Properties

Label 6960.2.a.bx.1.1
Level $6960$
Weight $2$
Character 6960.1
Self dual yes
Analytic conductor $55.576$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6960,2,Mod(1,6960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6960.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6960 = 2^{4} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.5758798068\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 6960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} -5.12311 q^{7} +1.00000 q^{9} +1.43845 q^{11} -2.00000 q^{13} -1.00000 q^{15} -7.12311 q^{17} -5.12311 q^{19} +5.12311 q^{21} -6.56155 q^{23} +1.00000 q^{25} -1.00000 q^{27} +1.00000 q^{29} -4.00000 q^{31} -1.43845 q^{33} -5.12311 q^{35} -1.68466 q^{37} +2.00000 q^{39} -1.68466 q^{41} -7.68466 q^{43} +1.00000 q^{45} +13.1231 q^{47} +19.2462 q^{49} +7.12311 q^{51} -3.43845 q^{53} +1.43845 q^{55} +5.12311 q^{57} -12.0000 q^{59} +0.876894 q^{61} -5.12311 q^{63} -2.00000 q^{65} +11.3693 q^{67} +6.56155 q^{69} +2.87689 q^{71} +1.68466 q^{73} -1.00000 q^{75} -7.36932 q^{77} +12.0000 q^{79} +1.00000 q^{81} +2.56155 q^{83} -7.12311 q^{85} -1.00000 q^{87} +12.2462 q^{89} +10.2462 q^{91} +4.00000 q^{93} -5.12311 q^{95} -5.68466 q^{97} +1.43845 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 2 q^{9} + 7 q^{11} - 4 q^{13} - 2 q^{15} - 6 q^{17} - 2 q^{19} + 2 q^{21} - 9 q^{23} + 2 q^{25} - 2 q^{27} + 2 q^{29} - 8 q^{31} - 7 q^{33} - 2 q^{35} + 9 q^{37} + 4 q^{39}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −5.12311 −1.93635 −0.968176 0.250270i \(-0.919480\pi\)
−0.968176 + 0.250270i \(0.919480\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.43845 0.433708 0.216854 0.976204i \(-0.430420\pi\)
0.216854 + 0.976204i \(0.430420\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −7.12311 −1.72761 −0.863803 0.503829i \(-0.831924\pi\)
−0.863803 + 0.503829i \(0.831924\pi\)
\(18\) 0 0
\(19\) −5.12311 −1.17532 −0.587661 0.809108i \(-0.699951\pi\)
−0.587661 + 0.809108i \(0.699951\pi\)
\(20\) 0 0
\(21\) 5.12311 1.11795
\(22\) 0 0
\(23\) −6.56155 −1.36818 −0.684089 0.729398i \(-0.739800\pi\)
−0.684089 + 0.729398i \(0.739800\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) −1.43845 −0.250402
\(34\) 0 0
\(35\) −5.12311 −0.865963
\(36\) 0 0
\(37\) −1.68466 −0.276956 −0.138478 0.990366i \(-0.544221\pi\)
−0.138478 + 0.990366i \(0.544221\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −1.68466 −0.263099 −0.131550 0.991310i \(-0.541995\pi\)
−0.131550 + 0.991310i \(0.541995\pi\)
\(42\) 0 0
\(43\) −7.68466 −1.17190 −0.585950 0.810347i \(-0.699278\pi\)
−0.585950 + 0.810347i \(0.699278\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 13.1231 1.91420 0.957101 0.289755i \(-0.0935738\pi\)
0.957101 + 0.289755i \(0.0935738\pi\)
\(48\) 0 0
\(49\) 19.2462 2.74946
\(50\) 0 0
\(51\) 7.12311 0.997434
\(52\) 0 0
\(53\) −3.43845 −0.472307 −0.236154 0.971716i \(-0.575887\pi\)
−0.236154 + 0.971716i \(0.575887\pi\)
\(54\) 0 0
\(55\) 1.43845 0.193960
\(56\) 0 0
\(57\) 5.12311 0.678572
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 0.876894 0.112275 0.0561374 0.998423i \(-0.482122\pi\)
0.0561374 + 0.998423i \(0.482122\pi\)
\(62\) 0 0
\(63\) −5.12311 −0.645451
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 11.3693 1.38898 0.694492 0.719501i \(-0.255629\pi\)
0.694492 + 0.719501i \(0.255629\pi\)
\(68\) 0 0
\(69\) 6.56155 0.789918
\(70\) 0 0
\(71\) 2.87689 0.341425 0.170712 0.985321i \(-0.445393\pi\)
0.170712 + 0.985321i \(0.445393\pi\)
\(72\) 0 0
\(73\) 1.68466 0.197174 0.0985872 0.995128i \(-0.468568\pi\)
0.0985872 + 0.995128i \(0.468568\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −7.36932 −0.839812
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.56155 0.281167 0.140583 0.990069i \(-0.455102\pi\)
0.140583 + 0.990069i \(0.455102\pi\)
\(84\) 0 0
\(85\) −7.12311 −0.772609
\(86\) 0 0
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) 12.2462 1.29810 0.649048 0.760748i \(-0.275167\pi\)
