Properties

Label 6975.2.a.bf.1.3
Level $6975$
Weight $2$
Character 6975.1
Self dual yes
Analytic conductor $55.696$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6975,2,Mod(1,6975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6975.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6975.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.6956554098\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.51414\) of defining polynomial
Character \(\chi\) \(=\) 6975.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51414 q^{2} +4.32088 q^{4} -0.485863 q^{7} +5.83502 q^{8} -5.02827 q^{11} -3.51414 q^{13} -1.22153 q^{14} +6.02827 q^{16} -1.32088 q^{17} -6.64177 q^{19} -12.6418 q^{22} +0.292611 q^{23} -8.83502 q^{26} -2.09936 q^{28} +9.86330 q^{29} +1.00000 q^{31} +3.48586 q^{32} -3.32088 q^{34} -5.51414 q^{37} -16.6983 q^{38} +7.02827 q^{41} +1.02827 q^{43} -21.7266 q^{44} +0.735663 q^{46} -6.93438 q^{47} -6.76394 q^{49} -15.1842 q^{52} -1.70739 q^{53} -2.83502 q^{56} +24.7977 q^{58} +2.19325 q^{59} -2.00000 q^{61} +2.51414 q^{62} -3.29261 q^{64} -9.12763 q^{67} -5.70739 q^{68} -13.4768 q^{71} -12.5424 q^{73} -13.8633 q^{74} -28.6983 q^{76} +2.44305 q^{77} -0.349158 q^{79} +17.6700 q^{82} +10.9344 q^{83} +2.58522 q^{86} -29.3401 q^{88} -5.03374 q^{89} +1.70739 q^{91} +1.26434 q^{92} -17.4340 q^{94} -10.4431 q^{97} -17.0055 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 5 q^{4} - 8 q^{7} + 3 q^{8} - 2 q^{11} - 4 q^{13} + 8 q^{14} + 5 q^{16} + 4 q^{17} - 4 q^{19} - 22 q^{22} + 6 q^{23} - 12 q^{26} - 10 q^{28} + 2 q^{29} + 3 q^{31} + 17 q^{32} - 2 q^{34} - 10 q^{37}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51414 1.77776 0.888882 0.458137i \(-0.151483\pi\)
0.888882 + 0.458137i \(0.151483\pi\)
\(3\) 0 0
\(4\) 4.32088 2.16044
\(5\) 0 0
\(6\) 0 0
\(7\) −0.485863 −0.183639 −0.0918195 0.995776i \(-0.529268\pi\)
−0.0918195 + 0.995776i \(0.529268\pi\)
\(8\) 5.83502 2.06299
\(9\) 0 0
\(10\) 0 0
\(11\) −5.02827 −1.51608 −0.758041 0.652207i \(-0.773843\pi\)
−0.758041 + 0.652207i \(0.773843\pi\)
\(12\) 0 0
\(13\) −3.51414 −0.974646 −0.487323 0.873222i \(-0.662027\pi\)
−0.487323 + 0.873222i \(0.662027\pi\)
\(14\) −1.22153 −0.326467
\(15\) 0 0
\(16\) 6.02827 1.50707
\(17\) −1.32088 −0.320362 −0.160181 0.987088i \(-0.551208\pi\)
−0.160181 + 0.987088i \(0.551208\pi\)
\(18\) 0 0
\(19\) −6.64177 −1.52373 −0.761863 0.647738i \(-0.775715\pi\)
−0.761863 + 0.647738i \(0.775715\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −12.6418 −2.69523
\(23\) 0.292611 0.0610135 0.0305068 0.999535i \(-0.490288\pi\)
0.0305068 + 0.999535i \(0.490288\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −8.83502 −1.73269
\(27\) 0 0
\(28\) −2.09936 −0.396741
\(29\) 9.86330 1.83157 0.915784 0.401671i \(-0.131571\pi\)
0.915784 + 0.401671i \(0.131571\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 3.48586 0.616219
\(33\) 0 0
\(34\) −3.32088 −0.569527
\(35\) 0 0
\(36\) 0 0
\(37\) −5.51414 −0.906519 −0.453259 0.891379i \(-0.649739\pi\)
−0.453259 + 0.891379i \(0.649739\pi\)
\(38\) −16.6983 −2.70882
\(39\) 0 0
\(40\) 0 0
\(41\) 7.02827 1.09763 0.548816 0.835943i \(-0.315079\pi\)
0.548816 + 0.835943i \(0.315079\pi\)
\(42\) 0 0
\(43\) 1.02827 0.156810 0.0784051 0.996922i \(-0.475017\pi\)
0.0784051 + 0.996922i \(0.475017\pi\)
\(44\) −21.7266 −3.27541
\(45\) 0 0
\(46\) 0.735663 0.108468
\(47\) −6.93438 −1.01148 −0.505742 0.862685i \(-0.668781\pi\)
−0.505742 + 0.862685i \(0.668781\pi\)
\(48\) 0 0
\(49\) −6.76394 −0.966277
\(50\) 0 0
\(51\) 0 0
\(52\) −15.1842 −2.10567
\(53\) −1.70739 −0.234528 −0.117264 0.993101i \(-0.537412\pi\)
−0.117264 + 0.993101i \(0.537412\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.83502 −0.378846
\(57\) 0 0
\(58\) 24.7977 3.25609
\(59\) 2.19325 0.285537 0.142769 0.989756i \(-0.454400\pi\)
0.142769 + 0.989756i \(0.454400\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 2.51414 0.319296
\(63\) 0 0
\(64\) −3.29261 −0.411576
\(65\) 0 0
\(66\) 0 0
\(67\) −9.12763 −1.11512 −0.557559 0.830137i \(-0.688262\pi\)
−0.557559 + 0.830137i \(0.688262\pi\)
\(68\) −5.70739 −0.692123
\(69\) 0 0
\(70\) 0 0
\(71\) −13.4768 −1.59940 −0.799700 0.600399i \(-0.795008\pi\)
−0.799700 + 0.600399i \(0.795008\pi\)
\(72\) 0 0
\(73\) −12.5424 −1.46798 −0.733989 0.679161i \(-0.762344\pi\)
