Properties

Label 6975.2.a.bf.1.2
Level $6975$
Weight $2$
Character 6975.1
Self dual yes
Analytic conductor $55.696$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6975,2,Mod(1,6975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6975.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,0,5,0,0,-8,3,0,0,-2,0,-4,8,0,5,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.6956554098\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.571993\) of defining polynomial
Character \(\chi\) \(=\) 6975.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.571993 q^{2} -1.67282 q^{4} -2.42801 q^{7} -2.10083 q^{8} -1.14399 q^{11} -1.57199 q^{13} -1.38880 q^{14} +2.14399 q^{16} +4.67282 q^{17} +5.34565 q^{19} -0.654353 q^{22} -1.81681 q^{23} -0.899170 q^{26} +4.06163 q^{28} -1.95684 q^{29} +1.00000 q^{31} +5.42801 q^{32} +2.67282 q^{34} -3.57199 q^{37} +3.05767 q^{38} +3.14399 q^{41} -2.85601 q^{43} +1.91369 q^{44} -1.03920 q^{46} +7.16246 q^{47} -1.10478 q^{49} +2.62967 q^{52} -3.81681 q^{53} +5.10083 q^{56} -1.11930 q^{58} +6.24482 q^{59} -2.00000 q^{61} +0.571993 q^{62} -1.18319 q^{64} +0.917641 q^{67} -7.81681 q^{68} +6.44648 q^{71} -6.71598 q^{73} -2.04316 q^{74} -8.94233 q^{76} +2.77761 q^{77} +9.52884 q^{79} +1.79834 q^{82} -3.16246 q^{83} -1.63362 q^{86} +2.40332 q^{88} +15.2241 q^{89} +3.81681 q^{91} +3.03920 q^{92} +4.09688 q^{94} -10.7776 q^{97} -0.631929 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 5 q^{4} - 8 q^{7} + 3 q^{8} - 2 q^{11} - 4 q^{13} + 8 q^{14} + 5 q^{16} + 4 q^{17} - 4 q^{19} - 22 q^{22} + 6 q^{23} - 12 q^{26} - 10 q^{28} + 2 q^{29} + 3 q^{31} + 17 q^{32} - 2 q^{34} - 10 q^{37}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.571993 0.404460 0.202230 0.979338i \(-0.435181\pi\)
0.202230 + 0.979338i \(0.435181\pi\)
\(3\) 0 0
\(4\) −1.67282 −0.836412
\(5\) 0 0
\(6\) 0 0
\(7\) −2.42801 −0.917700 −0.458850 0.888514i \(-0.651739\pi\)
−0.458850 + 0.888514i \(0.651739\pi\)
\(8\) −2.10083 −0.742756
\(9\) 0 0
\(10\) 0 0
\(11\) −1.14399 −0.344925 −0.172462 0.985016i \(-0.555172\pi\)
−0.172462 + 0.985016i \(0.555172\pi\)
\(12\) 0 0
\(13\) −1.57199 −0.435992 −0.217996 0.975950i \(-0.569952\pi\)
−0.217996 + 0.975950i \(0.569952\pi\)
\(14\) −1.38880 −0.371173
\(15\) 0 0
\(16\) 2.14399 0.535997
\(17\) 4.67282 1.13333 0.566663 0.823950i \(-0.308234\pi\)
0.566663 + 0.823950i \(0.308234\pi\)
\(18\) 0 0
\(19\) 5.34565 1.22638 0.613188 0.789937i \(-0.289887\pi\)
0.613188 + 0.789937i \(0.289887\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.654353 −0.139508
\(23\) −1.81681 −0.378831 −0.189416 0.981897i \(-0.560659\pi\)
−0.189416 + 0.981897i \(0.560659\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.899170 −0.176342
\(27\) 0 0
\(28\) 4.06163 0.767575
\(29\) −1.95684 −0.363377 −0.181688 0.983356i \(-0.558156\pi\)
−0.181688 + 0.983356i \(0.558156\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 5.42801 0.959545
\(33\) 0 0
\(34\) 2.67282 0.458385
\(35\) 0 0
\(36\) 0 0
\(37\) −3.57199 −0.587232 −0.293616 0.955923i \(-0.594859\pi\)
−0.293616 + 0.955923i \(0.594859\pi\)
\(38\) 3.05767 0.496020
\(39\) 0 0
\(40\) 0 0
\(41\) 3.14399 0.491008 0.245504 0.969396i \(-0.421047\pi\)
0.245504 + 0.969396i \(0.421047\pi\)
\(42\) 0 0
\(43\) −2.85601 −0.435538 −0.217769 0.976000i \(-0.569878\pi\)
−0.217769 + 0.976000i \(0.569878\pi\)
\(44\) 1.91369 0.288499
\(45\) 0 0
\(46\) −1.03920 −0.153222
\(47\) 7.16246 1.04475 0.522376 0.852715i \(-0.325046\pi\)
0.522376 + 0.852715i \(0.325046\pi\)
\(48\) 0 0
\(49\) −1.10478 −0.157826
\(50\) 0 0
\(51\) 0 0
\(52\) 2.62967 0.364669
\(53\) −3.81681 −0.524279 −0.262140 0.965030i \(-0.584428\pi\)
−0.262140 + 0.965030i \(0.584428\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.10083 0.681627
\(57\) 0 0
\(58\) −1.11930 −0.146971
\(59\) 6.24482 0.813006 0.406503 0.913649i \(-0.366748\pi\)
0.406503 + 0.913649i \(0.366748\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0.571993 0.0726432
\(63\) 0 0
\(64\) −1.18319 −0.147899
\(65\) 0 0
\(66\) 0 0
\(67\) 0.917641 0.112108 0.0560538 0.998428i \(-0.482148\pi\)
0.0560538 + 0.998428i \(0.482148\pi\)
\(68\) −7.81681 −0.947927
\(69\) 0 0
\(70\) 0 0
\(71\) 6.44648 0.765056 0.382528 0.923944i \(-0.375054\pi\)
0.382528 + 0.923944i \(0.375054\pi\)
\(72\) 0 0
\(73\) −6.71598 −0.786046 −0.393023 0.919529i \(-0.628571\pi\)