0.649048 + 0.760748i \(0.275167\pi\)
\(90\) 0 0
\(91\) 10.2462 1.07409
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) −5.12311 −0.525620
\(96\) 0 0
\(97\) −5.68466 −0.577190 −0.288595 0.957451i \(-0.593188\pi\)
−0.288595 + 0.957451i \(0.593188\pi\)
\(98\) 0 0
\(99\) 1.43845 0.144569
\(100\) 0 0
\(101\) −8.56155 −0.851906 −0.425953 0.904745i \(-0.640061\pi\)
−0.425953 + 0.904745i \(0.640061\pi\)
\(102\) 0 0
\(103\) 2.87689 0.283469 0.141734 0.989905i \(-0.454732\pi\)
0.141734 + 0.989905i \(0.454732\pi\)
\(104\) 0 0
\(105\) 5.12311 0.499964
\(106\) 0 0
\(107\) −16.4924 −1.59438 −0.797191 0.603727i \(-0.793682\pi\)
−0.797191 + 0.603727i \(0.793682\pi\)
\(108\) 0 0
\(109\) −5.68466 −0.544492 −0.272246 0.962228i \(-0.587766\pi\)
−0.272246 + 0.962228i \(0.587766\pi\)
\(110\) 0 0
\(111\) 1.68466 0.159901
\(112\) 0 0
\(113\) −4.87689 −0.458780 −0.229390 0.973335i \(-0.573673\pi\)
−0.229390 + 0.973335i \(0.573673\pi\)
\(114\) 0 0
\(115\) −6.56155 −0.611868
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) 36.4924 3.34525
\(120\) 0 0
\(121\) −8.93087 −0.811897
\(122\) 0 0
\(123\) 1.68466 0.151901
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.31534 −0.382925 −0.191462 0.981500i \(-0.561323\pi\)
−0.191462 + 0.981500i \(0.561323\pi\)
\(128\) 0 0
\(129\) 7.68466 0.676596
\(130\) 0 0
\(131\) −10.2462 −0.895216 −0.447608 0.894230i \(-0.647724\pi\)
−0.447608 + 0.894230i \(0.647724\pi\)
\(132\) 0 0
\(133\) 26.2462 2.27584
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −15.1231 −1.29205 −0.646027 0.763315i \(-0.723571\pi\)
−0.646027 + 0.763315i \(0.723571\pi\)
\(138\) 0 0
\(139\) 17.9309 1.52088 0.760438 0.649410i \(-0.224984\pi\)
0.760438 + 0.649410i \(0.224984\pi\)
\(140\) 0 0
\(141\) −13.1231 −1.10516
\(142\) 0 0
\(143\) −2.87689 −0.240578
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) −19.2462 −1.58740
\(148\) 0 0
\(149\) 0.246211 0.0201704 0.0100852 0.999949i \(-0.496790\pi\)
0.0100852 + 0.999949i \(0.496790\pi\)
\(150\) 0 0
\(151\) −4.31534 −0.351178 −0.175589 0.984464i \(-0.556183\pi\)
−0.175589 + 0.984464i \(0.556183\pi\)
\(152\) 0 0
\(153\) −7.12311 −0.575869
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 3.43845 0.272687
\(160\) 0 0
\(161\) 33.6155 2.64927
\(162\) 0 0
\(163\) 17.9309 1.40445 0.702227 0.711953i \(-0.252189\pi\)
0.702227 + 0.711953i \(0.252189\pi\)
\(164\) 0 0
\(165\) −1.43845 −0.111983
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −5.12311 −0.391774
\(172\) 0 0
\(173\) 12.5616 0.955037 0.477519 0.878622i \(-0.341536\pi\)
0.477519 + 0.878622i \(0.341536\pi\)
\(174\) 0 0
\(175\) −5.12311 −0.387270
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 0 0
\(179\) −1.12311 −0.0839449 −0.0419724 0.999119i \(-0.513364\pi\)
−0.0419724 + 0.999119i \(0.513364\pi\)
\(180\) 0 0
\(181\) 25.6847 1.90913 0.954563 0.298010i \(-0.0963228\pi\)
0.954563 + 0.298010i \(0.0963228\pi\)
\(182\) 0 0
\(183\) −0.876894 −0.0648219
\(184\) 0 0
\(185\) −1.68466 −0.123859
\(186\) 0 0
\(187\) −10.2462 −0.749277
\(188\) 0 0
\(189\) 5.12311 0.372651
\(190\) 0 0
\(191\) 9.93087 0.718573 0.359286 0.933227i \(-0.383020\pi\)
0.359286 + 0.933227i \(0.383020\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) 4.56155 0.324997 0.162499 0.986709i \(-0.448045\pi\)
0.162499 + 0.986709i \(0.448045\pi\)
\(198\) 0 0
\(199\) 11.0540 0.783596 0.391798 0.920051i \(-0.371853\pi\)
0.391798 + 0.920051i \(0.371853\pi\)
\(200\) 0 0
\(201\) −11.3693 −0.801930
\(202\) 0 0
\(203\) −5.12311 −0.359572
\(204\) 0 0
\(205\) −1.68466 −0.117662
\(206\) 0 0
\(207\) −6.56155 −0.456059
\(208\) 0 0
\(209\) −7.36932 −0.509746
\(210\) 0 0
\(211\) 2.87689 0.198054 0.0990268 0.995085i \(-0.468427\pi\)
0.0990268 + 0.995085i \(0.468427\pi\)
\(212\) 0 0
\(213\) −2.87689 −0.197122
\(214\) 0 0
\(215\) −7.68466 −0.524089
\(216\) 0 0
\(217\) 20.4924 1.39112
\(218\) 0 0
\(219\) −1.68466 −0.113839
\(220\) 0 0
