50500 0.906636
\(89\) 2.02861 0.215033 0.107516 0.994203i \(-0.465710\pi\)
0.107516 + 0.994203i \(0.465710\pi\)
\(90\) 0 0
\(91\) −1.15063 −0.120619
\(92\) −0.458686 −0.0478214
\(93\) 0 0
\(94\) −3.09484 −0.319209
\(95\) 0 0
\(96\) 0 0
\(97\) −2.14846 −0.218143 −0.109072 0.994034i \(-0.534788\pi\)
−0.109072 + 0.994034i \(0.534788\pi\)
\(98\) 9.53445 0.963125
\(99\) 0 0
\(100\) 0 0
\(101\) −10.1754 −1.01249 −0.506246 0.862389i \(-0.668967\pi\)
−0.506246 + 0.862389i \(0.668967\pi\)
\(102\) 0 0
\(103\) −17.4957 −1.72391 −0.861953 0.506989i \(-0.830758\pi\)
−0.861953 + 0.506989i \(0.830758\pi\)
\(104\) −8.40627 −0.824303
\(105\) 0 0
\(106\) 10.0751 0.978578
\(107\) 5.35074 0.517275 0.258638 0.965974i \(-0.416726\pi\)
0.258638 + 0.965974i \(0.416726\pi\)
\(108\) 0 0
\(109\) −5.41010 −0.518194 −0.259097 0.965851i \(-0.583425\pi\)
−0.259097 + 0.965851i \(0.583425\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.52229 −0.143843
\(113\) −0.847152 −0.0796934 −0.0398467 0.999206i \(-0.512687\pi\)
−0.0398467 + 0.999206i \(0.512687\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.0532300 0.00494228
\(117\) 0 0
\(118\) −6.36042 −0.585524
\(119\) −0.290507 −0.0266307
\(120\) 0 0
\(121\) −2.21449 −0.201317
\(122\) 3.11683 0.282185
\(123\) 0 0
\(124\) 0.0602300 0.00540882
\(125\) 0 0
\(126\) 0 0
\(127\) 0.440271 0.0390677 0.0195339 0.999809i \(-0.493782\pi\)
0.0195339 + 0.999809i \(0.493782\pi\)
\(128\) −10.7759 −0.952463
\(129\) 0 0
\(130\) 0 0
\(131\) −20.9706 −1.83221 −0.916106 0.400935i \(-0.868685\pi\)
−0.916106 + 0.400935i \(0.868685\pi\)
\(132\) 0 0
\(133\) −1.37500 −0.119228
\(134\) 4.57754 0.395439
\(135\) 0 0
\(136\) −2.12239 −0.181993
\(137\) 10.7649 0.919706 0.459853 0.887995i \(-0.347902\pi\)
0.459853 + 0.887995i \(0.347902\pi\)
\(138\) 0 0
\(139\) 11.2882 0.957456 0.478728 0.877963i \(-0.341098\pi\)
0.478728 + 0.877963i \(0.341098\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.9729 1.08866
\(143\) −8.68353 −0.726153
\(144\) 0 0
\(145\) 0 0
\(146\) −21.8537 −1.80863
\(147\) 0 0
\(148\) −0.0612993 −0.00503877
\(149\) −3.86637 −0.316746 −0.158373 0.987379i \(-0.550625\pi\)
−0.158373 + 0.987379i \(0.550625\pi\)
\(150\) 0 0
\(151\) 16.8876 1.37429 0.687147 0.726518i \(-0.258863\pi\)
0.687147 + 0.726518i \(0.258863\pi\)
\(152\) −10.0455 −0.814798
\(153\) 0 0
\(154\) −1.62137 −0.130654
\(155\) 0 0
\(156\) 0 0
\(157\) 12.2006 0.973716 0.486858 0.873481i \(-0.338143\pi\)
0.486858 + 0.873481i \(0.338143\pi\)
\(158\) 14.9384 1.18844
\(159\) 0 0
\(160\) 0 0
\(161\) 2.99106 0.235729
\(162\) 0 0
\(163\) −10.4423 −0.817901 −0.408951 0.912556i \(-0.634105\pi\)
−0.408951 + 0.912556i \(0.634105\pi\)
\(164\) −0.0341464 −0.00266638
\(165\) 0 0
\(166\) −8.32274 −0.645970
\(167\) 9.62985 0.745180 0.372590 0.927996i \(-0.378470\pi\)
0.372590 + 0.927996i \(0.378470\pi\)
\(168\) 0 0
\(169\) −4.41728 −0.339791
\(170\) 0 0
\(171\) 0 0
\(172\) 0.300284 0.0228964
\(173\) 25.7568 1.95825 0.979125 0.203259i \(-0.0651533\pi\)
0.979125 + 0.203259i \(0.0651533\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −11.4883 −0.865967
\(177\) 0 0
\(178\) −2.82537 −0.211770
\(179\) −22.5410 −1.68479 −0.842396 0.538860i \(-0.818855\pi\)
−0.842396 + 0.538860i \(0.818855\pi\)
\(180\) 0 0
\(181\) 6.49425 0.482714 0.241357 0.970436i \(-0.422408\pi\)
0.241357 + 0.970436i \(0.422408\pi\)
\(182\) 1.60255 0.118789
\(183\) 0 0
\(184\) 21.8521 1.61096
\(185\) 0 0
\(186\) 0 0
\(187\) −2.19239 −0.160323
\(188\) −0.133837 −0.00976107
\(189\) 0 0
\(190\) 0 0
\(191\) 15.6289 1.13087 0.565435 0.824793i \(-0.308708\pi\)
0.565435 + 0.824793i \(0.308708\pi\)
\(192\) 0 0
\(193\) 15.2744 1.09947 0.549737 0.835338i \(-0.314728\pi\)
0.549737 + 0.835338i \(0.314728\pi\)
\(194\) 2.99229 0.214834
\(195\) 0 0