−0.733989 + 0.679161i \(0.762344\pi\)
\(74\) −13.8633 −1.61158
\(75\) 0 0
\(76\) −28.6983 −3.29192
\(77\) 2.44305 0.278412
\(78\) 0 0
\(79\) −0.349158 −0.0392834 −0.0196417 0.999807i \(-0.506253\pi\)
−0.0196417 + 0.999807i \(0.506253\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 17.6700 1.95133
\(83\) 10.9344 1.20020 0.600102 0.799923i \(-0.295127\pi\)
0.600102 + 0.799923i \(0.295127\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.58522 0.278772
\(87\) 0 0
\(88\) −29.3401 −3.12766
\(89\) −5.03374 −0.533575 −0.266788 0.963755i \(-0.585962\pi\)
−0.266788 + 0.963755i \(0.585962\pi\)
\(90\) 0 0
\(91\) 1.70739 0.178983
\(92\) 1.26434 0.131816
\(93\) 0 0
\(94\) −17.4340 −1.79818
\(95\) 0 0
\(96\) 0 0
\(97\) −10.4431 −1.06033 −0.530166 0.847894i \(-0.677870\pi\)
−0.530166 + 0.847894i \(0.677870\pi\)
\(98\) −17.0055 −1.71781
\(99\) 0 0
\(100\) 0 0
\(101\) 11.6135 1.15559 0.577793 0.816183i \(-0.303914\pi\)
0.577793 + 0.816183i \(0.303914\pi\)
\(102\) 0 0
\(103\) 3.76940 0.371410 0.185705 0.982606i \(-0.440543\pi\)
0.185705 + 0.982606i \(0.440543\pi\)
\(104\) −20.5051 −2.01069
\(105\) 0 0
\(106\) −4.29261 −0.416935
\(107\) −6.73566 −0.651161 −0.325581 0.945514i \(-0.605560\pi\)
−0.325581 + 0.945514i \(0.605560\pi\)
\(108\) 0 0
\(109\) −3.90611 −0.374137 −0.187069 0.982347i \(-0.559899\pi\)
−0.187069 + 0.982347i \(0.559899\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.92892 −0.276757
\(113\) −15.0848 −1.41906 −0.709530 0.704675i \(-0.751093\pi\)
−0.709530 + 0.704675i \(0.751093\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 42.6182 3.95700
\(117\) 0 0
\(118\) 5.51414 0.507617
\(119\) 0.641769 0.0588309
\(120\) 0 0
\(121\) 14.2835 1.29850
\(122\) −5.02827 −0.455239
\(123\) 0 0
\(124\) 4.32088 0.388027
\(125\) 0 0
\(126\) 0 0
\(127\) 6.25526 0.555065 0.277532 0.960716i \(-0.410483\pi\)
0.277532 + 0.960716i \(0.410483\pi\)
\(128\) −15.2498 −1.34790
\(129\) 0 0
\(130\) 0 0
\(131\) 22.1186 1.93251 0.966254 0.257592i \(-0.0829291\pi\)
0.966254 + 0.257592i \(0.0829291\pi\)
\(132\) 0 0
\(133\) 3.22699 0.279816
\(134\) −22.9481 −1.98242
\(135\) 0 0
\(136\) −7.70739 −0.660903
\(137\) −14.6044 −1.24774 −0.623870 0.781528i \(-0.714441\pi\)
−0.623870 + 0.781528i \(0.714441\pi\)
\(138\) 0 0
\(139\) 12.8970 1.09391 0.546956 0.837161i \(-0.315786\pi\)
0.546956 + 0.837161i \(0.315786\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −33.8825 −2.84336
\(143\) 17.6700 1.47764
\(144\) 0 0
\(145\) 0 0
\(146\) −31.5333 −2.60972
\(147\) 0 0
\(148\) −23.8259 −1.95848
\(149\) −16.3118 −1.33632 −0.668158 0.744020i \(-0.732917\pi\)
−0.668158 + 0.744020i \(0.732917\pi\)
\(150\) 0 0
\(151\) 19.3774 1.57691 0.788457 0.615090i \(-0.210881\pi\)
0.788457 + 0.615090i \(0.210881\pi\)
\(152\) −38.7549 −3.14343
\(153\) 0 0
\(154\) 6.14217 0.494950
\(155\) 0 0
\(156\) 0 0
\(157\) 3.80128 0.303375 0.151688 0.988428i \(-0.451529\pi\)
0.151688 + 0.988428i \(0.451529\pi\)
\(158\) −0.877832 −0.0698366
\(159\) 0 0
\(160\) 0 0
\(161\) −0.142169 −0.0112045
\(162\) 0 0
\(163\) −12.5424 −0.982397 −0.491199 0.871048i \(-0.663441\pi\)
−0.491199 + 0.871048i \(0.663441\pi\)
\(164\) 30.3684 2.37137
\(165\) 0 0
\(166\) 27.4905 2.13368
\(167\) 22.2553 1.72216 0.861082 0.508466i \(-0.169787\pi\)
0.861082 + 0.508466i \(0.169787\pi\)
\(168\) 0 0
\(169\) −0.650842 −0.0500647
\(170\) 0 0
\(171\) 0 0
\(172\) 4.44305 0.338780
\(173\) −10.9717 −0.834165 −0.417082 0.908869i \(-0.636947\pi\)
−0.417082 + 0.908869i \(0.636947\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −30.3118 −2.28484
\(177\) 0 0
\(178\) −12.6555 −0.948570
\(179\) 15.9253 1.19031 0.595157 0.803610i \(-0.297090\pi\)
0.595157 + 0.803610i \(0.297090\pi\)
\(180\) 0 0
\(181\) −8.05655 −0.598838 −0.299419 0.954122i \(-0.596793\pi\)
−0.299419 + 0.954122i \(0.596793\pi\)
\(182\) 4.29261 0.318189
\(183\) 0 0
\(184\) 1.70739 0.125870
\(185\) 0 0
\(186\) 0 0
\(187\) 6.64177 0.485694
\(188\) −29.9627 −2.18525
\(189\) 0 0
\(190\) 0 0
\(191\) −6.19325 −0.448128 −0.224064 0.974574i \(-0.571932\pi\)
−0.224064 + 0.974574i \(0.571932\pi\)
\(192\) 0 0
\(193\) 2.25526 0.162337 0.0811687 0.996700i \(-0.474135\pi\)
0.0811687 + 0.996700i \(0.474135\pi\)
\(194\) −26.2553 −1.88502
\(195\) 0 0
\(196\) −29.2262 −2.08759
\(197\) 9.32088 0.664086 0.332043 0.943264i \(-0.392262\pi\)