\(221\) 14.2462 0.958304
\(222\) 0 0
\(223\) 18.2462 1.22186 0.610928 0.791686i \(-0.290796\pi\)
0.610928 + 0.791686i \(0.290796\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 3.19224 0.211876 0.105938 0.994373i \(-0.466215\pi\)
0.105938 + 0.994373i \(0.466215\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 7.36932 0.484865
\(232\) 0 0
\(233\) −10.3153 −0.675780 −0.337890 0.941186i \(-0.609713\pi\)
−0.337890 + 0.941186i \(0.609713\pi\)
\(234\) 0 0
\(235\) 13.1231 0.856057
\(236\) 0 0
\(237\) −12.0000 −0.779484
\(238\) 0 0
\(239\) 13.1231 0.848863 0.424432 0.905460i \(-0.360474\pi\)
0.424432 + 0.905460i \(0.360474\pi\)
\(240\) 0 0
\(241\) −25.0540 −1.61387 −0.806934 0.590641i \(-0.798875\pi\)
−0.806934 + 0.590641i \(0.798875\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 19.2462 1.22960
\(246\) 0 0
\(247\) 10.2462 0.651951
\(248\) 0 0
\(249\) −2.56155 −0.162332
\(250\) 0 0
\(251\) −2.24621 −0.141780 −0.0708898 0.997484i \(-0.522584\pi\)
−0.0708898 + 0.997484i \(0.522584\pi\)
\(252\) 0 0
\(253\) −9.43845 −0.593390
\(254\) 0 0
\(255\) 7.12311 0.446066
\(256\) 0 0
\(257\) 11.4384 0.713511 0.356755 0.934198i \(-0.383883\pi\)
0.356755 + 0.934198i \(0.383883\pi\)
\(258\) 0 0
\(259\) 8.63068 0.536285
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 0 0
\(263\) 5.75379 0.354794 0.177397 0.984139i \(-0.443232\pi\)
0.177397 + 0.984139i \(0.443232\pi\)
\(264\) 0 0
\(265\) −3.43845 −0.211222
\(266\) 0 0
\(267\) −12.2462 −0.749456
\(268\) 0 0
\(269\) 11.7538 0.716641 0.358321 0.933599i \(-0.383349\pi\)
0.358321 + 0.933599i \(0.383349\pi\)
\(270\) 0 0
\(271\) −17.1231 −1.04015 −0.520077 0.854119i \(-0.674097\pi\)
−0.520077 + 0.854119i \(0.674097\pi\)
\(272\) 0 0
\(273\) −10.2462 −0.620129
\(274\) 0 0
\(275\) 1.43845 0.0867416
\(276\) 0 0
\(277\) 0.876894 0.0526875 0.0263437 0.999653i \(-0.491614\pi\)
0.0263437 + 0.999653i \(0.491614\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −23.6155 −1.40878 −0.704392 0.709811i \(-0.748780\pi\)
−0.704392 + 0.709811i \(0.748780\pi\)
\(282\) 0 0
\(283\) −6.87689 −0.408789 −0.204394 0.978889i \(-0.565523\pi\)
−0.204394 + 0.978889i \(0.565523\pi\)
\(284\) 0 0
\(285\) 5.12311 0.303467
\(286\) 0 0
\(287\) 8.63068 0.509453
\(288\) 0 0
\(289\) 33.7386 1.98463
\(290\) 0 0
\(291\) 5.68466 0.333241
\(292\) 0 0
\(293\) −21.3693 −1.24841 −0.624204 0.781261i \(-0.714577\pi\)
−0.624204 + 0.781261i \(0.714577\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) −1.43845 −0.0834672
\(298\) 0 0
\(299\) 13.1231 0.758929
\(300\) 0 0
\(301\) 39.3693 2.26921
\(302\) 0 0
\(303\) 8.56155 0.491848
\(304\) 0 0
\(305\) 0.876894 0.0502108
\(306\) 0 0
\(307\) 31.6847 1.80834 0.904169 0.427174i \(-0.140491\pi\)
0.904169 + 0.427174i \(0.140491\pi\)
\(308\) 0 0
\(309\) −2.87689 −0.163661
\(310\) 0 0
\(311\) −16.3153 −0.925158 −0.462579 0.886578i \(-0.653076\pi\)
−0.462579 + 0.886578i \(0.653076\pi\)
\(312\) 0 0
\(313\) −21.3693 −1.20787 −0.603933 0.797035i \(-0.706400\pi\)
−0.603933 + 0.797035i \(0.706400\pi\)
\(314\) 0 0
\(315\) −5.12311 −0.288654
\(316\) 0 0
\(317\) 4.87689 0.273914 0.136957 0.990577i \(-0.456268\pi\)
0.136957 + 0.990577i \(0.456268\pi\)
\(318\) 0 0
\(319\) 1.43845 0.0805376
\(320\) 0 0
\(321\) 16.4924 0.920517
\(322\) 0 0
\(323\) 36.4924 2.03049
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 5.68466 0.314362
\(328\) 0 0
\(329\) −67.2311 −3.70657
\(330\) 0 0
\(331\) −10.2462 −0.563183 −0.281591 0.959534i \(-0.590862\pi\)
−0.281591 + 0.959534i \(0.590862\pi\)
\(332\) 0 0
\(333\) −1.68466 −0.0923187
\(334\) 0 0
\(335\) 11.3693 0.621172
\(336\) 0 0
\(337\) −7.75379 −0.422376 −0.211188 0.977445i \(-0.567733\pi\)
−0.211188 + 0.977445i \(0.567733\pi\)
\(338\) 0 0
\(339\) 4.87689 0.264877
\(340\) 0 0
\(341\) −5.75379 −0.311585
\(342\) 0 0
\(343\) −62.7386 −3.38757
\(344\) 0 0
\(345\) 6.56155 0.353262
\(346\) 0 0
\(347\) 12.1771 0.653700 0.326850 0.945076i \(-0.394013\pi\)