\(196\) 0.412319 0.0294514
\(197\) 15.8270 1.12763 0.563815 0.825901i \(-0.309333\pi\)
0.563815 + 0.825901i \(0.309333\pi\)
\(198\) 0 0
\(199\) −6.38186 −0.452398 −0.226199 0.974081i \(-0.572630\pi\)
−0.226199 + 0.974081i \(0.572630\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 14.1719 0.997129
\(203\) −0.347109 −0.0243623
\(204\) 0 0
\(205\) 0 0
\(206\) 24.3673 1.69775
\(207\) 0 0
\(208\) 11.3550 0.787326
\(209\) −10.3768 −0.717780
\(210\) 0 0
\(211\) −16.8427 −1.15950 −0.579751 0.814794i \(-0.696850\pi\)
−0.579751 + 0.814794i \(0.696850\pi\)
\(212\) 0.435699 0.0299239
\(213\) 0 0
\(214\) −7.45227 −0.509427
\(215\) 0 0
\(216\) 0 0
\(217\) −0.392756 −0.0266620
\(218\) 7.53495 0.510331
\(219\) 0 0
\(220\) 0 0
\(221\) 2.16694 0.145764
\(222\) 0 0
\(223\) −21.3746 −1.43135 −0.715673 0.698436i \(-0.753880\pi\)
−0.715673 + 0.698436i \(0.753880\pi\)
\(224\) −0.133771 −0.00893795
\(225\) 0 0
\(226\) 1.17988 0.0784842
\(227\) 21.7731 1.44513 0.722564 0.691304i \(-0.242963\pi\)
0.722564 + 0.691304i \(0.242963\pi\)
\(228\) 0 0
\(229\) 20.9196 1.38241 0.691203 0.722661i \(-0.257081\pi\)
0.691203 + 0.722661i \(0.257081\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.53591 −0.166491
\(233\) −14.6529 −0.959943 −0.479972 0.877284i \(-0.659353\pi\)
−0.479972 + 0.877284i \(0.659353\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.275058 −0.0179047
\(237\) 0 0
\(238\) 0.404606 0.0262267
\(239\) −19.2602 −1.24584 −0.622921 0.782285i \(-0.714054\pi\)
−0.622921 + 0.782285i \(0.714054\pi\)
\(240\) 0 0
\(241\) 0.395294 0.0254631 0.0127316 0.999919i \(-0.495947\pi\)
0.0127316 + 0.999919i \(0.495947\pi\)
\(242\) 3.08424 0.198263
\(243\) 0 0
\(244\) 0.134788 0.00862892
\(245\) 0 0
\(246\) 0 0
\(247\) 10.2564 0.652597
\(248\) −2.86940 −0.182207
\(249\) 0 0
\(250\) 0 0
\(251\) 21.6504 1.36656 0.683282 0.730155i \(-0.260552\pi\)
0.683282 + 0.730155i \(0.260552\pi\)
\(252\) 0 0
\(253\) 22.5728 1.41914
\(254\) −0.613190 −0.0384750
\(255\) 0 0
\(256\) −1.44420 −0.0902623
\(257\) −21.1733 −1.32075 −0.660376 0.750935i \(-0.729603\pi\)
−0.660376 + 0.750935i \(0.729603\pi\)
\(258\) 0 0
\(259\) 0.399729 0.0248379
\(260\) 0 0
\(261\) 0 0
\(262\) 29.2070 1.80441
\(263\) 4.22941 0.260797 0.130398 0.991462i \(-0.458374\pi\)
0.130398 + 0.991462i \(0.458374\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.91505 0.117419
\(267\) 0 0
\(268\) 0.197957 0.0120921
\(269\) −25.7692 −1.57117 −0.785587 0.618751i \(-0.787639\pi\)
−0.785587 + 0.618751i \(0.787639\pi\)
\(270\) 0 0
\(271\) 17.1588 1.04232 0.521161 0.853458i \(-0.325499\pi\)
0.521161 + 0.853458i \(0.325499\pi\)
\(272\) 2.86687 0.173829
\(273\) 0 0
\(274\) −14.9929 −0.905751
\(275\) 0 0
\(276\) 0 0
\(277\) −6.16879 −0.370647 −0.185323 0.982678i \(-0.559333\pi\)
−0.185323 + 0.982678i \(0.559333\pi\)
\(278\) −15.7218 −0.942929
\(279\) 0 0
\(280\) 0 0
\(281\) −24.9164 −1.48638 −0.743192 0.669078i \(-0.766689\pi\)
−0.743192 + 0.669078i \(0.766689\pi\)
\(282\) 0 0
\(283\) −25.1858 −1.49714 −0.748569 0.663057i \(-0.769259\pi\)
−0.748569 + 0.663057i \(0.769259\pi\)
\(284\) 0.561014 0.0332900
\(285\) 0 0
\(286\) 12.0940 0.715135
\(287\) 0.222666 0.0131436
\(288\) 0 0
\(289\) −16.4529 −0.967818
\(290\) 0 0
\(291\) 0 0
\(292\) −0.945069 −0.0553060
\(293\) 10.6574 0.622615 0.311307 0.950309i \(-0.399233\pi\)
0.311307 + 0.950309i \(0.399233\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.92034 0.169741
\(297\) 0 0
\(298\) 5.38492 0.311940
\(299\) −22.3108 −1.29027
\(300\) 0 0
\(301\) −1.95813 −0.112865
\(302\) −23.5203 −1.35344
\(303\) 0 0
\(304\) 13.5692 0.778248
\(305\) 0 0
\(306\) 0 0
\(307\) 27.0247 1.54238 0.771191 0.636603i \(-0.219661\pi\)
0.771191 + 0.636603i \(0.219661\pi\)
\(308\) −0.0701164 −0.00399525
\(309\) 0 0