−0.393023 + 0.919529i \(0.628571\pi\)
\(74\) −2.04316 −0.237512
\(75\) 0 0
\(76\) −8.94233 −1.02576
\(77\) 2.77761 0.316538
\(78\) 0 0
\(79\) 9.52884 1.07208 0.536039 0.844193i \(-0.319920\pi\)
0.536039 + 0.844193i \(0.319920\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.79834 0.198593
\(83\) −3.16246 −0.347125 −0.173562 0.984823i \(-0.555528\pi\)
−0.173562 + 0.984823i \(0.555528\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.63362 −0.176158
\(87\) 0 0
\(88\) 2.40332 0.256195
\(89\) 15.2241 1.61375 0.806875 0.590722i \(-0.201157\pi\)
0.806875 + 0.590722i \(0.201157\pi\)
\(90\) 0 0
\(91\) 3.81681 0.400110
\(92\) 3.03920 0.316859
\(93\) 0 0
\(94\) 4.09688 0.422561
\(95\) 0 0
\(96\) 0 0
\(97\) −10.7776 −1.09430 −0.547150 0.837035i \(-0.684287\pi\)
−0.547150 + 0.837035i \(0.684287\pi\)
\(98\) −0.631929 −0.0638344
\(99\) 0 0
\(100\) 0 0
\(101\) 3.51037 0.349294 0.174647 0.984631i \(-0.444121\pi\)
0.174647 + 0.984631i \(0.444121\pi\)
\(102\) 0 0
\(103\) −18.2633 −1.79954 −0.899768 0.436369i \(-0.856264\pi\)
−0.899768 + 0.436369i \(0.856264\pi\)
\(104\) 3.30249 0.323836
\(105\) 0 0
\(106\) −2.18319 −0.212050
\(107\) −4.96080 −0.479578 −0.239789 0.970825i \(-0.577078\pi\)
−0.239789 + 0.970825i \(0.577078\pi\)
\(108\) 0 0
\(109\) 6.30644 0.604048 0.302024 0.953300i \(-0.402338\pi\)
0.302024 + 0.953300i \(0.402338\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.20561 −0.491884
\(113\) −3.43196 −0.322852 −0.161426 0.986885i \(-0.551609\pi\)
−0.161426 + 0.986885i \(0.551609\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.27345 0.303933
\(117\) 0 0
\(118\) 3.57199 0.328829
\(119\) −11.3456 −1.04005
\(120\) 0 0
\(121\) −9.69129 −0.881027
\(122\) −1.14399 −0.103572
\(123\) 0 0
\(124\) −1.67282 −0.150224
\(125\) 0 0
\(126\) 0 0
\(127\) −13.8353 −1.22768 −0.613841 0.789429i \(-0.710377\pi\)
−0.613841 + 0.789429i \(0.710377\pi\)
\(128\) −11.5328 −1.01936
\(129\) 0 0
\(130\) 0 0
\(131\) −9.79213 −0.855542 −0.427771 0.903887i \(-0.640701\pi\)
−0.427771 + 0.903887i \(0.640701\pi\)
\(132\) 0 0
\(133\) −12.9793 −1.12545
\(134\) 0.524884 0.0453431
\(135\) 0 0
\(136\) −9.81681 −0.841785
\(137\) 15.3641 1.31265 0.656323 0.754480i \(-0.272111\pi\)
0.656323 + 0.754480i \(0.272111\pi\)
\(138\) 0 0
\(139\) −19.1809 −1.62691 −0.813453 0.581631i \(-0.802415\pi\)
−0.813453 + 0.581631i \(0.802415\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.68734 0.309435
\(143\) 1.79834 0.150385
\(144\) 0 0
\(145\) 0 0
\(146\) −3.84150 −0.317924
\(147\) 0 0
\(148\) 5.97531 0.491168
\(149\) 11.5473 0.945992 0.472996 0.881064i \(-0.343172\pi\)
0.472996 + 0.881064i \(0.343172\pi\)
\(150\) 0 0
\(151\) 5.61515 0.456954 0.228477 0.973549i \(-0.426625\pi\)
0.228477 + 0.973549i \(0.426625\pi\)
\(152\) −11.2303 −0.910898
\(153\) 0 0
\(154\) 1.58877 0.128027
\(155\) 0 0
\(156\) 0 0
\(157\) 16.1233 1.28678 0.643388 0.765540i \(-0.277528\pi\)
0.643388 + 0.765540i \(0.277528\pi\)
\(158\) 5.45043 0.433613
\(159\) 0 0
\(160\) 0 0
\(161\) 4.41123 0.347653
\(162\) 0 0
\(163\) −6.71598 −0.526036 −0.263018 0.964791i \(-0.584718\pi\)
−0.263018 + 0.964791i \(0.584718\pi\)
\(164\) −5.25934 −0.410685
\(165\) 0 0
\(166\) −1.80890 −0.140398
\(167\) 2.16472 0.167511 0.0837555 0.996486i \(-0.473309\pi\)
0.0837555 + 0.996486i \(0.473309\pi\)
\(168\) 0 0
\(169\) −10.5288 −0.809911
\(170\) 0 0
\(171\) 0 0
\(172\) 4.77761 0.364289
\(173\) −14.8560 −1.12948 −0.564741 0.825268i \(-0.691024\pi\)
−0.564741 + 0.825268i \(0.691024\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.45269 −0.184879
\(177\) 0 0
\(178\) 8.70807 0.652698
\(179\) −20.0369 −1.49763 −0.748816 0.662778i \(-0.769377\pi\)
−0.748816 + 0.662778i \(0.769377\pi\)
\(180\) 0 0
\(181\) −0.287973 −0.0214049 −0.0107024 0.999943i \(-0.503407\pi\)
−0.0107024 + 0.999943i \(0.503407\pi\)
\(182\) 2.18319 0.161829
\(183\) 0 0
\(184\) 3.81681 0.281379
\(185\) 0 0
\(186\) 0 0
\(187\) −5.34565 −0.390912
\(188\) −11.9815 −0.873843
\(189\) 0 0
\(190\) 0 0
\(191\) −10.2448 −0.741289 −0.370644 0.928775i \(-0.620863\pi\)
−0.370644 + 0.928775i \(0.620863\pi\)
\(192\) 0 0
\(193\) −17.8353 −1.28381 −0.641906 0.766783i \(-0.721856\pi\)
−0.641906 + 0.766783i \(0.721856\pi\)
\(194\) −6.16472 −0.442601
\(195\) 0 0
\(196\) 1.84811 0.132008
\(197\) 3.32718 0.237051 0.118526 0.992951i \(-0.462183\pi\)