0.326850 + 0.945076i \(0.394013\pi\)
\(348\) 0 0
\(349\) 0.0691303 0.00370046 0.00185023 0.999998i \(-0.499411\pi\)
0.00185023 + 0.999998i \(0.499411\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 30.4924 1.62295 0.811474 0.584389i \(-0.198666\pi\)
0.811474 + 0.584389i \(0.198666\pi\)
\(354\) 0 0
\(355\) 2.87689 0.152690
\(356\) 0 0
\(357\) −36.4924 −1.93138
\(358\) 0 0
\(359\) 3.19224 0.168480 0.0842399 0.996446i \(-0.473154\pi\)
0.0842399 + 0.996446i \(0.473154\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) 8.93087 0.468749
\(364\) 0 0
\(365\) 1.68466 0.0881791
\(366\) 0 0
\(367\) 19.6847 1.02753 0.513765 0.857931i \(-0.328250\pi\)
0.513765 + 0.857931i \(0.328250\pi\)
\(368\) 0 0
\(369\) −1.68466 −0.0876998
\(370\) 0 0
\(371\) 17.6155 0.914553
\(372\) 0 0
\(373\) 13.3693 0.692237 0.346118 0.938191i \(-0.387500\pi\)
0.346118 + 0.938191i \(0.387500\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 4.31534 0.221082
\(382\) 0 0
\(383\) −11.0540 −0.564832 −0.282416 0.959292i \(-0.591136\pi\)
−0.282416 + 0.959292i \(0.591136\pi\)
\(384\) 0 0
\(385\) −7.36932 −0.375575
\(386\) 0 0
\(387\) −7.68466 −0.390633
\(388\) 0 0
\(389\) 14.8078 0.750783 0.375392 0.926866i \(-0.377508\pi\)
0.375392 + 0.926866i \(0.377508\pi\)
\(390\) 0 0
\(391\) 46.7386 2.36367
\(392\) 0 0
\(393\) 10.2462 0.516853
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 24.2462 1.21688 0.608441 0.793599i \(-0.291795\pi\)
0.608441 + 0.793599i \(0.291795\pi\)
\(398\) 0 0
\(399\) −26.2462 −1.31395
\(400\) 0 0
\(401\) 35.6155 1.77855 0.889277 0.457368i \(-0.151208\pi\)
0.889277 + 0.457368i \(0.151208\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −2.42329 −0.120118
\(408\) 0 0
\(409\) 17.3693 0.858857 0.429429 0.903101i \(-0.358715\pi\)
0.429429 + 0.903101i \(0.358715\pi\)
\(410\) 0 0
\(411\) 15.1231 0.745968
\(412\) 0 0
\(413\) 61.4773 3.02510
\(414\) 0 0
\(415\) 2.56155 0.125742
\(416\) 0 0
\(417\) −17.9309 −0.878078
\(418\) 0 0
\(419\) 27.3693 1.33708 0.668539 0.743677i \(-0.266920\pi\)
0.668539 + 0.743677i \(0.266920\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 13.1231 0.638067
\(424\) 0 0
\(425\) −7.12311 −0.345521
\(426\) 0 0
\(427\) −4.49242 −0.217404
\(428\) 0 0
\(429\) 2.87689 0.138898
\(430\) 0 0
\(431\) 21.1231 1.01746 0.508732 0.860925i \(-0.330114\pi\)
0.508732 + 0.860925i \(0.330114\pi\)
\(432\) 0 0
\(433\) −4.06913 −0.195550 −0.0977750 0.995209i \(-0.531173\pi\)
−0.0977750 + 0.995209i \(0.531173\pi\)
\(434\) 0 0
\(435\) −1.00000 −0.0479463
\(436\) 0 0
\(437\) 33.6155 1.60805
\(438\) 0 0
\(439\) −12.4924 −0.596231 −0.298115 0.954530i \(-0.596358\pi\)
−0.298115 + 0.954530i \(0.596358\pi\)
\(440\) 0 0
\(441\) 19.2462 0.916486
\(442\) 0 0
\(443\) −6.24621 −0.296766 −0.148383 0.988930i \(-0.547407\pi\)
−0.148383 + 0.988930i \(0.547407\pi\)
\(444\) 0 0
\(445\) 12.2462 0.580526
\(446\) 0 0
\(447\) −0.246211 −0.0116454
\(448\) 0 0
\(449\) 11.4384 0.539814 0.269907 0.962886i \(-0.413007\pi\)
0.269907 + 0.962886i \(0.413007\pi\)
\(450\) 0 0
\(451\) −2.42329 −0.114108
\(452\) 0 0
\(453\) 4.31534 0.202752
\(454\) 0 0
\(455\) 10.2462 0.480350
\(456\) 0 0
\(457\) −8.87689 −0.415244 −0.207622 0.978209i \(-0.566572\pi\)
−0.207622 + 0.978209i \(0.566572\pi\)
\(458\) 0 0
\(459\) 7.12311 0.332478
\(460\) 0 0
\(461\) −18.1771 −0.846591 −0.423296 0.905992i \(-0.639127\pi\)
−0.423296 + 0.905992i \(0.639127\pi\)
\(462\) 0 0
\(463\) −25.6155 −1.19045 −0.595227 0.803557i \(-0.702938\pi\)
−0.595227 + 0.803557i \(0.702938\pi\)
\(464\) 0 0
\(465\) 4.00000 0.185496
\(466\) 0 0
\(467\) 3.36932 0.155913 0.0779567 0.996957i \(-0.475160\pi\)
0.0779567 + 0.996957i \(0.475160\pi\)
\(468\) 0 0
\(469\) −58.2462 −2.68956
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) −11.0540 −0.508262
\(474\) 0 0
\(475\) −5.12311 −0.235064
\(476\) 0 0
\(477\) −3.43845 −0.157436
\(478\) 0 0
\(479\) 22.2462 1.01646 0.508228 0.861223i \(-0.330301\pi\)
0.508228 + 0.861223i \(0.330301\pi\)