\(310\) 0 0
\(311\) −33.9130 −1.92303 −0.961515 0.274752i \(-0.911404\pi\)
−0.961515 + 0.274752i \(0.911404\pi\)
\(312\) 0 0
\(313\) −0.748537 −0.0423098 −0.0211549 0.999776i \(-0.506734\pi\)
−0.0211549 + 0.999776i \(0.506734\pi\)
\(314\) −16.9925 −0.958943
\(315\) 0 0
\(316\) 0.646015 0.0363412
\(317\) 25.4898 1.43165 0.715824 0.698281i \(-0.246051\pi\)
0.715824 + 0.698281i \(0.246051\pi\)
\(318\) 0 0
\(319\) −2.61955 −0.146667
\(320\) 0 0
\(321\) 0 0
\(322\) −4.16582 −0.232152
\(323\) 2.58949 0.144083
\(324\) 0 0
\(325\) 0 0
\(326\) 14.5435 0.805492
\(327\) 0 0
\(328\) 1.62675 0.0898225
\(329\) 0.872743 0.0481159
\(330\) 0 0
\(331\) 2.77571 0.152567 0.0762834 0.997086i \(-0.475695\pi\)
0.0762834 + 0.997086i \(0.475695\pi\)
\(332\) −0.359919 −0.0197531
\(333\) 0 0
\(334\) −13.4120 −0.733874
\(335\) 0 0
\(336\) 0 0
\(337\) −2.73960 −0.149235 −0.0746176 0.997212i \(-0.523774\pi\)
−0.0746176 + 0.997212i \(0.523774\pi\)
\(338\) 6.15219 0.334635
\(339\) 0 0
\(340\) 0 0
\(341\) −2.96404 −0.160512
\(342\) 0 0
\(343\) −5.43800 −0.293625
\(344\) −14.3057 −0.771313
\(345\) 0 0
\(346\) −35.8729 −1.92854
\(347\) −24.9035 −1.33689 −0.668444 0.743762i \(-0.733039\pi\)
−0.668444 + 0.743762i \(0.733039\pi\)
\(348\) 0 0
\(349\) −20.9690 −1.12245 −0.561223 0.827665i \(-0.689669\pi\)
−0.561223 + 0.827665i \(0.689669\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00954 −0.0538085
\(353\) 9.40420 0.500535 0.250268 0.968177i \(-0.419481\pi\)
0.250268 + 0.968177i \(0.419481\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.122184 −0.00647571
\(357\) 0 0
\(358\) 31.3941 1.65923
\(359\) −14.8384 −0.783139 −0.391570 0.920149i \(-0.628068\pi\)
−0.391570 + 0.920149i \(0.628068\pi\)
\(360\) 0 0
\(361\) −6.74364 −0.354928
\(362\) −9.04491 −0.475390
\(363\) 0 0
\(364\) 0.0693025 0.00363244
\(365\) 0 0
\(366\) 0 0
\(367\) 17.6485 0.921246 0.460623 0.887596i \(-0.347626\pi\)
0.460623 + 0.887596i \(0.347626\pi\)
\(368\) −29.5173 −1.53870
\(369\) 0 0
\(370\) 0 0
\(371\) −2.84116 −0.147506
\(372\) 0 0
\(373\) −7.54359 −0.390592 −0.195296 0.980744i \(-0.562567\pi\)
−0.195296 + 0.980744i \(0.562567\pi\)
\(374\) 3.05346 0.157891
\(375\) 0 0
\(376\) 6.37609 0.328821
\(377\) 2.58914 0.133348
\(378\) 0 0
\(379\) −10.4641 −0.537505 −0.268753 0.963209i \(-0.586611\pi\)
−0.268753 + 0.963209i \(0.586611\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −21.7673 −1.11371
\(383\) −32.1479 −1.64268 −0.821339 0.570440i \(-0.806773\pi\)
−0.821339 + 0.570440i \(0.806773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −21.2735 −1.08279
\(387\) 0 0
\(388\) 0.129402 0.00656939
\(389\) 0.586235 0.0297233 0.0148616 0.999890i \(-0.495269\pi\)
0.0148616 + 0.999890i \(0.495269\pi\)
\(390\) 0 0
\(391\) −5.63296 −0.284871
\(392\) −19.6432 −0.992129
\(393\) 0 0
\(394\) −22.0432 −1.11052
\(395\) 0 0
\(396\) 0 0
\(397\) −7.15104 −0.358900 −0.179450 0.983767i \(-0.557432\pi\)
−0.179450 + 0.983767i \(0.557432\pi\)
\(398\) 8.88837 0.445534
\(399\) 0 0
\(400\) 0 0
\(401\) 13.7057 0.684430 0.342215 0.939622i \(-0.388823\pi\)
0.342215 + 0.939622i \(0.388823\pi\)
\(402\) 0 0
\(403\) 2.92963 0.145935
\(404\) 0.612866 0.0304912
\(405\) 0 0
\(406\) 0.483439 0.0239927
\(407\) 3.01666 0.149530
\(408\) 0 0
\(409\) −25.6183 −1.26674 −0.633371 0.773849i \(-0.718329\pi\)
−0.633371 + 0.773849i \(0.718329\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.05377 0.0519154
\(413\) 1.79363 0.0882590
\(414\) 0 0
\(415\) 0 0
\(416\) 0.997818 0.0489221
\(417\) 0 0
\(418\) 14.4524 0.706889
\(419\) −3.52044 −0.171985 −0.0859925 0.996296i \(-0.527406\pi\)
−0.0859925 + 0.996296i \(0.527406\pi\)
\(420\) 0 0
\(421\) 35.0272 1.70712 0.853559 0.520995i \(-0.174439\pi\)
0.853559 + 0.520995i \(0.174439\pi\)
\(422\) 23.4578 1.14191