0.118526 + 0.992951i \(0.462183\pi\)
\(198\) 0 0
\(199\) −5.65209 −0.400666 −0.200333 0.979728i \(-0.564202\pi\)
−0.200333 + 0.979728i \(0.564202\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.00791 0.141276
\(203\) 4.75123 0.333471
\(204\) 0 0
\(205\) 0 0
\(206\) −10.4465 −0.727841
\(207\) 0 0
\(208\) −3.37033 −0.233691
\(209\) −6.11535 −0.423008
\(210\) 0 0
\(211\) −22.6050 −1.55619 −0.778096 0.628146i \(-0.783814\pi\)
−0.778096 + 0.628146i \(0.783814\pi\)
\(212\) 6.38485 0.438513
\(213\) 0 0
\(214\) −2.83754 −0.193970
\(215\) 0 0
\(216\) 0 0
\(217\) −2.42801 −0.164824
\(218\) 3.60724 0.244313
\(219\) 0 0
\(220\) 0 0
\(221\) −7.34565 −0.494122
\(222\) 0 0
\(223\) 4.69129 0.314152 0.157076 0.987586i \(-0.449793\pi\)
0.157076 + 0.987586i \(0.449793\pi\)
\(224\) −13.1792 −0.880575
\(225\) 0 0
\(226\) −1.96306 −0.130581
\(227\) 1.90312 0.126315 0.0631573 0.998004i \(-0.479883\pi\)
0.0631573 + 0.998004i \(0.479883\pi\)
\(228\) 0 0
\(229\) −21.1440 −1.39723 −0.698617 0.715496i \(-0.746201\pi\)
−0.698617 + 0.715496i \(0.746201\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.11100 0.269900
\(233\) −26.7882 −1.75495 −0.877476 0.479621i \(-0.840774\pi\)
−0.877476 + 0.479621i \(0.840774\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10.4465 −0.680008
\(237\) 0 0
\(238\) −6.48963 −0.420660
\(239\) −24.3249 −1.57345 −0.786724 0.617305i \(-0.788224\pi\)
−0.786724 + 0.617305i \(0.788224\pi\)
\(240\) 0 0
\(241\) 6.48963 0.418034 0.209017 0.977912i \(-0.432974\pi\)
0.209017 + 0.977912i \(0.432974\pi\)
\(242\) −5.54336 −0.356340
\(243\) 0 0
\(244\) 3.34565 0.214183
\(245\) 0 0
\(246\) 0 0
\(247\) −8.40332 −0.534691
\(248\) −2.10083 −0.133403
\(249\) 0 0
\(250\) 0 0
\(251\) 21.9216 1.38368 0.691839 0.722051i \(-0.256801\pi\)
0.691839 + 0.722051i \(0.256801\pi\)
\(252\) 0 0
\(253\) 2.07841 0.130668
\(254\) −7.91369 −0.496549
\(255\) 0 0
\(256\) −4.23030 −0.264394
\(257\) −7.73050 −0.482215 −0.241108 0.970498i \(-0.577511\pi\)
−0.241108 + 0.970498i \(0.577511\pi\)
\(258\) 0 0
\(259\) 8.67282 0.538903
\(260\) 0 0
\(261\) 0 0
\(262\) −5.60103 −0.346033
\(263\) 25.4689 1.57048 0.785240 0.619192i \(-0.212540\pi\)
0.785240 + 0.619192i \(0.212540\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −7.42405 −0.455198
\(267\) 0 0
\(268\) −1.53505 −0.0937682
\(269\) 3.75518 0.228958 0.114479 0.993426i \(-0.463480\pi\)
0.114479 + 0.993426i \(0.463480\pi\)
\(270\) 0 0
\(271\) −13.6257 −0.827703 −0.413852 0.910344i \(-0.635817\pi\)
−0.413852 + 0.910344i \(0.635817\pi\)
\(272\) 10.0185 0.607459
\(273\) 0 0
\(274\) 8.78817 0.530913
\(275\) 0 0
\(276\) 0 0
\(277\) 19.3994 1.16560 0.582798 0.812617i \(-0.301958\pi\)
0.582798 + 0.812617i \(0.301958\pi\)
\(278\) −10.9714 −0.658019
\(279\) 0 0
\(280\) 0 0
\(281\) 9.14399 0.545485 0.272742 0.962087i \(-0.412069\pi\)
0.272742 + 0.962087i \(0.412069\pi\)
\(282\) 0 0
\(283\) −22.0616 −1.31143 −0.655714 0.755010i \(-0.727632\pi\)
−0.655714 + 0.755010i \(0.727632\pi\)
\(284\) −10.7838 −0.639902
\(285\) 0 0
\(286\) 1.02864 0.0608246
\(287\) −7.63362 −0.450598
\(288\) 0 0
\(289\) 4.83528 0.284428
\(290\) 0 0
\(291\) 0 0
\(292\) 11.2347 0.657458
\(293\) −7.90312 −0.461705 −0.230853 0.972989i \(-0.574152\pi\)
−0.230853 + 0.972989i \(0.574152\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7.50415 0.436170
\(297\) 0 0
\(298\) 6.60498 0.382616
\(299\) 2.85601 0.165168
\(300\) 0 0
\(301\) 6.93442 0.399693
\(302\) 3.21183 0.184820
\(303\) 0 0
\(304\) 11.4610 0.657333
\(305\) 0 0
\(306\) 0 0
\(307\) 24.3865 1.39181 0.695907 0.718132i \(-0.255003\pi\)
0.695907 + 0.718132i \(0.255003\pi\)
\(308\) −4.64645 −0.264756
\(309\) 0 0
\(310\) 0 0
\(311\) −32.3681 −1.83542 −0.917712 0.397245i \(-0.869966\pi\)
−0.917712 + 0.397245i \(0.869966\pi\)
\(312\) 0 0
\(313\) −10.8313 −0.612223 −0.306111 0.951996i \(-0.599028\pi\)
−0.306111 + 0.951996i \(0.599028\pi\)
\(314\) 9.22239 0.520450
\(315\) 0 0
\(316\) −15.9401 −0.896699
\(317\) −15.3641 −0.862935 −0.431467 0.902129i \(-0.642004\pi\)
−0.431467 + 0.902129i \(0.642004\pi\)
\(318\) 0 0
\(319\) 2.23860 0.125338
\(320\) 0 0
\(321\) 0 0
\(322\) 2.52319 0.140612
\(323\) 24.9793 1.38988
\(324\) 0 0
\(325\) 0 0
\(326\) −3.84150 −0.212761
\(327\) 0 0
\(328\) −6.60498 −0.364699
\(329\) −17.3905 −0.958769
\(330\) 0 0
\(331\) 22.1417 1.21702 0.608510 0.793546i \(-0.291768\pi\)