0.332043 + 0.943264i \(0.392262\pi\)
\(198\) 0 0
\(199\) 16.5479 1.17305 0.586524 0.809932i \(-0.300496\pi\)
0.586524 + 0.809932i \(0.300496\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 29.1979 2.05436
\(203\) −4.79221 −0.336347
\(204\) 0 0
\(205\) 0 0
\(206\) 9.47679 0.660279
\(207\) 0 0
\(208\) −21.1842 −1.46886
\(209\) 33.3966 2.31009
\(210\) 0 0
\(211\) 25.0101 1.72177 0.860884 0.508801i \(-0.169911\pi\)
0.860884 + 0.508801i \(0.169911\pi\)
\(212\) −7.37743 −0.506684
\(213\) 0 0
\(214\) −16.9344 −1.15761
\(215\) 0 0
\(216\) 0 0
\(217\) −0.485863 −0.0329825
\(218\) −9.82048 −0.665127
\(219\) 0 0
\(220\) 0 0
\(221\) 4.64177 0.312239
\(222\) 0 0
\(223\) −19.2835 −1.29132 −0.645661 0.763625i \(-0.723418\pi\)
−0.645661 + 0.763625i \(0.723418\pi\)
\(224\) −1.69365 −0.113162
\(225\) 0 0
\(226\) −37.9253 −2.52275
\(227\) 23.4340 1.55537 0.777684 0.628655i \(-0.216394\pi\)
0.777684 + 0.628655i \(0.216394\pi\)
\(228\) 0 0
\(229\) −25.0283 −1.65391 −0.826957 0.562265i \(-0.809930\pi\)
−0.826957 + 0.562265i \(0.809930\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 57.5525 3.77851
\(233\) 18.7175 1.22623 0.613113 0.789995i \(-0.289917\pi\)
0.613113 + 0.789995i \(0.289917\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 9.47679 0.616887
\(237\) 0 0
\(238\) 1.61350 0.104587
\(239\) 3.86876 0.250249 0.125125 0.992141i \(-0.460067\pi\)
0.125125 + 0.992141i \(0.460067\pi\)
\(240\) 0 0
\(241\) −1.61350 −0.103934 −0.0519672 0.998649i \(-0.516549\pi\)
−0.0519672 + 0.998649i \(0.516549\pi\)
\(242\) 35.9108 2.30843
\(243\) 0 0
\(244\) −8.64177 −0.553233
\(245\) 0 0
\(246\) 0 0
\(247\) 23.3401 1.48509
\(248\) 5.83502 0.370524
\(249\) 0 0
\(250\) 0 0
\(251\) 25.4713 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(252\) 0 0
\(253\) −1.47133 −0.0925015
\(254\) 15.7266 0.986774
\(255\) 0 0
\(256\) −31.7549 −1.98468
\(257\) 18.0192 1.12401 0.562003 0.827135i \(-0.310031\pi\)
0.562003 + 0.827135i \(0.310031\pi\)
\(258\) 0 0
\(259\) 2.67912 0.166472
\(260\) 0 0
\(261\) 0 0
\(262\) 55.6091 3.43554
\(263\) 1.15951 0.0714987 0.0357494 0.999361i \(-0.488618\pi\)
0.0357494 + 0.999361i \(0.488618\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 8.11310 0.497446
\(267\) 0 0
\(268\) −39.4394 −2.40915
\(269\) 7.80675 0.475986 0.237993 0.971267i \(-0.423511\pi\)
0.237993 + 0.971267i \(0.423511\pi\)
\(270\) 0 0
\(271\) 17.7831 1.08025 0.540124 0.841585i \(-0.318377\pi\)
0.540124 + 0.841585i \(0.318377\pi\)
\(272\) −7.96265 −0.482807
\(273\) 0 0
\(274\) −36.7175 −2.21819
\(275\) 0 0
\(276\) 0 0
\(277\) −25.9390 −1.55853 −0.779263 0.626697i \(-0.784406\pi\)
−0.779263 + 0.626697i \(0.784406\pi\)
\(278\) 32.4249 1.94472
\(279\) 0 0
\(280\) 0 0
\(281\) 13.0283 0.777202 0.388601 0.921406i \(-0.372959\pi\)
0.388601 + 0.921406i \(0.372959\pi\)
\(282\) 0 0
\(283\) −15.9006 −0.945195 −0.472598 0.881278i \(-0.656684\pi\)
−0.472598 + 0.881278i \(0.656684\pi\)
\(284\) −58.2317 −3.45541
\(285\) 0 0
\(286\) 44.4249 2.62690
\(287\) −3.41478 −0.201568
\(288\) 0 0
\(289\) −15.2553 −0.897368
\(290\) 0 0
\(291\) 0 0
\(292\) −54.1943 −3.17148
\(293\) −29.4340 −1.71955 −0.859776 0.510672i \(-0.829397\pi\)
−0.859776 + 0.510672i \(0.829397\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −32.1751 −1.87014
\(297\) 0 0
\(298\) −41.0101 −2.37565
\(299\) −1.02827 −0.0594666
\(300\) 0 0
\(301\) −0.499600 −0.0287965
\(302\) 48.7175 2.80338
\(303\) 0 0
\(304\) −40.0384 −2.29636
\(305\) 0 0
\(306\) 0 0
\(307\) −9.96812 −0.568911 −0.284455 0.958689i \(-0.591813\pi\)
−0.284455 + 0.958689i \(0.591813\pi\)
\(308\) 10.5561 0.601492
\(309\) 0 0
\(310\) 0 0
\(311\) −15.9945 −0.906967 −0.453483 0.891265i \(-0.649819\pi\)
−0.453483 + 0.891265i \(0.649819\pi\)
\(312\) 0 0
\(313\) 22.8542 1.29180 0.645899 0.763423i \(-0.276483\pi\)
0.645899 + 0.763423i \(0.276483\pi\)
\(314\) 9.55695 0.539330
\(315\) 0 0
\(316\) −1.50867 −0.0848695
\(317\) 14.6044 0.820266 0.410133 0.912026i \(-0.365482\pi\)
0.410133 + 0.912026i \(0.365482\pi\)
\(318\) 0 0
\(319\) −49.5953 −2.77681
\(320\) 0 0
\(321\) 0 0
\(322\) −0.357432 −0.0199189
\(323\) 8.77301 0.488143
\(324\) 0 0
\(325\) 0 0
\(326\) −31.5333 −1.74647
\(327\) 0 0
\(328\) 41.0101 2.26441
\(329\) 3.36916 0.185748
\(330\) 0 0
\(331\) −8.16137 −0.448589 −0.224295 0.974521i \(-0.572008\pi\)