\(423\) 0 0
\(424\) −20.7570 −1.00805
\(425\) 0 0
\(426\) 0 0
\(427\) −0.878944 −0.0425351
\(428\) −0.322275 −0.0155778
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0399 1.44697 0.723486 0.690339i \(-0.242539\pi\)
0.723486 + 0.690339i \(0.242539\pi\)
\(432\) 0 0
\(433\) −19.6374 −0.943713 −0.471857 0.881675i \(-0.656416\pi\)
−0.471857 + 0.881675i \(0.656416\pi\)
\(434\) 0.547014 0.0262575
\(435\) 0 0
\(436\) 0.325851 0.0156054
\(437\) −26.6614 −1.27539
\(438\) 0 0
\(439\) 8.15307 0.389125 0.194562 0.980890i \(-0.437671\pi\)
0.194562 + 0.980890i \(0.437671\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.01801 −0.143552
\(443\) −6.41904 −0.304978 −0.152489 0.988305i \(-0.548729\pi\)
−0.152489 + 0.988305i \(0.548729\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 29.7695 1.40963
\(447\) 0 0
\(448\) 3.23089 0.152645
\(449\) 10.4764 0.494414 0.247207 0.968963i \(-0.420487\pi\)
0.247207 + 0.968963i \(0.420487\pi\)
\(450\) 0 0
\(451\) 1.68041 0.0791273
\(452\) 0.0510240 0.00239997
\(453\) 0 0
\(454\) −30.3246 −1.42320
\(455\) 0 0
\(456\) 0 0
\(457\) −27.1616 −1.27057 −0.635283 0.772279i \(-0.719117\pi\)
−0.635283 + 0.772279i \(0.719117\pi\)
\(458\) −29.1359 −1.36143
\(459\) 0 0
\(460\) 0 0
\(461\) −20.3271 −0.946727 −0.473363 0.880867i \(-0.656960\pi\)
−0.473363 + 0.880867i \(0.656960\pi\)
\(462\) 0 0
\(463\) −19.3354 −0.898593 −0.449296 0.893383i \(-0.648325\pi\)
−0.449296 + 0.893383i \(0.648325\pi\)
\(464\) 3.42545 0.159022
\(465\) 0 0
\(466\) 20.4079 0.945378
\(467\) 8.76168 0.405442 0.202721 0.979237i \(-0.435022\pi\)
0.202721 + 0.979237i \(0.435022\pi\)
\(468\) 0 0
\(469\) −1.29086 −0.0596065
\(470\) 0 0
\(471\) 0 0
\(472\) 13.1039 0.603157
\(473\) −14.7776 −0.679473
\(474\) 0 0
\(475\) 0 0
\(476\) 0.0174973 0.000801985 0
\(477\) 0 0
\(478\) 26.8248 1.22694
\(479\) −13.8608 −0.633318 −0.316659 0.948539i \(-0.602561\pi\)
−0.316659 + 0.948539i \(0.602561\pi\)
\(480\) 0 0
\(481\) −2.98164 −0.135951
\(482\) −0.550548 −0.0250768
\(483\) 0 0
\(484\) 0.133379 0.00606267
\(485\) 0 0
\(486\) 0 0
\(487\) −31.7390 −1.43823 −0.719116 0.694890i \(-0.755453\pi\)
−0.719116 + 0.694890i \(0.755453\pi\)
\(488\) −6.42139 −0.290683
\(489\) 0 0
\(490\) 0 0
\(491\) 3.53863 0.159696 0.0798481 0.996807i \(-0.474556\pi\)
0.0798481 + 0.996807i \(0.474556\pi\)
\(492\) 0 0
\(493\) 0.653698 0.0294411
\(494\) −14.2846 −0.642695
\(495\) 0 0
\(496\) 3.87591 0.174034
\(497\) −3.65834 −0.164099
\(498\) 0 0
\(499\) 17.2529 0.772345 0.386172 0.922427i \(-0.373797\pi\)
0.386172 + 0.922427i \(0.373797\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −30.1538 −1.34583
\(503\) −28.5735 −1.27403 −0.637015 0.770852i \(-0.719831\pi\)
−0.637015 + 0.770852i \(0.719831\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −31.4385 −1.39761
\(507\) 0 0
\(508\) −0.0265175 −0.00117652
\(509\) 20.1430 0.892824 0.446412 0.894828i \(-0.352702\pi\)
0.446412 + 0.894828i \(0.352702\pi\)
\(510\) 0 0
\(511\) 6.16273 0.272623
\(512\) 23.5632 1.04136
\(513\) 0 0
\(514\) 29.4892 1.30071
\(515\) 0 0
\(516\) 0 0
\(517\) 6.58638 0.289669
\(518\) −0.556725 −0.0244611
\(519\) 0 0
\(520\) 0 0
\(521\) −34.7238 −1.52128 −0.760639 0.649175i \(-0.775114\pi\)
−0.760639 + 0.649175i \(0.775114\pi\)
\(522\) 0 0
\(523\) −21.7416 −0.950694 −0.475347 0.879798i \(-0.657678\pi\)
−0.475347 + 0.879798i \(0.657678\pi\)
\(524\) 1.26306 0.0551771
\(525\) 0 0
\(526\) −5.89054 −0.256840
\(527\) 0.739663 0.0322202
\(528\) 0 0
\(529\) 34.9970 1.52161
\(530\) 0 0
\(531\) 0 0
\(532\) 0.0828165 0.00359055
\(533\) −1.66090 −0.0719416
\(534\) 0 0
\(535\) 0 0
\(536\) −9.43078 −0.407348
\(537\) 0 0
\(538\) 35.8902 1.54734
\(539\) −20.2910 −0.873997
\(540\) 0 0
\(541\) −35.5278 −1.52746 −0.763729 0.645537i \(-0.776634\pi\)