0.608510 + 0.793546i \(0.291768\pi\)
\(332\) 5.29023 0.290339
\(333\) 0 0
\(334\) 1.23820 0.0677515
\(335\) 0 0
\(336\) 0 0
\(337\) −25.6873 −1.39928 −0.699639 0.714496i \(-0.746656\pi\)
−0.699639 + 0.714496i \(0.746656\pi\)
\(338\) −6.02242 −0.327577
\(339\) 0 0
\(340\) 0 0
\(341\) −1.14399 −0.0619503
\(342\) 0 0
\(343\) 19.6785 1.06254
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) −8.49754 −0.456831
\(347\) 17.2593 0.926530 0.463265 0.886220i \(-0.346678\pi\)
0.463265 + 0.886220i \(0.346678\pi\)
\(348\) 0 0
\(349\) −30.7098 −1.64386 −0.821928 0.569591i \(-0.807101\pi\)
−0.821928 + 0.569591i \(0.807101\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.20957 −0.330971
\(353\) −32.1338 −1.71031 −0.855155 0.518372i \(-0.826538\pi\)
−0.855155 + 0.518372i \(0.826538\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −25.4672 −1.34976
\(357\) 0 0
\(358\) −11.4610 −0.605732
\(359\) 25.0594 1.32258 0.661291 0.750129i \(-0.270009\pi\)
0.661291 + 0.750129i \(0.270009\pi\)
\(360\) 0 0
\(361\) 9.57595 0.503997
\(362\) −0.164719 −0.00865742
\(363\) 0 0
\(364\) −6.38485 −0.334657
\(365\) 0 0
\(366\) 0 0
\(367\) 1.71203 0.0893671 0.0446835 0.999001i \(-0.485772\pi\)
0.0446835 + 0.999001i \(0.485772\pi\)
\(368\) −3.89522 −0.203052
\(369\) 0 0
\(370\) 0 0
\(371\) 9.26724 0.481131
\(372\) 0 0
\(373\) 32.4482 1.68010 0.840051 0.542507i \(-0.182525\pi\)
0.840051 + 0.542507i \(0.182525\pi\)
\(374\) −3.05767 −0.158109
\(375\) 0 0
\(376\) −15.0471 −0.775995
\(377\) 3.07615 0.158430
\(378\) 0 0
\(379\) −1.51827 −0.0779884 −0.0389942 0.999239i \(-0.512415\pi\)
−0.0389942 + 0.999239i \(0.512415\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5.85997 −0.299822
\(383\) 30.2201 1.54418 0.772088 0.635515i \(-0.219212\pi\)
0.772088 + 0.635515i \(0.219212\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.2017 −0.519251
\(387\) 0 0
\(388\) 18.0290 0.915286
\(389\) −7.67678 −0.389228 −0.194614 0.980880i \(-0.562345\pi\)
−0.194614 + 0.980880i \(0.562345\pi\)
\(390\) 0 0
\(391\) −8.48963 −0.429339
\(392\) 2.32096 0.117226
\(393\) 0 0
\(394\) 1.90312 0.0958779
\(395\) 0 0
\(396\) 0 0
\(397\) 14.3664 0.721028 0.360514 0.932754i \(-0.382601\pi\)
0.360514 + 0.932754i \(0.382601\pi\)
\(398\) −3.23296 −0.162054
\(399\) 0 0
\(400\) 0 0
\(401\) −10.2448 −0.511602 −0.255801 0.966729i \(-0.582339\pi\)
−0.255801 + 0.966729i \(0.582339\pi\)
\(402\) 0 0
\(403\) −1.57199 −0.0783066
\(404\) −5.87222 −0.292154
\(405\) 0 0
\(406\) 2.71767 0.134876
\(407\) 4.08631 0.202551
\(408\) 0 0
\(409\) −24.2880 −1.20096 −0.600481 0.799639i \(-0.705024\pi\)
−0.600481 + 0.799639i \(0.705024\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 30.5513 1.50515
\(413\) −15.1625 −0.746096
\(414\) 0 0
\(415\) 0 0
\(416\) −8.53279 −0.418354
\(417\) 0 0
\(418\) −3.49794 −0.171090
\(419\) 37.9938 1.85612 0.928059 0.372433i \(-0.121476\pi\)
0.928059 + 0.372433i \(0.121476\pi\)
\(420\) 0 0
\(421\) 31.5658 1.53842 0.769211 0.638995i \(-0.220650\pi\)
0.769211 + 0.638995i \(0.220650\pi\)
\(422\) −12.9299 −0.629418
\(423\) 0 0
\(424\) 8.01847 0.389411
\(425\) 0 0
\(426\) 0 0
\(427\) 4.85601 0.234999
\(428\) 8.29854 0.401125
\(429\) 0 0
\(430\) 0 0
\(431\) 14.8992 0.717668 0.358834 0.933401i \(-0.383174\pi\)
0.358834 + 0.933401i \(0.383174\pi\)
\(432\) 0 0
\(433\) 15.9753 0.767725 0.383862 0.923390i \(-0.374594\pi\)
0.383862 + 0.923390i \(0.374594\pi\)
\(434\) −1.38880 −0.0666647
\(435\) 0 0
\(436\) −10.5496 −0.505233
\(437\) −9.71203 −0.464589
\(438\) 0 0
\(439\) −32.0739 −1.53080 −0.765401 0.643553i \(-0.777460\pi\)
−0.765401 + 0.643553i \(0.777460\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4.20166 −0.199853
\(443\) −12.5944 −0.598379 −0.299189 0.954194i \(-0.596716\pi\)
−0.299189 + 0.954194i \(0.596716\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.68339 0.127062
\(447\) 0 0
\(448\) 2.87279 0.135727
\(449\) 7.46721 0.352399 0.176200 0.984354i \(-0.443620\pi\)
0.176200 + 0.984354i \(0.443620\pi\)
\(450\) 0 0
\(451\) −3.59668 −0.169361
\(452\) 5.74106 0.270037
\(453\) 0 0
\(454\) 1.08857 0.0510893
\(455\) 0 0
\(456\) 0 0
\(457\) 20.1849 0.944209 0.472104 0.881543i \(-0.343495\pi\)
0.472104 + 0.881543i \(0.343495\pi\)
\(458\) −12.0942 −0.565126
\(459\) 0 0
\(460\) 0 0
\(461\) −28.0017 −1.30417 −0.652084 0.758146i \(-0.726105\pi\)