−0.224295 + 0.974521i \(0.572008\pi\)
\(332\) 47.2462 2.59297
\(333\) 0 0
\(334\) 55.9528 3.06160
\(335\) 0 0
\(336\) 0 0
\(337\) 11.8825 0.647281 0.323640 0.946180i \(-0.395093\pi\)
0.323640 + 0.946180i \(0.395093\pi\)
\(338\) −1.63631 −0.0890033
\(339\) 0 0
\(340\) 0 0
\(341\) −5.02827 −0.272296
\(342\) 0 0
\(343\) 6.68739 0.361085
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) −27.5844 −1.48295
\(347\) −18.3684 −0.986065 −0.493033 0.870011i \(-0.664112\pi\)
−0.493033 + 0.870011i \(0.664112\pi\)
\(348\) 0 0
\(349\) 11.2462 0.601995 0.300997 0.953625i \(-0.402680\pi\)
0.300997 + 0.953625i \(0.402680\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −17.5279 −0.934239
\(353\) 25.3593 1.34974 0.674869 0.737937i \(-0.264200\pi\)
0.674869 + 0.737937i \(0.264200\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −21.7502 −1.15276
\(357\) 0 0
\(358\) 40.0384 2.11610
\(359\) −15.2890 −0.806923 −0.403461 0.914997i \(-0.632193\pi\)
−0.403461 + 0.914997i \(0.632193\pi\)
\(360\) 0 0
\(361\) 25.1131 1.32174
\(362\) −20.2553 −1.06459
\(363\) 0 0
\(364\) 7.37743 0.386683
\(365\) 0 0
\(366\) 0 0
\(367\) −6.05655 −0.316149 −0.158075 0.987427i \(-0.550529\pi\)
−0.158075 + 0.987427i \(0.550529\pi\)
\(368\) 1.76394 0.0919516
\(369\) 0 0
\(370\) 0 0
\(371\) 0.829557 0.0430685
\(372\) 0 0
\(373\) −8.06748 −0.417718 −0.208859 0.977946i \(-0.566975\pi\)
−0.208859 + 0.977946i \(0.566975\pi\)
\(374\) 16.6983 0.863449
\(375\) 0 0
\(376\) −40.4623 −2.08668
\(377\) −34.6610 −1.78513
\(378\) 0 0
\(379\) −36.8114 −1.89088 −0.945438 0.325803i \(-0.894365\pi\)
−0.945438 + 0.325803i \(0.894365\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −15.5707 −0.796666
\(383\) −3.63270 −0.185622 −0.0928111 0.995684i \(-0.529585\pi\)
−0.0928111 + 0.995684i \(0.529585\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.67004 0.288598
\(387\) 0 0
\(388\) −45.1232 −2.29078
\(389\) −15.2781 −0.774629 −0.387315 0.921948i \(-0.626597\pi\)
−0.387315 + 0.921948i \(0.626597\pi\)
\(390\) 0 0
\(391\) −0.386505 −0.0195464
\(392\) −39.4677 −1.99342
\(393\) 0 0
\(394\) 23.4340 1.18059
\(395\) 0 0
\(396\) 0 0
\(397\) 18.5852 0.932766 0.466383 0.884583i \(-0.345557\pi\)
0.466383 + 0.884583i \(0.345557\pi\)
\(398\) 41.6036 2.08540
\(399\) 0 0
\(400\) 0 0
\(401\) −6.19325 −0.309276 −0.154638 0.987971i \(-0.549421\pi\)
−0.154638 + 0.987971i \(0.549421\pi\)
\(402\) 0 0
\(403\) −3.51414 −0.175052
\(404\) 50.1806 2.49658
\(405\) 0 0
\(406\) −12.0483 −0.597946
\(407\) 27.7266 1.37436
\(408\) 0 0
\(409\) −32.0565 −1.58509 −0.792547 0.609811i \(-0.791245\pi\)
−0.792547 + 0.609811i \(0.791245\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 16.2871 0.802410
\(413\) −1.06562 −0.0524357
\(414\) 0 0
\(415\) 0 0
\(416\) −12.2498 −0.600596
\(417\) 0 0
\(418\) 83.9637 4.10680
\(419\) −9.78860 −0.478205 −0.239102 0.970994i \(-0.576853\pi\)
−0.239102 + 0.970994i \(0.576853\pi\)
\(420\) 0 0
\(421\) −14.2745 −0.695695 −0.347847 0.937551i \(-0.613087\pi\)
−0.347847 + 0.937551i \(0.613087\pi\)
\(422\) 62.8789 3.06090
\(423\) 0 0
\(424\) −9.96265 −0.483829
\(425\) 0 0
\(426\) 0 0
\(427\) 0.971726 0.0470251
\(428\) −29.1040 −1.40680
\(429\) 0 0
\(430\) 0 0
\(431\) 22.8350 1.09992 0.549962 0.835190i \(-0.314642\pi\)
0.549962 + 0.835190i \(0.314642\pi\)
\(432\) 0 0
\(433\) −13.8259 −0.664433 −0.332216 0.943203i \(-0.607796\pi\)
−0.332216 + 0.943203i \(0.607796\pi\)
\(434\) −1.22153 −0.0586351
\(435\) 0 0
\(436\) −16.8778 −0.808302
\(437\) −1.94345 −0.0929679
\(438\) 0 0
\(439\) 39.8506 1.90197 0.950983 0.309243i \(-0.100076\pi\)
0.950983 + 0.309243i \(0.100076\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 11.6700 0.555087
\(443\) −10.1504 −0.482262 −0.241131 0.970493i \(-0.577518\pi\)
−0.241131 + 0.970493i \(0.577518\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −48.4815 −2.29566
\(447\) 0 0
\(448\) 1.59976 0.0755815
\(449\) 3.75020 0.176983 0.0884914 0.996077i \(-0.471795\pi\)
0.0884914 + 0.996077i \(0.471795\pi\)
\(450\) 0 0
\(451\) −35.3401 −1.66410
\(452\) −65.1798 −3.06580
\(453\) 0 0
\(454\) 58.9162 2.76508
\(455\) 0 0
\(456\) 0 0
\(457\) 1.70193 0.0796127 0.0398064 0.999207i \(-0.487326\pi\)
0.0398064 + 0.999207i \(0.487326\pi\)
\(458\) −62.9245 −2.94027
\(459\) 0 0
\(460\) 0 0
\(461\) −7.40931 −0.345086 −0.172543 0.985002i \(-0.555198\pi\)