−0.763729 + 0.645537i \(0.776634\pi\)
\(542\) −23.8980 −1.02651
\(543\) 0 0
\(544\) 0.251926 0.0108012
\(545\) 0 0
\(546\) 0 0
\(547\) −9.55722 −0.408637 −0.204319 0.978904i \(-0.565498\pi\)
−0.204319 + 0.978904i \(0.565498\pi\)
\(548\) −0.648369 −0.0276970
\(549\) 0 0
\(550\) 0 0
\(551\) 3.09403 0.131810
\(552\) 0 0
\(553\) −4.21262 −0.179139
\(554\) 8.59162 0.365023
\(555\) 0 0
\(556\) −0.679891 −0.0288338
\(557\) −1.32742 −0.0562447 −0.0281223 0.999604i \(-0.508953\pi\)
−0.0281223 + 0.999604i \(0.508953\pi\)
\(558\) 0 0
\(559\) 14.6060 0.617769
\(560\) 0 0
\(561\) 0 0
\(562\) 34.7024 1.46383
\(563\) 8.91259 0.375621 0.187810 0.982205i \(-0.439861\pi\)
0.187810 + 0.982205i \(0.439861\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 35.0776 1.47442
\(567\) 0 0
\(568\) −26.7271 −1.12144
\(569\) 19.2832 0.808393 0.404197 0.914672i \(-0.367551\pi\)
0.404197 + 0.914672i \(0.367551\pi\)
\(570\) 0 0
\(571\) −36.3948 −1.52307 −0.761537 0.648121i \(-0.775555\pi\)
−0.761537 + 0.648121i \(0.775555\pi\)
\(572\) 0.523009 0.0218681
\(573\) 0 0
\(574\) −0.310120 −0.0129441
\(575\) 0 0
\(576\) 0 0
\(577\) −31.1724 −1.29772 −0.648861 0.760907i \(-0.724754\pi\)
−0.648861 + 0.760907i \(0.724754\pi\)
\(578\) 22.9149 0.953133
\(579\) 0 0
\(580\) 0 0
\(581\) 2.34701 0.0973702
\(582\) 0 0
\(583\) −21.4416 −0.888019
\(584\) 45.0237 1.86309
\(585\) 0 0
\(586\) −14.8432 −0.613168
\(587\) −5.11584 −0.211153 −0.105577 0.994411i \(-0.533669\pi\)
−0.105577 + 0.994411i \(0.533669\pi\)
\(588\) 0 0
\(589\) 3.50091 0.144252
\(590\) 0 0
\(591\) 0 0
\(592\) −3.94472 −0.162127
\(593\) −38.8933 −1.59716 −0.798578 0.601892i \(-0.794414\pi\)
−0.798578 + 0.601892i \(0.794414\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.232872 0.00953880
\(597\) 0 0
\(598\) 31.0735 1.27069
\(599\) 34.5003 1.40964 0.704821 0.709385i \(-0.251027\pi\)
0.704821 + 0.709385i \(0.251027\pi\)
\(600\) 0 0
\(601\) −41.3204 −1.68550 −0.842748 0.538309i \(-0.819063\pi\)
−0.842748 + 0.538309i \(0.819063\pi\)
\(602\) 2.72720 0.111152
\(603\) 0 0
\(604\) −1.01714 −0.0413869
\(605\) 0 0
\(606\) 0 0
\(607\) −26.0876 −1.05886 −0.529432 0.848352i \(-0.677595\pi\)
−0.529432 + 0.848352i \(0.677595\pi\)
\(608\) 1.19239 0.0483579
\(609\) 0 0
\(610\) 0 0
\(611\) −6.50992 −0.263363
\(612\) 0 0
\(613\) 1.92244 0.0776468 0.0388234 0.999246i \(-0.487639\pi\)
0.0388234 + 0.999246i \(0.487639\pi\)
\(614\) −37.6389 −1.51898
\(615\) 0 0
\(616\) 3.34039 0.134588
\(617\) −11.7444 −0.472811 −0.236406 0.971654i \(-0.575969\pi\)
−0.236406 + 0.971654i \(0.575969\pi\)
\(618\) 0 0
\(619\) −46.2670 −1.85963 −0.929815 0.368028i \(-0.880033\pi\)
−0.929815 + 0.368028i \(0.880033\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 47.2326 1.89385
\(623\) 0.796751 0.0319212
\(624\) 0 0
\(625\) 0 0
\(626\) 1.04253 0.0416679
\(627\) 0 0
\(628\) −0.734844 −0.0293235
\(629\) −0.752794 −0.0300158
\(630\) 0 0
\(631\) 35.4518 1.41131 0.705657 0.708554i \(-0.250652\pi\)
0.705657 + 0.708554i \(0.250652\pi\)
\(632\) −30.7766 −1.22423
\(633\) 0 0
\(634\) −35.5010 −1.40993
\(635\) 0 0
\(636\) 0 0
\(637\) 20.0555 0.794627
\(638\) 3.64840 0.144441
\(639\) 0 0
\(640\) 0 0
\(641\) 33.3069 1.31554 0.657772 0.753218i \(-0.271499\pi\)
0.657772 + 0.753218i \(0.271499\pi\)
\(642\) 0 0
\(643\) 3.17760 0.125312 0.0626562 0.998035i \(-0.480043\pi\)
0.0626562 + 0.998035i \(0.480043\pi\)
\(644\) −0.180152 −0.00709898
\(645\) 0 0
\(646\) −3.60653 −0.141897
\(647\) −26.3964 −1.03775 −0.518874 0.854851i \(-0.673649\pi\)
−0.518874 + 0.854851i \(0.673649\pi\)
\(648\) 0 0
\(649\) 13.5361 0.531339
\(650\) 0 0
\(651\) 0 0
\(652\) 0.628938 0.0246311
\(653\) −19.0749 −0.746459 −0.373229 0.927739i \(-0.621750\pi\)
−0.373229 + 0.927739i \(0.621750\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.19738 −0.0857933