−0.652084 + 0.758146i \(0.726105\pi\)
\(462\) 0 0
\(463\) 38.4896 1.78876 0.894382 0.447303i \(-0.147615\pi\)
0.894382 + 0.447303i \(0.147615\pi\)
\(464\) −4.19545 −0.194769
\(465\) 0 0
\(466\) −15.3227 −0.709808
\(467\) −20.2985 −0.939304 −0.469652 0.882852i \(-0.655621\pi\)
−0.469652 + 0.882852i \(0.655621\pi\)
\(468\) 0 0
\(469\) −2.22804 −0.102881
\(470\) 0 0
\(471\) 0 0
\(472\) −13.1193 −0.603865
\(473\) 3.26724 0.150228
\(474\) 0 0
\(475\) 0 0
\(476\) 18.9793 0.869913
\(477\) 0 0
\(478\) −13.9137 −0.636397
\(479\) 19.0594 0.870845 0.435422 0.900226i \(-0.356599\pi\)
0.435422 + 0.900226i \(0.356599\pi\)
\(480\) 0 0
\(481\) 5.61515 0.256029
\(482\) 3.71203 0.169078
\(483\) 0 0
\(484\) 16.2118 0.736901
\(485\) 0 0
\(486\) 0 0
\(487\) −13.0656 −0.592058 −0.296029 0.955179i \(-0.595662\pi\)
−0.296029 + 0.955179i \(0.595662\pi\)
\(488\) 4.20166 0.190200
\(489\) 0 0
\(490\) 0 0
\(491\) −24.3170 −1.09741 −0.548706 0.836016i \(-0.684879\pi\)
−0.548706 + 0.836016i \(0.684879\pi\)
\(492\) 0 0
\(493\) −9.14399 −0.411824
\(494\) −4.80664 −0.216261
\(495\) 0 0
\(496\) 2.14399 0.0962678
\(497\) −15.6521 −0.702092
\(498\) 0 0
\(499\) −16.4033 −0.734314 −0.367157 0.930159i \(-0.619669\pi\)
−0.367157 + 0.930159i \(0.619669\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12.5390 0.559643
\(503\) −0.837542 −0.0373442 −0.0186721 0.999826i \(-0.505944\pi\)
−0.0186721 + 0.999826i \(0.505944\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.18883 0.0528501
\(507\) 0 0
\(508\) 23.1440 1.02685
\(509\) 1.38880 0.0615576 0.0307788 0.999526i \(-0.490201\pi\)
0.0307788 + 0.999526i \(0.490201\pi\)
\(510\) 0 0
\(511\) 16.3064 0.721355
\(512\) 20.6459 0.912428
\(513\) 0 0
\(514\) −4.42179 −0.195037
\(515\) 0 0
\(516\) 0 0
\(517\) −8.19376 −0.360361
\(518\) 4.96080 0.217965
\(519\) 0 0
\(520\) 0 0
\(521\) −33.1025 −1.45025 −0.725124 0.688618i \(-0.758218\pi\)
−0.725124 + 0.688618i \(0.758218\pi\)
\(522\) 0 0
\(523\) −1.62571 −0.0710875 −0.0355438 0.999368i \(-0.511316\pi\)
−0.0355438 + 0.999368i \(0.511316\pi\)
\(524\) 16.3805 0.715585
\(525\) 0 0
\(526\) 14.5680 0.635197
\(527\) 4.67282 0.203551
\(528\) 0 0
\(529\) −19.6992 −0.856487
\(530\) 0 0
\(531\) 0 0
\(532\) 21.7120 0.941336
\(533\) −4.94233 −0.214076
\(534\) 0 0
\(535\) 0 0
\(536\) −1.92781 −0.0832686
\(537\) 0 0
\(538\) 2.14794 0.0926042
\(539\) 1.26386 0.0544382
\(540\) 0 0
\(541\) 26.5865 1.14304 0.571522 0.820587i \(-0.306353\pi\)
0.571522 + 0.820587i \(0.306353\pi\)
\(542\) −7.79382 −0.334773
\(543\) 0 0
\(544\) 25.3641 1.08748
\(545\) 0 0
\(546\) 0 0
\(547\) 19.9753 0.854083 0.427041 0.904232i \(-0.359556\pi\)
0.427041 + 0.904232i \(0.359556\pi\)
\(548\) −25.7015 −1.09791
\(549\) 0 0
\(550\) 0 0
\(551\) −10.4606 −0.445636
\(552\) 0 0
\(553\) −23.1361 −0.983846
\(554\) 11.0963 0.471437
\(555\) 0 0
\(556\) 32.0863 1.36076
\(557\) −29.2488 −1.23931 −0.619655 0.784874i \(-0.712728\pi\)
−0.619655 + 0.784874i \(0.712728\pi\)
\(558\) 0 0
\(559\) 4.48963 0.189891
\(560\) 0 0
\(561\) 0 0
\(562\) 5.23030 0.220627
\(563\) 0.960797 0.0404928 0.0202464 0.999795i \(-0.493555\pi\)
0.0202464 + 0.999795i \(0.493555\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −12.6191 −0.530420
\(567\) 0 0
\(568\) −13.5430 −0.568250
\(569\) 3.87844 0.162593 0.0812963 0.996690i \(-0.474094\pi\)
0.0812963 + 0.996690i \(0.474094\pi\)
\(570\) 0 0
\(571\) −6.20166 −0.259531 −0.129766 0.991545i \(-0.541423\pi\)
−0.129766 + 0.991545i \(0.541423\pi\)
\(572\) −3.00830 −0.125784
\(573\) 0 0
\(574\) −4.36638 −0.182249
\(575\) 0 0
\(576\) 0 0
\(577\) −35.6336 −1.48345 −0.741724 0.670706i \(-0.765991\pi\)
−0.741724 + 0.670706i \(0.765991\pi\)
\(578\) 2.76575 0.115040
\(579\) 0 0
\(580\) 0 0
\(581\) 7.67847 0.318557
\(582\) 0 0
\(583\) 4.36638 0.180837
\(584\) 14.1091 0.583840
\(585\) 0 0
\(586\) −4.52053 −0.186741
\(587\) −43.7569 −1.80604 −0.903020 0.429599i \(-0.858655\pi\)
−0.903020 + 0.429599i \(0.858655\pi\)
\(588\) 0 0
\(589\) 5.34565 0.220264
\(590\) 0 0
\(591\) 0 0
\(592\) −7.65831 −0.314754
\(593\) 17.3536 0.712625 0.356313 0.934367i \(-0.384034\pi\)
0.356313 + 0.934367i \(0.384034\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −19.3166 −0.791239
\(597\) 0 0
\(598\) 1.63362 0.0668037
\(599\) −23.7552 −0.970610 −0.485305 0.874345i \(-0.661292\pi\)
−0.485305 + 0.874345i \(0.661292\pi\)
\(600\) 0 0