−0.172543 + 0.985002i \(0.555198\pi\)
\(462\) 0 0
\(463\) 30.3865 1.41218 0.706090 0.708122i \(-0.250457\pi\)
0.706090 + 0.708122i \(0.250457\pi\)
\(464\) 59.4586 2.76030
\(465\) 0 0
\(466\) 47.0584 2.17994
\(467\) 17.1040 0.791480 0.395740 0.918363i \(-0.370488\pi\)
0.395740 + 0.918363i \(0.370488\pi\)
\(468\) 0 0
\(469\) 4.43478 0.204779
\(470\) 0 0
\(471\) 0 0
\(472\) 12.7977 0.589061
\(473\) −5.17044 −0.237737
\(474\) 0 0
\(475\) 0 0
\(476\) 2.77301 0.127101
\(477\) 0 0
\(478\) 9.72659 0.444884
\(479\) −21.2890 −0.972719 −0.486360 0.873759i \(-0.661676\pi\)
−0.486360 + 0.873759i \(0.661676\pi\)
\(480\) 0 0
\(481\) 19.3774 0.883535
\(482\) −4.05655 −0.184771
\(483\) 0 0
\(484\) 61.7175 2.80534
\(485\) 0 0
\(486\) 0 0
\(487\) −20.4996 −0.928926 −0.464463 0.885593i \(-0.653753\pi\)
−0.464463 + 0.885593i \(0.653753\pi\)
\(488\) −11.6700 −0.528278
\(489\) 0 0
\(490\) 0 0
\(491\) 31.0667 1.40202 0.701010 0.713152i \(-0.252733\pi\)
0.701010 + 0.713152i \(0.252733\pi\)
\(492\) 0 0
\(493\) −13.0283 −0.586764
\(494\) 58.6802 2.64015
\(495\) 0 0
\(496\) 6.02827 0.270677
\(497\) 6.54787 0.293712
\(498\) 0 0
\(499\) 15.3401 0.686717 0.343358 0.939205i \(-0.388435\pi\)
0.343358 + 0.939205i \(0.388435\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 64.0384 2.85817
\(503\) −14.9344 −0.665891 −0.332946 0.942946i \(-0.608043\pi\)
−0.332946 + 0.942946i \(0.608043\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.69912 −0.164446
\(507\) 0 0
\(508\) 27.0283 1.19919
\(509\) 1.22153 0.0541432 0.0270716 0.999633i \(-0.491382\pi\)
0.0270716 + 0.999633i \(0.491382\pi\)
\(510\) 0 0
\(511\) 6.09389 0.269578
\(512\) −49.3365 −2.18038
\(513\) 0 0
\(514\) 45.3027 1.99822
\(515\) 0 0
\(516\) 0 0
\(517\) 34.8680 1.53349
\(518\) 6.73566 0.295948
\(519\) 0 0
\(520\) 0 0
\(521\) −4.57429 −0.200403 −0.100202 0.994967i \(-0.531949\pi\)
−0.100202 + 0.994967i \(0.531949\pi\)
\(522\) 0 0
\(523\) 29.7831 1.30233 0.651163 0.758938i \(-0.274281\pi\)
0.651163 + 0.758938i \(0.274281\pi\)
\(524\) 95.5717 4.17507
\(525\) 0 0
\(526\) 2.91518 0.127108
\(527\) −1.32088 −0.0575386
\(528\) 0 0
\(529\) −22.9144 −0.996277
\(530\) 0 0
\(531\) 0 0
\(532\) 13.9435 0.604525
\(533\) −24.6983 −1.06980
\(534\) 0 0
\(535\) 0 0
\(536\) −53.2599 −2.30048
\(537\) 0 0
\(538\) 19.6272 0.846190
\(539\) 34.0109 1.46495
\(540\) 0 0
\(541\) −3.04748 −0.131021 −0.0655106 0.997852i \(-0.520868\pi\)
−0.0655106 + 0.997852i \(0.520868\pi\)
\(542\) 44.7092 1.92043
\(543\) 0 0
\(544\) −4.60442 −0.197413
\(545\) 0 0
\(546\) 0 0
\(547\) −9.82595 −0.420127 −0.210064 0.977688i \(-0.567367\pi\)
−0.210064 + 0.977688i \(0.567367\pi\)
\(548\) −63.1040 −2.69567
\(549\) 0 0
\(550\) 0 0
\(551\) −65.5097 −2.79081
\(552\) 0 0
\(553\) 0.169643 0.00721396
\(554\) −65.2143 −2.77069
\(555\) 0 0
\(556\) 55.7266 2.36333
\(557\) −38.7922 −1.64368 −0.821839 0.569719i \(-0.807052\pi\)
−0.821839 + 0.569719i \(0.807052\pi\)
\(558\) 0 0
\(559\) −3.61350 −0.152835
\(560\) 0 0
\(561\) 0 0
\(562\) 32.7549 1.38168
\(563\) 2.73566 0.115294 0.0576472 0.998337i \(-0.481640\pi\)
0.0576472 + 0.998337i \(0.481640\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −39.9764 −1.68033
\(567\) 0 0
\(568\) −78.6374 −3.29955
\(569\) −4.39197 −0.184121 −0.0920605 0.995753i \(-0.529345\pi\)
−0.0920605 + 0.995753i \(0.529345\pi\)
\(570\) 0 0
\(571\) 9.67004 0.404679 0.202339 0.979315i \(-0.435146\pi\)
0.202339 + 0.979315i \(0.435146\pi\)
\(572\) 76.3502 3.19236
\(573\) 0 0
\(574\) −8.58522 −0.358340
\(575\) 0 0
\(576\) 0 0
\(577\) −31.4148 −1.30781 −0.653907 0.756575i \(-0.726871\pi\)
−0.653907 + 0.756575i \(0.726871\pi\)
\(578\) −38.3538 −1.59531
\(579\) 0 0
\(580\) 0 0
\(581\) −5.31261 −0.220404
\(582\) 0 0
\(583\) 8.58522 0.355564
\(584\) −73.1852 −3.02843
\(585\) 0 0
\(586\) −74.0011 −3.05696
\(587\) −27.2161 −1.12333 −0.561664 0.827366i \(-0.689838\pi\)
−0.561664 + 0.827366i \(0.689838\pi\)
\(588\) 0 0
\(589\) −6.64177 −0.273669
\(590\) 0 0
\(591\) 0 0
\(592\) −33.2407 −1.36619
\(593\) 32.5561 1.33692 0.668460 0.743748i \(-0.266954\pi\)
0.668460 + 0.743748i \(0.266954\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −70.4815 −2.88703
\(597\) 0 0
\(598\) −2.58522 −0.105718
\(599\) −27.8067 −1.13615 −0.568076 0.822976i \(-0.692312\pi\)
−0.568076 + 0.822976i \(0.692312\pi\)