\(480\) 0 0
\(481\) 3.36932 0.153628
\(482\) 0 0
\(483\) −33.6155 −1.52956
\(484\) 0 0
\(485\) −5.68466 −0.258127
\(486\) 0 0
\(487\) −34.2462 −1.55184 −0.775922 0.630829i \(-0.782715\pi\)
−0.775922 + 0.630829i \(0.782715\pi\)
\(488\) 0 0
\(489\) −17.9309 −0.810862
\(490\) 0 0
\(491\) −6.73863 −0.304110 −0.152055 0.988372i \(-0.548589\pi\)
−0.152055 + 0.988372i \(0.548589\pi\)
\(492\) 0 0
\(493\) −7.12311 −0.320809
\(494\) 0 0
\(495\) 1.43845 0.0646534
\(496\) 0 0
\(497\) −14.7386 −0.661118
\(498\) 0 0
\(499\) −42.7386 −1.91324 −0.956622 0.291332i \(-0.905902\pi\)
−0.956622 + 0.291332i \(0.905902\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 39.3693 1.75539 0.877696 0.479219i \(-0.159080\pi\)
0.877696 + 0.479219i \(0.159080\pi\)
\(504\) 0 0
\(505\) −8.56155 −0.380984
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) 18.4924 0.819662 0.409831 0.912161i \(-0.365588\pi\)
0.409831 + 0.912161i \(0.365588\pi\)
\(510\) 0 0
\(511\) −8.63068 −0.381799
\(512\) 0 0
\(513\) 5.12311 0.226191
\(514\) 0 0
\(515\) 2.87689 0.126771
\(516\) 0 0
\(517\) 18.8769 0.830205
\(518\) 0 0
\(519\) −12.5616 −0.551391
\(520\) 0 0
\(521\) −0.246211 −0.0107867 −0.00539336 0.999985i \(-0.501717\pi\)
−0.00539336 + 0.999985i \(0.501717\pi\)
\(522\) 0 0
\(523\) −18.7386 −0.819383 −0.409692 0.912224i \(-0.634364\pi\)
−0.409692 + 0.912224i \(0.634364\pi\)
\(524\) 0 0
\(525\) 5.12311 0.223591
\(526\) 0 0
\(527\) 28.4924 1.24115
\(528\) 0 0
\(529\) 20.0540 0.871912
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 3.36932 0.145941
\(534\) 0 0
\(535\) −16.4924 −0.713030
\(536\) 0 0
\(537\) 1.12311 0.0484656
\(538\) 0 0
\(539\) 27.6847 1.19246
\(540\) 0 0
\(541\) −40.7386 −1.75149 −0.875745 0.482773i \(-0.839629\pi\)
−0.875745 + 0.482773i \(0.839629\pi\)
\(542\) 0 0
\(543\) −25.6847 −1.10223
\(544\) 0 0
\(545\) −5.68466 −0.243504
\(546\) 0 0
\(547\) 42.7386 1.82737 0.913686 0.406421i \(-0.133223\pi\)
0.913686 + 0.406421i \(0.133223\pi\)
\(548\) 0 0
\(549\) 0.876894 0.0374249
\(550\) 0 0
\(551\) −5.12311 −0.218252
\(552\) 0 0
\(553\) −61.4773 −2.61428
\(554\) 0 0
\(555\) 1.68466 0.0715098
\(556\) 0 0
\(557\) −20.4233 −0.865363 −0.432681 0.901547i \(-0.642432\pi\)
−0.432681 + 0.901547i \(0.642432\pi\)
\(558\) 0 0
\(559\) 15.3693 0.650053
\(560\) 0 0
\(561\) 10.2462 0.432595
\(562\) 0 0
\(563\) −9.12311 −0.384493 −0.192247 0.981347i \(-0.561577\pi\)
−0.192247 + 0.981347i \(0.561577\pi\)
\(564\) 0 0
\(565\) −4.87689 −0.205172
\(566\) 0 0
\(567\) −5.12311 −0.215150
\(568\) 0 0
\(569\) −16.2462 −0.681077 −0.340538 0.940231i \(-0.610609\pi\)
−0.340538 + 0.940231i \(0.610609\pi\)
\(570\) 0 0
\(571\) −39.0540 −1.63436 −0.817179 0.576384i \(-0.804463\pi\)
−0.817179 + 0.576384i \(0.804463\pi\)
\(572\) 0 0
\(573\) −9.93087 −0.414868
\(574\) 0 0
\(575\) −6.56155 −0.273636
\(576\) 0 0
\(577\) −30.4924 −1.26942 −0.634708 0.772752i \(-0.718880\pi\)
−0.634708 + 0.772752i \(0.718880\pi\)
\(578\) 0 0
\(579\) 10.0000 0.415586
\(580\) 0 0
\(581\) −13.1231 −0.544438
\(582\) 0 0
\(583\) −4.94602 −0.204843
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) −24.4924 −1.01091 −0.505455 0.862853i \(-0.668675\pi\)
−0.505455 + 0.862853i \(0.668675\pi\)
\(588\) 0 0
\(589\) 20.4924 0.844376
\(590\) 0 0
\(591\) −4.56155 −0.187637
\(592\) 0 0
\(593\) 36.2462 1.48845 0.744227 0.667927i \(-0.232818\pi\)
0.744227 + 0.667927i \(0.232818\pi\)
\(594\) 0 0
\(595\) 36.4924 1.49604
\(596\) 0 0
\(597\) −11.0540 −0.452409
\(598\) 0 0
\(599\) 20.9848 0.857418 0.428709 0.903443i \(-0.358969\pi\)
0.428709 + 0.903443i \(0.358969\pi\)
\(600\) 0 0
\(601\) 41.3693 1.68749 0.843745 0.536745i \(-0.180346\pi\)
0.843745 + 0.536745i \(0.180346\pi\)
\(602\) 0 0
\(603\) 11.3693 0.462994
\(604\) 0 0
\(605\) −8.93087 −0.363091
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 0 0
\(609\) 5.12311 0.207599
\(610\) 0 0
\(611\) −26.2462 −1.06181
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) 0 0