\(601\) −41.9506 −1.71120 −0.855601 0.517636i \(-0.826812\pi\)
−0.855601 + 0.517636i \(0.826812\pi\)
\(602\) 3.96644 0.161660
\(603\) 0 0
\(604\) −9.39315 −0.382202
\(605\) 0 0
\(606\) 0 0
\(607\) 4.25538 0.172721 0.0863603 0.996264i \(-0.472476\pi\)
0.0863603 + 0.996264i \(0.472476\pi\)
\(608\) 29.0162 1.17676
\(609\) 0 0
\(610\) 0 0
\(611\) −11.2593 −0.455504
\(612\) 0 0
\(613\) −11.7367 −0.474041 −0.237021 0.971505i \(-0.576171\pi\)
−0.237021 + 0.971505i \(0.576171\pi\)
\(614\) 13.9489 0.562933
\(615\) 0 0
\(616\) −5.83528 −0.235110
\(617\) −10.5759 −0.425772 −0.212886 0.977077i \(-0.568286\pi\)
−0.212886 + 0.977077i \(0.568286\pi\)
\(618\) 0 0
\(619\) 29.1994 1.17362 0.586811 0.809724i \(-0.300383\pi\)
0.586811 + 0.809724i \(0.300383\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −18.5143 −0.742357
\(623\) −36.9642 −1.48094
\(624\) 0 0
\(625\) 0 0
\(626\) −6.19545 −0.247620
\(627\) 0 0
\(628\) −26.9714 −1.07627
\(629\) −16.6913 −0.665526
\(630\) 0 0
\(631\) 19.6706 0.783073 0.391536 0.920163i \(-0.371944\pi\)
0.391536 + 0.920163i \(0.371944\pi\)
\(632\) −20.0185 −0.796292
\(633\) 0 0
\(634\) −8.78817 −0.349023
\(635\) 0 0
\(636\) 0 0
\(637\) 1.73671 0.0688110
\(638\) 1.28047 0.0506941
\(639\) 0 0
\(640\) 0 0
\(641\) −40.3681 −1.59444 −0.797221 0.603687i \(-0.793698\pi\)
−0.797221 + 0.603687i \(0.793698\pi\)
\(642\) 0 0
\(643\) −2.20166 −0.0868250 −0.0434125 0.999057i \(-0.513823\pi\)
−0.0434125 + 0.999057i \(0.513823\pi\)
\(644\) −7.37921 −0.290781
\(645\) 0 0
\(646\) 14.2880 0.562153
\(647\) 41.0162 1.61251 0.806257 0.591566i \(-0.201490\pi\)
0.806257 + 0.591566i \(0.201490\pi\)
\(648\) 0 0
\(649\) −7.14399 −0.280426
\(650\) 0 0
\(651\) 0 0
\(652\) 11.2347 0.439983
\(653\) −5.00226 −0.195754 −0.0978768 0.995199i \(-0.531205\pi\)
−0.0978768 + 0.995199i \(0.531205\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.74066 0.263179
\(657\) 0 0
\(658\) −9.94725 −0.387784
\(659\) −11.5826 −0.451192 −0.225596 0.974221i \(-0.572433\pi\)
−0.225596 + 0.974221i \(0.572433\pi\)
\(660\) 0 0
\(661\) 48.2386 1.87626 0.938132 0.346278i \(-0.112554\pi\)
0.938132 + 0.346278i \(0.112554\pi\)
\(662\) 12.6649 0.492236
\(663\) 0 0
\(664\) 6.64379 0.257829
\(665\) 0 0
\(666\) 0 0
\(667\) 3.55521 0.137658
\(668\) −3.62119 −0.140108
\(669\) 0 0
\(670\) 0 0
\(671\) 2.28797 0.0883262
\(672\) 0 0
\(673\) −18.3417 −0.707020 −0.353510 0.935431i \(-0.615012\pi\)
−0.353510 + 0.935431i \(0.615012\pi\)
\(674\) −14.6930 −0.565953
\(675\) 0 0
\(676\) 17.6129 0.677419
\(677\) 5.33508 0.205044 0.102522 0.994731i \(-0.467309\pi\)
0.102522 + 0.994731i \(0.467309\pi\)
\(678\) 0 0
\(679\) 26.1681 1.00424
\(680\) 0 0
\(681\) 0 0
\(682\) −0.654353 −0.0250565
\(683\) 14.2695 0.546007 0.273004 0.962013i \(-0.411983\pi\)
0.273004 + 0.962013i \(0.411983\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 11.2560 0.429754
\(687\) 0 0
\(688\) −6.12325 −0.233447
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −24.1233 −0.917692 −0.458846 0.888516i \(-0.651737\pi\)
−0.458846 + 0.888516i \(0.651737\pi\)
\(692\) 24.8515 0.944712
\(693\) 0 0
\(694\) 9.87222 0.374744
\(695\) 0 0
\(696\) 0 0
\(697\) 14.6913 0.556472
\(698\) −17.5658 −0.664875
\(699\) 0 0
\(700\) 0 0
\(701\) 3.26724 0.123402 0.0617010 0.998095i \(-0.480347\pi\)
0.0617010 + 0.998095i \(0.480347\pi\)
\(702\) 0 0
\(703\) −19.0946 −0.720167
\(704\) 1.35355 0.0510140
\(705\) 0 0
\(706\) −18.3803 −0.691753
\(707\) −8.52319 −0.320548
\(708\) 0 0
\(709\) 49.1104 1.84438 0.922190 0.386736i \(-0.126398\pi\)
0.922190 + 0.386736i \(0.126398\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −31.9832 −1.19862
\(713\) −1.81681 −0.0680401
\(714\) 0 0
\(715\) 0 0
\(716\) 33.5183 1.25264
\(717\) 0 0
\(718\) 14.3338 0.534932
\(719\) −11.4320 −0.426340 −0.213170 0.977015i \(-0.568379\pi\)
−0.213170 + 0.977015i \(0.568379\pi\)
\(720\) 0 0
\(721\) 44.3434 1.65143
\(722\) 5.47738 0.203847
\(723\) 0 0
\(724\) 0.481728 0.0179033
\(725\) 0 0
\(726\) 0 0
\(727\) 0.514319 0.0190750 0.00953752 0.999955i \(-0.496964\pi\)
0.00953752 + 0.999955i \(0.496964\pi\)
\(728\) −8.01847 −0.297184
\(729\) 0 0
\(730\) 0 0
\(731\) −13.3456 −0.493607
\(732\) 0 0
\(733\) −35.7859 −1.32178 −0.660891 0.750482i \(-0.729822\pi\)
−0.660891 + 0.750482i \(0.729822\pi\)
\(734\) 0.979268 0.0361454
\(735\) 0 0
\(736\) −9.86166 −0.363506