\(657\) 0 0
\(658\) −1.21552 −0.0473858
\(659\) 42.0839 1.63936 0.819678 0.572824i \(-0.194152\pi\)
0.819678 + 0.572824i \(0.194152\pi\)
\(660\) 0 0
\(661\) 20.6874 0.804646 0.402323 0.915498i \(-0.368203\pi\)
0.402323 + 0.915498i \(0.368203\pi\)
\(662\) −3.86589 −0.150252
\(663\) 0 0
\(664\) 17.1468 0.665423
\(665\) 0 0
\(666\) 0 0
\(667\) −6.73048 −0.260605
\(668\) −0.580006 −0.0224411
\(669\) 0 0
\(670\) 0 0
\(671\) −6.63318 −0.256071
\(672\) 0 0
\(673\) 42.3406 1.63211 0.816055 0.577974i \(-0.196157\pi\)
0.816055 + 0.577974i \(0.196157\pi\)
\(674\) 3.81559 0.146971
\(675\) 0 0
\(676\) 0.266053 0.0102328
\(677\) 17.0763 0.656297 0.328149 0.944626i \(-0.393575\pi\)
0.328149 + 0.944626i \(0.393575\pi\)
\(678\) 0 0
\(679\) −0.843823 −0.0323829
\(680\) 0 0
\(681\) 0 0
\(682\) 4.12818 0.158076
\(683\) 10.9639 0.419523 0.209761 0.977753i \(-0.432731\pi\)
0.209761 + 0.977753i \(0.432731\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 7.57381 0.289169
\(687\) 0 0
\(688\) 19.3238 0.736714
\(689\) 21.1927 0.807376
\(690\) 0 0
\(691\) −11.7138 −0.445614 −0.222807 0.974863i \(-0.571522\pi\)
−0.222807 + 0.974863i \(0.571522\pi\)
\(692\) −1.55133 −0.0589727
\(693\) 0 0
\(694\) 34.6845 1.31660
\(695\) 0 0
\(696\) 0 0
\(697\) −0.419339 −0.0158836
\(698\) 29.2047 1.10542
\(699\) 0 0
\(700\) 0 0
\(701\) −22.2196 −0.839223 −0.419612 0.907704i \(-0.637834\pi\)
−0.419612 + 0.907704i \(0.637834\pi\)
\(702\) 0 0
\(703\) −3.56306 −0.134383
\(704\) 24.3827 0.918959
\(705\) 0 0
\(706\) −13.0978 −0.492941
\(707\) −3.99646 −0.150302
\(708\) 0 0
\(709\) 44.4034 1.66760 0.833801 0.552064i \(-0.186160\pi\)
0.833801 + 0.552064i \(0.186160\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 5.82090 0.218148
\(713\) −7.61557 −0.285206
\(714\) 0 0
\(715\) 0 0
\(716\) 1.35764 0.0507375
\(717\) 0 0
\(718\) 20.6662 0.771257
\(719\) 30.8358 1.14998 0.574991 0.818160i \(-0.305006\pi\)
0.574991 + 0.818160i \(0.305006\pi\)
\(720\) 0 0
\(721\) −6.87156 −0.255910
\(722\) 9.39225 0.349543
\(723\) 0 0
\(724\) −0.391149 −0.0145369
\(725\) 0 0
\(726\) 0 0
\(727\) −28.4927 −1.05674 −0.528368 0.849016i \(-0.677196\pi\)
−0.528368 + 0.849016i \(0.677196\pi\)
\(728\) −3.30162 −0.122366
\(729\) 0 0
\(730\) 0 0
\(731\) 3.68768 0.136394
\(732\) 0 0
\(733\) −18.2652 −0.674642 −0.337321 0.941390i \(-0.609521\pi\)
−0.337321 + 0.941390i \(0.609521\pi\)
\(734\) −24.5801 −0.907268
\(735\) 0 0
\(736\) −2.59383 −0.0956099
\(737\) −9.74183 −0.358845
\(738\) 0 0
\(739\) 8.64342 0.317953 0.158977 0.987282i \(-0.449181\pi\)
0.158977 + 0.987282i \(0.449181\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.95705 0.145268
\(743\) −15.5432 −0.570223 −0.285112 0.958494i \(-0.592031\pi\)
−0.285112 + 0.958494i \(0.592031\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 10.5064 0.384666
\(747\) 0 0
\(748\) 0.132048 0.00482814
\(749\) 2.10154 0.0767884
\(750\) 0 0
\(751\) 15.1248 0.551913 0.275956 0.961170i \(-0.411005\pi\)
0.275956 + 0.961170i \(0.411005\pi\)
\(752\) −8.61266 −0.314071
\(753\) 0 0
\(754\) −3.60604 −0.131324
\(755\) 0 0
\(756\) 0 0
\(757\) −45.4568 −1.65215 −0.826077 0.563557i \(-0.809433\pi\)
−0.826077 + 0.563557i \(0.809433\pi\)
\(758\) 14.5740 0.529350
\(759\) 0 0
\(760\) 0 0
\(761\) −43.2430 −1.56756 −0.783778 0.621041i \(-0.786710\pi\)
−0.783778 + 0.621041i \(0.786710\pi\)
\(762\) 0 0
\(763\) −2.12485 −0.0769248
\(764\) −0.941332 −0.0340562
\(765\) 0 0
\(766\) 44.7741 1.61775
\(767\) −13.3790 −0.483087
\(768\) 0 0
\(769\) 12.6357 0.455655 0.227828 0.973701i \(-0.426838\pi\)
0.227828 + 0.973701i \(0.426838\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.919976 −0.0331107
\(773\) 12.2788 0.441638 0.220819 0.975315i \(-0.429127\pi\)