\(615\) 1.68466 0.0679320
\(616\) 0 0
\(617\) 8.24621 0.331980 0.165990 0.986127i \(-0.446918\pi\)
0.165990 + 0.986127i \(0.446918\pi\)
\(618\) 0 0
\(619\) −29.1231 −1.17056 −0.585278 0.810833i \(-0.699015\pi\)
−0.585278 + 0.810833i \(0.699015\pi\)
\(620\) 0 0
\(621\) 6.56155 0.263306
\(622\) 0 0
\(623\) −62.7386 −2.51357
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 7.36932 0.294302
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) −2.87689 −0.114346
\(634\) 0 0
\(635\) −4.31534 −0.171249
\(636\) 0 0
\(637\) −38.4924 −1.52513
\(638\) 0 0
\(639\) 2.87689 0.113808
\(640\) 0 0
\(641\) 19.4384 0.767773 0.383886 0.923380i \(-0.374585\pi\)
0.383886 + 0.923380i \(0.374585\pi\)
\(642\) 0 0
\(643\) 18.7386 0.738980 0.369490 0.929235i \(-0.379532\pi\)
0.369490 + 0.929235i \(0.379532\pi\)
\(644\) 0 0
\(645\) 7.68466 0.302583
\(646\) 0 0
\(647\) −5.93087 −0.233167 −0.116583 0.993181i \(-0.537194\pi\)
−0.116583 + 0.993181i \(0.537194\pi\)
\(648\) 0 0
\(649\) −17.2614 −0.677568
\(650\) 0 0
\(651\) −20.4924 −0.803161
\(652\) 0 0
\(653\) 12.2462 0.479231 0.239616 0.970868i \(-0.422979\pi\)
0.239616 + 0.970868i \(0.422979\pi\)
\(654\) 0 0
\(655\) −10.2462 −0.400353
\(656\) 0 0
\(657\) 1.68466 0.0657248
\(658\) 0 0
\(659\) −6.56155 −0.255602 −0.127801 0.991800i \(-0.540792\pi\)
−0.127801 + 0.991800i \(0.540792\pi\)
\(660\) 0 0
\(661\) 1.05398 0.0409949 0.0204974 0.999790i \(-0.493475\pi\)
0.0204974 + 0.999790i \(0.493475\pi\)
\(662\) 0 0
\(663\) −14.2462 −0.553277
\(664\) 0 0
\(665\) 26.2462 1.01778
\(666\) 0 0
\(667\) −6.56155 −0.254064
\(668\) 0 0
\(669\) −18.2462 −0.705439
\(670\) 0 0
\(671\) 1.26137 0.0486945
\(672\) 0 0
\(673\) −6.00000 −0.231283 −0.115642 0.993291i \(-0.536892\pi\)
−0.115642 + 0.993291i \(0.536892\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 13.8617 0.532750 0.266375 0.963869i \(-0.414174\pi\)
0.266375 + 0.963869i \(0.414174\pi\)
\(678\) 0 0
\(679\) 29.1231 1.11764
\(680\) 0 0
\(681\) −3.19224 −0.122327
\(682\) 0 0
\(683\) 21.4384 0.820319 0.410160 0.912014i \(-0.365473\pi\)
0.410160 + 0.912014i \(0.365473\pi\)
\(684\) 0 0
\(685\) −15.1231 −0.577824
\(686\) 0 0
\(687\) −22.0000 −0.839352
\(688\) 0 0
\(689\) 6.87689 0.261989
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 0 0
\(693\) −7.36932 −0.279937
\(694\) 0 0
\(695\) 17.9309 0.680157
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) 0 0
\(699\) 10.3153 0.390162
\(700\) 0 0
\(701\) 3.75379 0.141779 0.0708893 0.997484i \(-0.477416\pi\)
0.0708893 + 0.997484i \(0.477416\pi\)
\(702\) 0 0
\(703\) 8.63068 0.325512
\(704\) 0 0
\(705\) −13.1231 −0.494245
\(706\) 0 0
\(707\) 43.8617 1.64959
\(708\) 0 0
\(709\) −12.4233 −0.466567 −0.233283 0.972409i \(-0.574947\pi\)
−0.233283 + 0.972409i \(0.574947\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 0 0
\(713\) 26.2462 0.982928
\(714\) 0 0
\(715\) −2.87689 −0.107590
\(716\) 0 0
\(717\) −13.1231 −0.490091
\(718\) 0 0
\(719\) 4.49242 0.167539 0.0837695 0.996485i \(-0.473304\pi\)
0.0837695 + 0.996485i \(0.473304\pi\)
\(720\) 0 0
\(721\) −14.7386 −0.548895
\(722\) 0 0
\(723\) 25.0540 0.931767
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 38.7386 1.43674 0.718368 0.695663i \(-0.244889\pi\)
0.718368 + 0.695663i \(0.244889\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 54.7386 2.02458
\(732\) 0 0
\(733\) −22.9848 −0.848965 −0.424482 0.905436i \(-0.639544\pi\)
−0.424482 + 0.905436i \(0.639544\pi\)
\(734\) 0 0
\(735\) −19.2462 −0.709907
\(736\) 0 0
\(737\) 16.3542 0.602413
\(738\) 0 0
\(739\) 24.0000 0.882854 0.441427 0.897297i \(-0.354472\pi\)
0.441427 + 0.897297i \(0.354472\pi\)
\(740\) 0 0
\(741\) −10.2462 −0.376404
\(742\) 0 0
\(743\) −34.8769 −1.27951 −0.639755 0.768579i \(-0.720964\pi\)
−0.639755 + 0.768579i \(0.720964\pi\)
\(744\) 0 0
\(745\) 0.246211 0.00902048
\(746\) 0 0
\(747\) 2.56155 0.0937223
\(748\) 0 0
\(749\) 84.4924 3.08729
\(750\) 0 0