\(737\) −1.04977 −0.0386687
\(738\) 0 0
\(739\) 33.2857 1.22443 0.612217 0.790690i \(-0.290278\pi\)
0.612217 + 0.790690i \(0.290278\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 5.30080 0.194598
\(743\) 38.0448 1.39573 0.697865 0.716229i \(-0.254134\pi\)
0.697865 + 0.716229i \(0.254134\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 18.5601 0.679535
\(747\) 0 0
\(748\) 8.94233 0.326964
\(749\) 12.0448 0.440109
\(750\) 0 0
\(751\) −6.20166 −0.226302 −0.113151 0.993578i \(-0.536094\pi\)
−0.113151 + 0.993578i \(0.536094\pi\)
\(752\) 15.3562 0.559983
\(753\) 0 0
\(754\) 1.75953 0.0640785
\(755\) 0 0
\(756\) 0 0
\(757\) 0.522225 0.0189806 0.00949029 0.999955i \(-0.496979\pi\)
0.00949029 + 0.999955i \(0.496979\pi\)
\(758\) −0.868441 −0.0315432
\(759\) 0 0
\(760\) 0 0
\(761\) 4.07219 0.147617 0.0738084 0.997272i \(-0.476485\pi\)
0.0738084 + 0.997272i \(0.476485\pi\)
\(762\) 0 0
\(763\) −15.3121 −0.554335
\(764\) 17.1378 0.620023
\(765\) 0 0
\(766\) 17.2857 0.624558
\(767\) −9.81681 −0.354464
\(768\) 0 0
\(769\) −19.8089 −0.714327 −0.357164 0.934042i \(-0.616256\pi\)
−0.357164 + 0.934042i \(0.616256\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 29.8353 1.07380
\(773\) −40.3803 −1.45238 −0.726190 0.687494i \(-0.758711\pi\)
−0.726190 + 0.687494i \(0.758711\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 22.6419 0.812798
\(777\) 0 0
\(778\) −4.39106 −0.157427
\(779\) 16.8066 0.602160
\(780\) 0 0
\(781\) −7.37468 −0.263887
\(782\) −4.85601 −0.173651
\(783\) 0 0
\(784\) −2.36864 −0.0845943
\(785\) 0 0
\(786\) 0 0
\(787\) −19.1730 −0.683444 −0.341722 0.939801i \(-0.611010\pi\)
−0.341722 + 0.939801i \(0.611010\pi\)
\(788\) −5.56578 −0.198273
\(789\) 0 0
\(790\) 0 0
\(791\) 8.33282 0.296281
\(792\) 0 0
\(793\) 3.14399 0.111646
\(794\) 8.21747 0.291627
\(795\) 0 0
\(796\) 9.45495 0.335122
\(797\) 39.0347 1.38268 0.691340 0.722530i \(-0.257021\pi\)
0.691340 + 0.722530i \(0.257021\pi\)
\(798\) 0 0
\(799\) 33.4689 1.18404
\(800\) 0 0
\(801\) 0 0
\(802\) −5.85997 −0.206923
\(803\) 7.68299 0.271127
\(804\) 0 0
\(805\) 0 0
\(806\) −0.899170 −0.0316719
\(807\) 0 0
\(808\) −7.37468 −0.259440
\(809\) 25.4627 0.895220 0.447610 0.894229i \(-0.352275\pi\)
0.447610 + 0.894229i \(0.352275\pi\)
\(810\) 0 0
\(811\) −43.1440 −1.51499 −0.757495 0.652841i \(-0.773577\pi\)
−0.757495 + 0.652841i \(0.773577\pi\)
\(812\) −7.94797 −0.278919
\(813\) 0 0
\(814\) 2.33734 0.0819238
\(815\) 0 0
\(816\) 0 0
\(817\) −15.2672 −0.534133
\(818\) −13.8926 −0.485742
\(819\) 0 0
\(820\) 0 0
\(821\) −12.2527 −0.427623 −0.213811 0.976875i \(-0.568588\pi\)
−0.213811 + 0.976875i \(0.568588\pi\)
\(822\) 0 0
\(823\) 33.7569 1.17669 0.588345 0.808610i \(-0.299780\pi\)
0.588345 + 0.808610i \(0.299780\pi\)
\(824\) 38.3681 1.33662
\(825\) 0 0
\(826\) −8.67282 −0.301766
\(827\) −37.2778 −1.29628 −0.648138 0.761523i \(-0.724452\pi\)
−0.648138 + 0.761523i \(0.724452\pi\)
\(828\) 0 0
\(829\) 26.3170 0.914028 0.457014 0.889460i \(-0.348919\pi\)
0.457014 + 0.889460i \(0.348919\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.85997 0.0644827
\(833\) −5.16246 −0.178869
\(834\) 0 0
\(835\) 0 0
\(836\) 10.2299 0.353808
\(837\) 0 0
\(838\) 21.7322 0.750726
\(839\) −28.1664 −0.972412 −0.486206 0.873844i \(-0.661620\pi\)
−0.486206 + 0.873844i \(0.661620\pi\)
\(840\) 0 0
\(841\) −25.1708 −0.867957
\(842\) 18.0554 0.622231
\(843\) 0 0
\(844\) 37.8142 1.30162
\(845\) 0 0
\(846\) 0 0
\(847\) 23.5305 0.808519
\(848\) −8.18319 −0.281012
\(849\) 0 0
\(850\) 0 0
\(851\) 6.48963 0.222462
\(852\) 0 0
\(853\) 7.67056 0.262635 0.131318 0.991340i \(-0.458079\pi\)
0.131318 + 0.991340i \(0.458079\pi\)
\(854\) 2.77761 0.0950478
\(855\) 0 0
\(856\) 10.4218 0.356210
\(857\) −42.6992 −1.45858 −0.729288 0.684206i \(-0.760149\pi\)
−0.729288 + 0.684206i \(0.760149\pi\)
\(858\) 0 0
\(859\) −44.2465 −1.50967 −0.754836 0.655914i \(-0.772283\pi\)
−0.754836 + 0.655914i \(0.772283\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 8.52222 0.290268
\(863\) 22.8639 0.778297 0.389148 0.921175i \(-0.372769\pi\)
0.389148 + 0.921175i \(0.372769\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 9.13777 0.310514
\(867\) 0 0
\(868\) 4.06163 0.137861
\(869\) −10.9009 −0.369786
\(870\) 0 0
\(871\) −1.44252 −0.0488781
\(872\) −13.2488 −0.448660
\(873\) 0 0
\(874\) −5.55521 −0.187908
\(875\) 0 0