\(600\) 0 0
\(601\) 17.6519 0.720036 0.360018 0.932945i \(-0.382771\pi\)
0.360018 + 0.932945i \(0.382771\pi\)
\(602\) −1.25606 −0.0511933
\(603\) 0 0
\(604\) 83.7276 3.40683
\(605\) 0 0
\(606\) 0 0
\(607\) −44.9673 −1.82517 −0.912584 0.408890i \(-0.865916\pi\)
−0.912584 + 0.408890i \(0.865916\pi\)
\(608\) −23.1523 −0.938950
\(609\) 0 0
\(610\) 0 0
\(611\) 24.3684 0.985838
\(612\) 0 0
\(613\) −33.7694 −1.36393 −0.681967 0.731383i \(-0.738875\pi\)
−0.681967 + 0.731383i \(0.738875\pi\)
\(614\) −25.0612 −1.01139
\(615\) 0 0
\(616\) 14.2553 0.574361
\(617\) −26.1131 −1.05127 −0.525637 0.850709i \(-0.676173\pi\)
−0.525637 + 0.850709i \(0.676173\pi\)
\(618\) 0 0
\(619\) −20.8597 −0.838422 −0.419211 0.907889i \(-0.637693\pi\)
−0.419211 + 0.907889i \(0.637693\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −40.2125 −1.61237
\(623\) 2.44571 0.0979852
\(624\) 0 0
\(625\) 0 0
\(626\) 57.4586 2.29651
\(627\) 0 0
\(628\) 16.4249 0.655425
\(629\) 7.28354 0.290414
\(630\) 0 0
\(631\) −20.5105 −0.816511 −0.408256 0.912868i \(-0.633863\pi\)
−0.408256 + 0.912868i \(0.633863\pi\)
\(632\) −2.03735 −0.0810413
\(633\) 0 0
\(634\) 36.7175 1.45824
\(635\) 0 0
\(636\) 0 0
\(637\) 23.7694 0.941778
\(638\) −124.690 −4.93650
\(639\) 0 0
\(640\) 0 0
\(641\) −23.9945 −0.947727 −0.473864 0.880598i \(-0.657141\pi\)
−0.473864 + 0.880598i \(0.657141\pi\)
\(642\) 0 0
\(643\) 13.6700 0.539094 0.269547 0.962987i \(-0.413126\pi\)
0.269547 + 0.962987i \(0.413126\pi\)
\(644\) −0.614295 −0.0242066
\(645\) 0 0
\(646\) 22.0565 0.867803
\(647\) −11.1523 −0.438442 −0.219221 0.975675i \(-0.570352\pi\)
−0.219221 + 0.975675i \(0.570352\pi\)
\(648\) 0 0
\(649\) −11.0283 −0.432898
\(650\) 0 0
\(651\) 0 0
\(652\) −54.1943 −2.12241
\(653\) −39.1896 −1.53361 −0.766805 0.641881i \(-0.778154\pi\)
−0.766805 + 0.641881i \(0.778154\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 42.3684 1.65421
\(657\) 0 0
\(658\) 8.47053 0.330216
\(659\) 31.6464 1.23277 0.616385 0.787445i \(-0.288597\pi\)
0.616385 + 0.787445i \(0.288597\pi\)
\(660\) 0 0
\(661\) −3.59535 −0.139843 −0.0699215 0.997553i \(-0.522275\pi\)
−0.0699215 + 0.997553i \(0.522275\pi\)
\(662\) −20.5188 −0.797486
\(663\) 0 0
\(664\) 63.8023 2.47601
\(665\) 0 0
\(666\) 0 0
\(667\) 2.88611 0.111750
\(668\) 96.1624 3.72064
\(669\) 0 0
\(670\) 0 0
\(671\) 10.0565 0.388229
\(672\) 0 0
\(673\) 7.24073 0.279110 0.139555 0.990214i \(-0.455433\pi\)
0.139555 + 0.990214i \(0.455433\pi\)
\(674\) 29.8742 1.15071
\(675\) 0 0
\(676\) −2.81221 −0.108162
\(677\) 38.5188 1.48040 0.740199 0.672388i \(-0.234731\pi\)
0.740199 + 0.672388i \(0.234731\pi\)
\(678\) 0 0
\(679\) 5.07389 0.194718
\(680\) 0 0
\(681\) 0 0
\(682\) −12.6418 −0.484078
\(683\) 40.0192 1.53129 0.765646 0.643262i \(-0.222419\pi\)
0.765646 + 0.643262i \(0.222419\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 16.8130 0.641924
\(687\) 0 0
\(688\) 6.19872 0.236324
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −11.8013 −0.448942 −0.224471 0.974481i \(-0.572065\pi\)
−0.224471 + 0.974481i \(0.572065\pi\)
\(692\) −47.4076 −1.80217
\(693\) 0 0
\(694\) −46.1806 −1.75299
\(695\) 0 0
\(696\) 0 0
\(697\) −9.28354 −0.351639
\(698\) 28.2745 1.07020
\(699\) 0 0
\(700\) 0 0
\(701\) −5.17044 −0.195285 −0.0976425 0.995222i \(-0.531130\pi\)
−0.0976425 + 0.995222i \(0.531130\pi\)
\(702\) 0 0
\(703\) 36.6236 1.38129
\(704\) 16.5561 0.623983
\(705\) 0 0
\(706\) 63.7567 2.39952
\(707\) −5.64257 −0.212211
\(708\) 0 0
\(709\) 47.7722 1.79412 0.897062 0.441906i \(-0.145697\pi\)
0.897062 + 0.441906i \(0.145697\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −29.3720 −1.10076
\(713\) 0.292611 0.0109584
\(714\) 0 0
\(715\) 0 0
\(716\) 68.8114 2.57160
\(717\) 0 0
\(718\) −38.4386 −1.43452
\(719\) −23.0848 −0.860919 −0.430459 0.902610i \(-0.641648\pi\)
−0.430459 + 0.902610i \(0.641648\pi\)
\(720\) 0 0
\(721\) −1.83141 −0.0682054
\(722\) 63.1378 2.34974
\(723\) 0 0
\(724\) −34.8114 −1.29376
\(725\) 0 0
\(726\) 0 0
\(727\) 22.2125 0.823814 0.411907 0.911226i \(-0.364863\pi\)
0.411907 + 0.911226i \(0.364863\pi\)
\(728\) 9.96265 0.369241
\(729\) 0 0
\(730\) 0 0
\(731\) −1.35823 −0.0502360
\(732\) 0 0
\(733\) 43.9072 1.62175 0.810874 0.585221i \(-0.198992\pi\)
0.810874 + 0.585221i \(0.198992\pi\)
\(734\) −15.2270 −0.562038
\(735\) 0 0
\(736\) 1.02000 0.0375977