\(751\) −48.4924 −1.76951 −0.884757 0.466053i \(-0.845676\pi\)
−0.884757 + 0.466053i \(0.845676\pi\)
\(752\) 0 0
\(753\) 2.24621 0.0818565
\(754\) 0 0
\(755\) −4.31534 −0.157051
\(756\) 0 0
\(757\) 5.68466 0.206612 0.103306 0.994650i \(-0.467058\pi\)
0.103306 + 0.994650i \(0.467058\pi\)
\(758\) 0 0
\(759\) 9.43845 0.342594
\(760\) 0 0
\(761\) −24.8769 −0.901787 −0.450893 0.892578i \(-0.648895\pi\)
−0.450893 + 0.892578i \(0.648895\pi\)
\(762\) 0 0
\(763\) 29.1231 1.05433
\(764\) 0 0
\(765\) −7.12311 −0.257536
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 43.6155 1.57282 0.786408 0.617707i \(-0.211938\pi\)
0.786408 + 0.617707i \(0.211938\pi\)
\(770\) 0 0
\(771\) −11.4384 −0.411946
\(772\) 0 0
\(773\) 24.7386 0.889787 0.444893 0.895584i \(-0.353242\pi\)
0.444893 + 0.895584i \(0.353242\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) −8.63068 −0.309624
\(778\) 0 0
\(779\) 8.63068 0.309226
\(780\) 0 0
\(781\) 4.13826 0.148079
\(782\) 0 0
\(783\) −1.00000 −0.0357371
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 0 0
\(787\) 31.2311 1.11327 0.556633 0.830758i \(-0.312093\pi\)
0.556633 + 0.830758i \(0.312093\pi\)
\(788\) 0 0
\(789\) −5.75379 −0.204840
\(790\) 0 0
\(791\) 24.9848 0.888359
\(792\) 0 0
\(793\) −1.75379 −0.0622789
\(794\) 0 0
\(795\) 3.43845 0.121949
\(796\) 0 0
\(797\) 38.4924 1.36347 0.681736 0.731598i \(-0.261225\pi\)
0.681736 + 0.731598i \(0.261225\pi\)
\(798\) 0 0
\(799\) −93.4773 −3.30699
\(800\) 0 0
\(801\) 12.2462 0.432699
\(802\) 0 0
\(803\) 2.42329 0.0855161
\(804\) 0 0
\(805\) 33.6155 1.18479
\(806\) 0 0
\(807\) −11.7538 −0.413753
\(808\) 0 0
\(809\) −22.1771 −0.779705 −0.389852 0.920877i \(-0.627474\pi\)
−0.389852 + 0.920877i \(0.627474\pi\)
\(810\) 0 0
\(811\) −44.1771 −1.55127 −0.775634 0.631183i \(-0.782569\pi\)
−0.775634 + 0.631183i \(0.782569\pi\)
\(812\) 0 0
\(813\) 17.1231 0.600534
\(814\) 0 0
\(815\) 17.9309 0.628091
\(816\) 0 0
\(817\) 39.3693 1.37736
\(818\) 0 0
\(819\) 10.2462 0.358032
\(820\) 0 0
\(821\) 55.6155 1.94100 0.970498 0.241111i \(-0.0775116\pi\)
0.970498 + 0.241111i \(0.0775116\pi\)
\(822\) 0 0
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) 0 0
\(825\) −1.43845 −0.0500803
\(826\) 0 0
\(827\) −53.6155 −1.86439 −0.932197 0.361951i \(-0.882111\pi\)
−0.932197 + 0.361951i \(0.882111\pi\)
\(828\) 0 0
\(829\) −4.24621 −0.147477 −0.0737385 0.997278i \(-0.523493\pi\)
−0.0737385 + 0.997278i \(0.523493\pi\)
\(830\) 0 0
\(831\) −0.876894 −0.0304191
\(832\) 0 0
\(833\) −137.093 −4.74998
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4.00000 0.138260
\(838\) 0 0
\(839\) −42.7386 −1.47550 −0.737751 0.675073i \(-0.764112\pi\)
−0.737751 + 0.675073i \(0.764112\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 23.6155 0.813362
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 45.7538 1.57212
\(848\) 0 0
\(849\) 6.87689 0.236014
\(850\) 0 0
\(851\) 11.0540 0.378925
\(852\) 0 0
\(853\) 19.4384 0.665560 0.332780 0.943005i \(-0.392013\pi\)
0.332780 + 0.943005i \(0.392013\pi\)
\(854\) 0 0
\(855\) −5.12311 −0.175207
\(856\) 0 0
\(857\) −15.4384 −0.527367 −0.263684 0.964609i \(-0.584938\pi\)
−0.263684 + 0.964609i \(0.584938\pi\)
\(858\) 0 0
\(859\) 23.3693 0.797351 0.398675 0.917092i \(-0.369470\pi\)
0.398675 + 0.917092i \(0.369470\pi\)
\(860\) 0 0
\(861\) −8.63068 −0.294133
\(862\) 0 0
\(863\) −40.9848 −1.39514 −0.697570 0.716516i \(-0.745735\pi\)
−0.697570 + 0.716516i \(0.745735\pi\)
\(864\) 0 0
\(865\) 12.5616 0.427106
\(866\) 0 0
\(867\) −33.7386 −1.14582
\(868\) 0 0
\(869\) 17.2614 0.585552
\(870\) 0 0
\(871\) −22.7386 −0.770469
\(872\) 0 0
\(873\) −5.68466 −0.192397
\(874\) 0 0
\(875\) −5.12311 −0.173193
\(876\) 0 0
\(877\) 8.87689 0.299751 0.149876 0.988705i \(-0.452113\pi\)
0.149876 + 0.988705i \(0.452113\pi\)
\(878\) 0 0
\(879\) 21.3693 0.720769
\(880\) 0 0
\(881\) −8.06913 −0.271856 −0.135928 0.990719i \(-0.543402\pi\)
−0.135928 + 0.990719i \(0.543402\pi\)
\(882\) 0 0