\(876\) 0 0
\(877\) −31.0577 −1.04874 −0.524372 0.851490i \(-0.675700\pi\)
−0.524372 + 0.851490i \(0.675700\pi\)
\(878\) −18.3460 −0.619149
\(879\) 0 0
\(880\) 0 0
\(881\) 17.8784 0.602340 0.301170 0.953570i \(-0.402623\pi\)
0.301170 + 0.953570i \(0.402623\pi\)
\(882\) 0 0
\(883\) 22.2096 0.747411 0.373706 0.927547i \(-0.378087\pi\)
0.373706 + 0.927547i \(0.378087\pi\)
\(884\) 12.2880 0.413289
\(885\) 0 0
\(886\) −7.20392 −0.242020
\(887\) −4.10478 −0.137825 −0.0689126 0.997623i \(-0.521953\pi\)
−0.0689126 + 0.997623i \(0.521953\pi\)
\(888\) 0 0
\(889\) 33.5922 1.12664
\(890\) 0 0
\(891\) 0 0
\(892\) −7.84771 −0.262761
\(893\) 38.2880 1.28126
\(894\) 0 0
\(895\) 0 0
\(896\) 28.0017 0.935471
\(897\) 0 0
\(898\) 4.27119 0.142532
\(899\) −1.95684 −0.0652644
\(900\) 0 0
\(901\) −17.8353 −0.594179
\(902\) −2.05728 −0.0684998
\(903\) 0 0
\(904\) 7.20997 0.239800
\(905\) 0 0
\(906\) 0 0
\(907\) −8.62967 −0.286543 −0.143272 0.989683i \(-0.545762\pi\)
−0.143272 + 0.989683i \(0.545762\pi\)
\(908\) −3.18359 −0.105651
\(909\) 0 0
\(910\) 0 0
\(911\) −7.83528 −0.259594 −0.129797 0.991541i \(-0.541433\pi\)
−0.129797 + 0.991541i \(0.541433\pi\)
\(912\) 0 0
\(913\) 3.61781 0.119732
\(914\) 11.5456 0.381895
\(915\) 0 0
\(916\) 35.3702 1.16866
\(917\) 23.7753 0.785131
\(918\) 0 0
\(919\) 15.2514 0.503098 0.251549 0.967845i \(-0.419060\pi\)
0.251549 + 0.967845i \(0.419060\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −16.0168 −0.527485
\(923\) −10.1338 −0.333559
\(924\) 0 0
\(925\) 0 0
\(926\) 22.0158 0.723484
\(927\) 0 0
\(928\) −10.6218 −0.348676
\(929\) 4.15850 0.136436 0.0682181 0.997670i \(-0.478269\pi\)
0.0682181 + 0.997670i \(0.478269\pi\)
\(930\) 0 0
\(931\) −5.90578 −0.193554
\(932\) 44.8119 1.46786
\(933\) 0 0
\(934\) −11.6106 −0.379911
\(935\) 0 0
\(936\) 0 0
\(937\) 18.2175 0.595139 0.297569 0.954700i \(-0.403824\pi\)
0.297569 + 0.954700i \(0.403824\pi\)
\(938\) −1.27442 −0.0416114
\(939\) 0 0
\(940\) 0 0
\(941\) 5.84150 0.190427 0.0952137 0.995457i \(-0.469647\pi\)
0.0952137 + 0.995457i \(0.469647\pi\)
\(942\) 0 0
\(943\) −5.71203 −0.186009
\(944\) 13.3888 0.435768
\(945\) 0 0
\(946\) 1.86884 0.0607612
\(947\) 57.9276 1.88240 0.941198 0.337856i \(-0.109702\pi\)
0.941198 + 0.337856i \(0.109702\pi\)
\(948\) 0 0
\(949\) 10.5575 0.342710
\(950\) 0 0
\(951\) 0 0
\(952\) 23.8353 0.772506
\(953\) 22.9977 0.744970 0.372485 0.928038i \(-0.378506\pi\)
0.372485 + 0.928038i \(0.378506\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 40.6913 1.31605
\(957\) 0 0
\(958\) 10.9018 0.352222
\(959\) −37.3042 −1.20461
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 3.21183 0.103553
\(963\) 0 0
\(964\) −10.8560 −0.349649
\(965\) 0 0
\(966\) 0 0
\(967\) −45.2672 −1.45570 −0.727848 0.685738i \(-0.759479\pi\)
−0.727848 + 0.685738i \(0.759479\pi\)
\(968\) 20.3598 0.654388
\(969\) 0 0
\(970\) 0 0
\(971\) −7.59837 −0.243843 −0.121922 0.992540i \(-0.538906\pi\)
−0.121922 + 0.992540i \(0.538906\pi\)
\(972\) 0 0
\(973\) 46.5714 1.49301
\(974\) −7.47342 −0.239464
\(975\) 0 0
\(976\) −4.28797 −0.137255
\(977\) −19.1519 −0.612723 −0.306362 0.951915i \(-0.599112\pi\)
−0.306362 + 0.951915i \(0.599112\pi\)
\(978\) 0 0
\(979\) −17.4161 −0.556623
\(980\) 0 0
\(981\) 0 0
\(982\) −13.9092 −0.443859
\(983\) 4.20957 0.134264 0.0671322 0.997744i \(-0.478615\pi\)
0.0671322 + 0.997744i \(0.478615\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −5.23030 −0.166567
\(987\) 0 0
\(988\) 14.0573 0.447222
\(989\) 5.18883 0.164995
\(990\) 0 0
\(991\) −37.3121 −1.18526 −0.592629 0.805476i \(-0.701910\pi\)
−0.592629 + 0.805476i \(0.701910\pi\)
\(992\) 5.42801 0.172339
\(993\) 0 0
\(994\) −8.95289 −0.283968
\(995\) 0 0
\(996\) 0 0
\(997\) 62.0034 1.96367 0.981833 0.189745i \(-0.0607661\pi\)
0.981833 + 0.189745i \(0.0607661\pi\)
\(998\) −9.38259 −0.297001
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6975.2.a.bf.1.2 3
3.2 odd 2 2325.2.a.r.1.2 3
5.4 even 2 1395.2.a.j.1.2 3
15.2 even 4 2325.2.c.k.1024.3 6
15.8 even 4 2325.2.c.k.1024.4 6
15.14 odd 2 465.2.a.e.1.2 3
60.59 even 2 7440.2.a.bs.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.e.1.2 3 15.14 odd 2
1395.2.a.j.1.2 3 5.4 even 2
2325.2.a.r.1.2 3 3.2 odd 2
2325.2.c.k.1024.3 6 15.2 even 4
2325.2.c.k.1024.4 6 15.8 even 4
6975.2.a.bf.1.2 3 1.1 even 1 trivial
7440.2.a.bs.1.2 3 60.59 even 2