\(737\) 45.8962 1.69061
\(738\) 0 0
\(739\) 6.86690 0.252603 0.126302 0.991992i \(-0.459689\pi\)
0.126302 + 0.991992i \(0.459689\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2.08562 0.0765656
\(743\) 29.2726 1.07391 0.536954 0.843612i \(-0.319575\pi\)
0.536954 + 0.843612i \(0.319575\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −20.2827 −0.742604
\(747\) 0 0
\(748\) 28.6983 1.04931
\(749\) 3.27261 0.119579
\(750\) 0 0
\(751\) 9.67004 0.352865 0.176432 0.984313i \(-0.443544\pi\)
0.176432 + 0.984313i \(0.443544\pi\)
\(752\) −41.8023 −1.52437
\(753\) 0 0
\(754\) −87.1424 −3.17354
\(755\) 0 0
\(756\) 0 0
\(757\) 49.4104 1.79585 0.897925 0.440148i \(-0.145074\pi\)
0.897925 + 0.440148i \(0.145074\pi\)
\(758\) −92.5489 −3.36153
\(759\) 0 0
\(760\) 0 0
\(761\) −47.2599 −1.71317 −0.856586 0.516005i \(-0.827419\pi\)
−0.856586 + 0.516005i \(0.827419\pi\)
\(762\) 0 0
\(763\) 1.89783 0.0687062
\(764\) −26.7603 −0.968155
\(765\) 0 0
\(766\) −9.13310 −0.329992
\(767\) −7.70739 −0.278298
\(768\) 0 0
\(769\) 9.49053 0.342237 0.171119 0.985250i \(-0.445262\pi\)
0.171119 + 0.985250i \(0.445262\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.74474 0.350721
\(773\) 41.7567 1.50188 0.750942 0.660368i \(-0.229600\pi\)
0.750942 + 0.660368i \(0.229600\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −60.9354 −2.18745
\(777\) 0 0
\(778\) −38.4112 −1.37711
\(779\) −46.6802 −1.67249
\(780\) 0 0
\(781\) 67.7650 2.42482
\(782\) −0.971726 −0.0347489
\(783\) 0 0
\(784\) −40.7749 −1.45625
\(785\) 0 0
\(786\) 0 0
\(787\) 40.0950 1.42923 0.714615 0.699518i \(-0.246602\pi\)
0.714615 + 0.699518i \(0.246602\pi\)
\(788\) 40.2745 1.43472
\(789\) 0 0
\(790\) 0 0
\(791\) 7.32916 0.260595
\(792\) 0 0
\(793\) 7.02827 0.249581
\(794\) 46.7258 1.65824
\(795\) 0 0
\(796\) 71.5015 2.53430
\(797\) −31.1150 −1.10215 −0.551074 0.834456i \(-0.685782\pi\)
−0.551074 + 0.834456i \(0.685782\pi\)
\(798\) 0 0
\(799\) 9.15951 0.324040
\(800\) 0 0
\(801\) 0 0
\(802\) −15.5707 −0.549820
\(803\) 63.0667 2.22557
\(804\) 0 0
\(805\) 0 0
\(806\) −8.83502 −0.311200
\(807\) 0 0
\(808\) 67.7650 2.38396
\(809\) −46.6291 −1.63939 −0.819696 0.572799i \(-0.805857\pi\)
−0.819696 + 0.572799i \(0.805857\pi\)
\(810\) 0 0
\(811\) −47.0283 −1.65139 −0.825693 0.564120i \(-0.809216\pi\)
−0.825693 + 0.564120i \(0.809216\pi\)
\(812\) −20.7066 −0.726659
\(813\) 0 0
\(814\) 69.7084 2.44328
\(815\) 0 0
\(816\) 0 0
\(817\) −6.82956 −0.238936
\(818\) −80.5946 −2.81792
\(819\) 0 0
\(820\) 0 0
\(821\) −35.3912 −1.23516 −0.617580 0.786508i \(-0.711887\pi\)
−0.617580 + 0.786508i \(0.711887\pi\)
\(822\) 0 0
\(823\) 17.2161 0.600114 0.300057 0.953921i \(-0.402994\pi\)
0.300057 + 0.953921i \(0.402994\pi\)
\(824\) 21.9945 0.766216
\(825\) 0 0
\(826\) −2.67912 −0.0932184
\(827\) 16.3310 0.567885 0.283942 0.958841i \(-0.408358\pi\)
0.283942 + 0.958841i \(0.408358\pi\)
\(828\) 0 0
\(829\) −29.0667 −1.00953 −0.504764 0.863258i \(-0.668420\pi\)
−0.504764 + 0.863258i \(0.668420\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 11.5707 0.401141
\(833\) 8.93438 0.309558
\(834\) 0 0
\(835\) 0 0
\(836\) 144.303 4.99082
\(837\) 0 0
\(838\) −24.6099 −0.850134
\(839\) −27.6646 −0.955087 −0.477544 0.878608i \(-0.658473\pi\)
−0.477544 + 0.878608i \(0.658473\pi\)
\(840\) 0 0
\(841\) 68.2846 2.35464
\(842\) −35.8880 −1.23678
\(843\) 0 0
\(844\) 108.066 3.71978
\(845\) 0 0
\(846\) 0 0
\(847\) −6.93984 −0.238456
\(848\) −10.2926 −0.353450
\(849\) 0 0
\(850\) 0 0
\(851\) −1.61350 −0.0553099
\(852\) 0 0
\(853\) −32.5105 −1.11314 −0.556570 0.830801i \(-0.687883\pi\)
−0.556570 + 0.830801i \(0.687883\pi\)
\(854\) 2.44305 0.0835995
\(855\) 0 0
\(856\) −39.3027 −1.34334
\(857\) −45.9144 −1.56841 −0.784203 0.620505i \(-0.786928\pi\)
−0.784203 + 0.620505i \(0.786928\pi\)
\(858\) 0 0
\(859\) −19.6026 −0.668831 −0.334415 0.942426i \(-0.608539\pi\)
−0.334415 + 0.942426i \(0.608539\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 57.4104 1.95540
\(863\) 46.1696 1.57163 0.785816 0.618460i \(-0.212243\pi\)
0.785816 + 0.618460i \(0.212243\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −34.7603 −1.18120
\(867\) 0 0
\(868\) −2.09936 −0.0712569
\(869\) 1.75566 0.0595568
\(870\) 0 0
\(871\) 32.0757 1.08685
\(872\) −22.7922 −0.771842
\(873\) 0 0
\(874\) −4.88611 −0.165275