\(883\) 42.7386 1.43827 0.719135 0.694871i \(-0.244538\pi\)
0.719135 + 0.694871i \(0.244538\pi\)
\(884\) 0 0
\(885\) 12.0000 0.403376
\(886\) 0 0
\(887\) 43.8617 1.47273 0.736367 0.676583i \(-0.236540\pi\)
0.736367 + 0.676583i \(0.236540\pi\)
\(888\) 0 0
\(889\) 22.1080 0.741477
\(890\) 0 0
\(891\) 1.43845 0.0481898
\(892\) 0 0
\(893\) −67.2311 −2.24980
\(894\) 0 0
\(895\) −1.12311 −0.0375413
\(896\) 0 0
\(897\) −13.1231 −0.438168
\(898\) 0 0
\(899\) −4.00000 −0.133407
\(900\) 0 0
\(901\) 24.4924 0.815961
\(902\) 0 0
\(903\) −39.3693 −1.31013
\(904\) 0 0
\(905\) 25.6847 0.853787
\(906\) 0 0
\(907\) −31.0540 −1.03113 −0.515565 0.856850i \(-0.672418\pi\)
−0.515565 + 0.856850i \(0.672418\pi\)
\(908\) 0 0
\(909\) −8.56155 −0.283969
\(910\) 0 0
\(911\) 18.5616 0.614972 0.307486 0.951553i \(-0.400512\pi\)
0.307486 + 0.951553i \(0.400512\pi\)
\(912\) 0 0
\(913\) 3.68466 0.121944
\(914\) 0 0
\(915\) −0.876894 −0.0289892
\(916\) 0 0
\(917\) 52.4924 1.73345
\(918\) 0 0
\(919\) −30.7386 −1.01397 −0.506987 0.861954i \(-0.669241\pi\)
−0.506987 + 0.861954i \(0.669241\pi\)
\(920\) 0 0
\(921\) −31.6847 −1.04404
\(922\) 0 0
\(923\) −5.75379 −0.189388
\(924\) 0 0
\(925\) −1.68466 −0.0553912
\(926\) 0 0
\(927\) 2.87689 0.0944896
\(928\) 0 0
\(929\) 4.87689 0.160006 0.0800029 0.996795i \(-0.474507\pi\)
0.0800029 + 0.996795i \(0.474507\pi\)
\(930\) 0 0
\(931\) −98.6004 −3.23150
\(932\) 0 0
\(933\) 16.3153 0.534140
\(934\) 0 0
\(935\) −10.2462 −0.335087
\(936\) 0 0
\(937\) 39.1231 1.27810 0.639048 0.769167i \(-0.279328\pi\)
0.639048 + 0.769167i \(0.279328\pi\)
\(938\) 0 0
\(939\) 21.3693 0.697361
\(940\) 0 0
\(941\) −0.738634 −0.0240788 −0.0120394 0.999928i \(-0.503832\pi\)
−0.0120394 + 0.999928i \(0.503832\pi\)
\(942\) 0 0
\(943\) 11.0540 0.359967
\(944\) 0 0
\(945\) 5.12311 0.166655
\(946\) 0 0
\(947\) 3.36932 0.109488 0.0547440 0.998500i \(-0.482566\pi\)
0.0547440 + 0.998500i \(0.482566\pi\)
\(948\) 0 0
\(949\) −3.36932 −0.109373
\(950\) 0 0
\(951\) −4.87689 −0.158144
\(952\) 0 0
\(953\) −34.4924 −1.11732 −0.558660 0.829397i \(-0.688684\pi\)
−0.558660 + 0.829397i \(0.688684\pi\)
\(954\) 0 0
\(955\) 9.93087 0.321355
\(956\) 0 0
\(957\) −1.43845 −0.0464984
\(958\) 0 0
\(959\) 77.4773 2.50187
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −16.4924 −0.531461
\(964\) 0 0
\(965\) −10.0000 −0.321911
\(966\) 0 0
\(967\) −27.0540 −0.869997 −0.434999 0.900431i \(-0.643251\pi\)
−0.434999 + 0.900431i \(0.643251\pi\)
\(968\) 0 0
\(969\) −36.4924 −1.17231
\(970\) 0 0
\(971\) 44.6695 1.43351 0.716756 0.697324i \(-0.245626\pi\)
0.716756 + 0.697324i \(0.245626\pi\)
\(972\) 0 0
\(973\) −91.8617 −2.94495
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) −7.43845 −0.237977 −0.118989 0.992896i \(-0.537965\pi\)
−0.118989 + 0.992896i \(0.537965\pi\)
\(978\) 0 0
\(979\) 17.6155 0.562995
\(980\) 0 0
\(981\) −5.68466 −0.181497
\(982\) 0 0
\(983\) −27.8617 −0.888651 −0.444326 0.895865i \(-0.646557\pi\)
−0.444326 + 0.895865i \(0.646557\pi\)
\(984\) 0 0
\(985\) 4.56155 0.145343
\(986\) 0 0
\(987\) 67.2311 2.13999
\(988\) 0 0
\(989\) 50.4233 1.60337
\(990\) 0 0
\(991\) −4.94602 −0.157116 −0.0785578 0.996910i \(-0.525032\pi\)
−0.0785578 + 0.996910i \(0.525032\pi\)
\(992\) 0 0
\(993\) 10.2462 0.325154
\(994\) 0 0
\(995\) 11.0540 0.350435
\(996\) 0 0
\(997\) 54.0388 1.71143 0.855713 0.517450i \(-0.173119\pi\)
0.855713 + 0.517450i \(0.173119\pi\)
\(998\) 0 0
\(999\) 1.68466 0.0533002
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6960.2.a.bx.1.1 2
4.3 odd 2 435.2.a.h.1.1 2
12.11 even 2 1305.2.a.i.1.2 2
20.3 even 4 2175.2.c.h.349.3 4
20.7 even 4 2175.2.c.h.349.2 4
20.19 odd 2 2175.2.a.m.1.2 2
60.59 even 2 6525.2.a.bc.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.h.1.1 2 4.3 odd 2
1305.2.a.i.1.2 2 12.11 even 2
2175.2.a.m.1.2 2 20.19 odd 2
2175.2.c.h.349.2 4 20.7 even 4
2175.2.c.h.349.3 4 20.3 even 4
6525.2.a.bc.1.1 2 60.59 even 2
6960.2.a.bx.1.1 2 1.1 even 1 trivial