0.220819 + 0.975315i \(0.429127\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −6.16480 −0.221303
\(777\) 0 0
\(778\) −0.816482 −0.0292723
\(779\) −1.98478 −0.0711121
\(780\) 0 0
\(781\) −27.6086 −0.987912
\(782\) 7.84533 0.280549
\(783\) 0 0
\(784\) 26.5335 0.947625
\(785\) 0 0
\(786\) 0 0
\(787\) −0.641485 −0.0228665 −0.0114332 0.999935i \(-0.503639\pi\)
−0.0114332 + 0.999935i \(0.503639\pi\)
\(788\) −0.953263 −0.0339586
\(789\) 0 0
\(790\) 0 0
\(791\) −0.332724 −0.0118303
\(792\) 0 0
\(793\) 6.55618 0.232817
\(794\) 9.95965 0.353455
\(795\) 0 0
\(796\) 0.384380 0.0136240
\(797\) 7.40406 0.262265 0.131133 0.991365i \(-0.458139\pi\)
0.131133 + 0.991365i \(0.458139\pi\)
\(798\) 0 0
\(799\) −1.64360 −0.0581465
\(800\) 0 0
\(801\) 0 0
\(802\) −19.0887 −0.674045
\(803\) 46.5087 1.64126
\(804\) 0 0
\(805\) 0 0
\(806\) −4.08026 −0.143721
\(807\) 0 0
\(808\) −29.1973 −1.02716
\(809\) −46.8134 −1.64587 −0.822936 0.568133i \(-0.807666\pi\)
−0.822936 + 0.568133i \(0.807666\pi\)
\(810\) 0 0
\(811\) −43.7309 −1.53560 −0.767799 0.640691i \(-0.778648\pi\)
−0.767799 + 0.640691i \(0.778648\pi\)
\(812\) 0.0209064 0.000733671 0
\(813\) 0 0
\(814\) −4.20147 −0.147261
\(815\) 0 0
\(816\) 0 0
\(817\) 17.4542 0.610645
\(818\) 35.6800 1.24752
\(819\) 0 0
\(820\) 0 0
\(821\) −20.1707 −0.703964 −0.351982 0.936007i \(-0.614492\pi\)
−0.351982 + 0.936007i \(0.614492\pi\)
\(822\) 0 0
\(823\) 53.8348 1.87656 0.938281 0.345874i \(-0.112418\pi\)
0.938281 + 0.345874i \(0.112418\pi\)
\(824\) −50.2022 −1.74888
\(825\) 0 0
\(826\) −2.49809 −0.0869198
\(827\) 34.6261 1.20407 0.602034 0.798471i \(-0.294357\pi\)
0.602034 + 0.798471i \(0.294357\pi\)
\(828\) 0 0
\(829\) −46.9067 −1.62914 −0.814568 0.580068i \(-0.803026\pi\)
−0.814568 + 0.580068i \(0.803026\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −24.0997 −0.835506
\(833\) 5.06354 0.175441
\(834\) 0 0
\(835\) 0 0
\(836\) 0.624996 0.0216159
\(837\) 0 0
\(838\) 4.90312 0.169375
\(839\) −28.8006 −0.994308 −0.497154 0.867662i \(-0.665622\pi\)
−0.497154 + 0.867662i \(0.665622\pi\)
\(840\) 0 0
\(841\) −28.2189 −0.973067
\(842\) −48.7843 −1.68122
\(843\) 0 0
\(844\) 1.01444 0.0349184
\(845\) 0 0
\(846\) 0 0
\(847\) −0.869754 −0.0298851
\(848\) 28.0380 0.962829
\(849\) 0 0
\(850\) 0 0
\(851\) 7.75077 0.265693
\(852\) 0 0
\(853\) −14.2701 −0.488600 −0.244300 0.969700i \(-0.578558\pi\)
−0.244300 + 0.969700i \(0.578558\pi\)
\(854\) 1.22416 0.0418897
\(855\) 0 0
\(856\) 15.3534 0.524768
\(857\) 17.1765 0.586737 0.293369 0.955999i \(-0.405224\pi\)
0.293369 + 0.955999i \(0.405224\pi\)
\(858\) 0 0
\(859\) −8.36778 −0.285505 −0.142753 0.989758i \(-0.545595\pi\)
−0.142753 + 0.989758i \(0.545595\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −41.8383 −1.42502
\(863\) −32.3054 −1.09969 −0.549845 0.835267i \(-0.685313\pi\)
−0.549845 + 0.835267i \(0.685313\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 27.3501 0.929394
\(867\) 0 0
\(868\) 0.0236557 0.000802928 0
\(869\) −31.7917 −1.07846
\(870\) 0 0
\(871\) 9.62874 0.326257
\(872\) −15.5237 −0.525700
\(873\) 0 0
\(874\) 37.1329 1.25604
\(875\) 0 0
\(876\) 0 0
\(877\) −36.8711 −1.24505 −0.622523 0.782601i \(-0.713892\pi\)
−0.622523 + 0.782601i \(0.713892\pi\)
\(878\) −11.3552 −0.383221
\(879\) 0 0
\(880\) 0 0
\(881\) −12.0232 −0.405074 −0.202537 0.979275i \(-0.564919\pi\)
−0.202537 + 0.979275i \(0.564919\pi\)
\(882\) 0 0
\(883\) −23.0776 −0.776623 −0.388312 0.921528i \(-0.626942\pi\)
−0.388312 + 0.921528i \(0.626942\pi\)
\(884\) −0.130515 −0.00438968
\(885\) 0 0
\(886\) 8.94015 0.300350
\(887\) 3.86173 0.129664 0.0648320 0.997896i \(-0.479349\pi\)
0.0648320 + 0.997896i \(0.479349\pi\)
\(888\) 0 0
\(889\) 0.172919 0.00579952
\(890\) 0 0
\(891\) 0 0
\(892\) 1.28739 0.0431050
\(893\) −7.77936 −0.260326