\(875\) 0 0
\(876\) 0 0
\(877\) −11.3017 −0.381631 −0.190815 0.981626i \(-0.561113\pi\)
−0.190815 + 0.981626i \(0.561113\pi\)
\(878\) 100.190 3.38125
\(879\) 0 0
\(880\) 0 0
\(881\) 9.60803 0.323703 0.161851 0.986815i \(-0.448253\pi\)
0.161851 + 0.986815i \(0.448253\pi\)
\(882\) 0 0
\(883\) 33.5279 1.12830 0.564151 0.825671i \(-0.309203\pi\)
0.564151 + 0.825671i \(0.309203\pi\)
\(884\) 20.0565 0.674575
\(885\) 0 0
\(886\) −25.5196 −0.857348
\(887\) −9.76394 −0.327841 −0.163920 0.986474i \(-0.552414\pi\)
−0.163920 + 0.986474i \(0.552414\pi\)
\(888\) 0 0
\(889\) −3.03920 −0.101932
\(890\) 0 0
\(891\) 0 0
\(892\) −83.3219 −2.78982
\(893\) 46.0565 1.54122
\(894\) 0 0
\(895\) 0 0
\(896\) 7.40931 0.247528
\(897\) 0 0
\(898\) 9.42852 0.314634
\(899\) 9.86330 0.328959
\(900\) 0 0
\(901\) 2.25526 0.0751337
\(902\) −88.8498 −2.95838
\(903\) 0 0
\(904\) −88.0203 −2.92751
\(905\) 0 0
\(906\) 0 0
\(907\) 9.18418 0.304956 0.152478 0.988307i \(-0.451275\pi\)
0.152478 + 0.988307i \(0.451275\pi\)
\(908\) 101.256 3.36028
\(909\) 0 0
\(910\) 0 0
\(911\) 12.2553 0.406035 0.203018 0.979175i \(-0.434925\pi\)
0.203018 + 0.979175i \(0.434925\pi\)
\(912\) 0 0
\(913\) −54.9811 −1.81961
\(914\) 4.27887 0.141533
\(915\) 0 0
\(916\) −108.144 −3.57319
\(917\) −10.7466 −0.354884
\(918\) 0 0
\(919\) −47.5663 −1.56907 −0.784533 0.620087i \(-0.787097\pi\)
−0.784533 + 0.620087i \(0.787097\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −18.6280 −0.613482
\(923\) 47.3593 1.55885
\(924\) 0 0
\(925\) 0 0
\(926\) 76.3958 2.51052
\(927\) 0 0
\(928\) 34.3821 1.12865
\(929\) −23.5333 −0.772104 −0.386052 0.922477i \(-0.626161\pi\)
−0.386052 + 0.922477i \(0.626161\pi\)
\(930\) 0 0
\(931\) 44.9245 1.47234
\(932\) 80.8762 2.64919
\(933\) 0 0
\(934\) 43.0019 1.40706
\(935\) 0 0
\(936\) 0 0
\(937\) 56.7258 1.85315 0.926575 0.376109i \(-0.122738\pi\)
0.926575 + 0.376109i \(0.122738\pi\)
\(938\) 11.1496 0.364049
\(939\) 0 0
\(940\) 0 0
\(941\) 33.5333 1.09316 0.546578 0.837408i \(-0.315930\pi\)
0.546578 + 0.837408i \(0.315930\pi\)
\(942\) 0 0
\(943\) 2.05655 0.0669704
\(944\) 13.2215 0.430324
\(945\) 0 0
\(946\) −12.9992 −0.422640
\(947\) −52.0685 −1.69200 −0.846000 0.533183i \(-0.820996\pi\)
−0.846000 + 0.533183i \(0.820996\pi\)
\(948\) 0 0
\(949\) 44.0757 1.43076
\(950\) 0 0
\(951\) 0 0
\(952\) 3.74474 0.121368
\(953\) −11.1896 −0.362468 −0.181234 0.983440i \(-0.558009\pi\)
−0.181234 + 0.983440i \(0.558009\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 16.7165 0.540649
\(957\) 0 0
\(958\) −53.5235 −1.72926
\(959\) 7.09575 0.229134
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 48.7175 1.57072
\(963\) 0 0
\(964\) −6.97173 −0.224544
\(965\) 0 0
\(966\) 0 0
\(967\) −36.8296 −1.18436 −0.592179 0.805806i \(-0.701732\pi\)
−0.592179 + 0.805806i \(0.701732\pi\)
\(968\) 83.3448 2.67880
\(969\) 0 0
\(970\) 0 0
\(971\) −18.7494 −0.601697 −0.300848 0.953672i \(-0.597270\pi\)
−0.300848 + 0.953672i \(0.597270\pi\)
\(972\) 0 0
\(973\) −6.26619 −0.200885
\(974\) −51.5388 −1.65141
\(975\) 0 0
\(976\) −12.0565 −0.385921
\(977\) −50.2262 −1.60688 −0.803439 0.595387i \(-0.796999\pi\)
−0.803439 + 0.595387i \(0.796999\pi\)
\(978\) 0 0
\(979\) 25.3110 0.808943
\(980\) 0 0
\(981\) 0 0
\(982\) 78.1059 2.49246
\(983\) 15.5279 0.495262 0.247631 0.968854i \(-0.420348\pi\)
0.247631 + 0.968854i \(0.420348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −32.7549 −1.04313
\(987\) 0 0
\(988\) 100.850 3.20846
\(989\) 0.300884 0.00956755
\(990\) 0 0
\(991\) −20.1022 −0.638566 −0.319283 0.947659i \(-0.603442\pi\)
−0.319283 + 0.947659i \(0.603442\pi\)
\(992\) 3.48586 0.110676
\(993\) 0 0
\(994\) 16.4623 0.522151
\(995\) 0 0
\(996\) 0 0
\(997\) 20.8186 0.659333 0.329666 0.944098i \(-0.393064\pi\)
0.329666 + 0.944098i \(0.393064\pi\)
\(998\) 38.5671 1.22082
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6975.2.a.bf.1.3 3
3.2 odd 2 2325.2.a.r.1.1 3
5.4 even 2 1395.2.a.j.1.1 3
15.2 even 4 2325.2.c.k.1024.1 6
15.8 even 4 2325.2.c.k.1024.6 6
15.14 odd 2 465.2.a.e.1.3 3
60.59 even 2 7440.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.e.1.3 3 15.14 odd 2
1395.2.a.j.1.1 3 5.4 even 2
2325.2.a.r.1.1 3 3.2 odd 2
2325.2.c.k.1024.1 6 15.2 even 4
2325.2.c.k.1024.6 6 15.8 even 4
6975.2.a.bf.1.3 3 1.1 even 1 trivial
7440.2.a.bs.1.3 3 60.59 even 2