\(894\) 0 0
\(895\) 0 0
\(896\) −4.23230 −0.141391
\(897\) 0 0
\(898\) −14.5911 −0.486912
\(899\) 0.883778 0.0294757
\(900\) 0 0
\(901\) 5.35065 0.178256
\(902\) −2.34040 −0.0779268
\(903\) 0 0
\(904\) −2.43082 −0.0808477
\(905\) 0 0
\(906\) 0 0
\(907\) 22.9516 0.762095 0.381048 0.924555i \(-0.375563\pi\)
0.381048 + 0.924555i \(0.375563\pi\)
\(908\) −1.31139 −0.0435201
\(909\) 0 0
\(910\) 0 0
\(911\) −50.0710 −1.65893 −0.829463 0.558562i \(-0.811353\pi\)
−0.829463 + 0.558562i \(0.811353\pi\)
\(912\) 0 0
\(913\) 17.7123 0.586191
\(914\) 37.8295 1.25129
\(915\) 0 0
\(916\) −1.25999 −0.0416312
\(917\) −8.23635 −0.271988
\(918\) 0 0
\(919\) −21.4914 −0.708937 −0.354469 0.935068i \(-0.615338\pi\)
−0.354469 + 0.935068i \(0.615338\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 28.3107 0.932363
\(923\) 27.2881 0.898198
\(924\) 0 0
\(925\) 0 0
\(926\) 26.9295 0.884959
\(927\) 0 0
\(928\) 0.301011 0.00988117
\(929\) 13.8766 0.455277 0.227638 0.973746i \(-0.426900\pi\)
0.227638 + 0.973746i \(0.426900\pi\)
\(930\) 0 0
\(931\) 23.9663 0.785464
\(932\) 0.882545 0.0289087
\(933\) 0 0
\(934\) −12.2029 −0.399290
\(935\) 0 0
\(936\) 0 0
\(937\) −37.0301 −1.20972 −0.604860 0.796332i \(-0.706771\pi\)
−0.604860 + 0.796332i \(0.706771\pi\)
\(938\) 1.79786 0.0587021
\(939\) 0 0
\(940\) 0 0
\(941\) 8.66187 0.282369 0.141184 0.989983i \(-0.454909\pi\)
0.141184 + 0.989983i \(0.454909\pi\)
\(942\) 0 0
\(943\) 4.31752 0.140598
\(944\) −17.7005 −0.576101
\(945\) 0 0
\(946\) 20.5815 0.669164
\(947\) 19.5007 0.633686 0.316843 0.948478i \(-0.397377\pi\)
0.316843 + 0.948478i \(0.397377\pi\)
\(948\) 0 0
\(949\) −45.9688 −1.49221
\(950\) 0 0
\(951\) 0 0
\(952\) −0.833581 −0.0270165
\(953\) −22.4104 −0.725945 −0.362973 0.931800i \(-0.618238\pi\)
−0.362973 + 0.931800i \(0.618238\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.16004 0.0375185
\(957\) 0 0
\(958\) 19.3048 0.623709
\(959\) 4.22797 0.136528
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 4.15269 0.133888
\(963\) 0 0
\(964\) −0.0238086 −0.000766822 0
\(965\) 0 0
\(966\) 0 0
\(967\) −37.5051 −1.20608 −0.603041 0.797710i \(-0.706045\pi\)
−0.603041 + 0.797710i \(0.706045\pi\)
\(968\) −6.35425 −0.204233
\(969\) 0 0
\(970\) 0 0
\(971\) 6.10577 0.195944 0.0979718 0.995189i \(-0.468765\pi\)
0.0979718 + 0.995189i \(0.468765\pi\)
\(972\) 0 0
\(973\) 4.43353 0.142132
\(974\) 44.2047 1.41641
\(975\) 0 0
\(976\) 8.67386 0.277643
\(977\) −19.0911 −0.610780 −0.305390 0.952227i \(-0.598787\pi\)
−0.305390 + 0.952227i \(0.598787\pi\)
\(978\) 0 0
\(979\) 6.01289 0.192173
\(980\) 0 0
\(981\) 0 0
\(982\) −4.92845 −0.157273
\(983\) 24.2343 0.772954 0.386477 0.922299i \(-0.373692\pi\)
0.386477 + 0.922299i \(0.373692\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −0.910442 −0.0289944
\(987\) 0 0
\(988\) −0.617741 −0.0196530
\(989\) −37.9684 −1.20732
\(990\) 0 0
\(991\) 11.3078 0.359205 0.179602 0.983739i \(-0.442519\pi\)
0.179602 + 0.983739i \(0.442519\pi\)
\(992\) 0.340595 0.0108139
\(993\) 0 0
\(994\) 5.09517 0.161609
\(995\) 0 0
\(996\) 0 0
\(997\) −10.6447 −0.337121 −0.168560 0.985691i \(-0.553912\pi\)
−0.168560 + 0.985691i \(0.553912\pi\)
\(998\) −24.0290 −0.760626
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6975.2.a.bv.1.1 5
3.2 odd 2 2325.2.a.w.1.5 5
5.2 odd 4 1395.2.c.f.559.3 10
5.3 odd 4 1395.2.c.f.559.8 10
5.4 even 2 6975.2.a.bs.1.5 5
15.2 even 4 465.2.c.a.94.8 yes 10
15.8 even 4 465.2.c.a.94.3 10
15.14 odd 2 2325.2.a.x.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.c.a.94.3 10 15.8 even 4
465.2.c.a.94.8 yes 10 15.2 even 4
1395.2.c.f.559.3 10 5.2 odd 4
1395.2.c.f.559.8 10 5.3 odd 4
2325.2.a.w.1.5 5 3.2 odd 2
2325.2.a.x.1.1 5 15.14 odd 2
6975.2.a.bs.1.5 5 5.4 even 2
6975.2.a.bv.1.1 5 1.1 even 1 trivial