Properties

Label 6960.2.a.bw
Level $6960$
Weight $2$
Character orbit 6960.a
Self dual yes
Analytic conductor $55.576$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6960,2,Mod(1,6960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6960.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6960 = 2^{4} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.5758798068\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{21}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + q^{5} - q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + q^{5} - q^{7} + q^{9} - 5 q^{11} + \beta q^{13} - q^{15} - 3 q^{17} + (\beta + 1) q^{19} + q^{21} + 4 q^{23} + q^{25} - q^{27} + q^{29} - 4 q^{31} + 5 q^{33} - q^{35} - 4 q^{37} - \beta q^{39} + 2 \beta q^{41} + ( - \beta + 5) q^{43} + q^{45} + (\beta - 6) q^{47} - 6 q^{49} + 3 q^{51} + (\beta + 5) q^{53} - 5 q^{55} + ( - \beta - 1) q^{57} + ( - \beta + 3) q^{59} + ( - 3 \beta - 1) q^{61} - q^{63} + \beta q^{65} + ( - 2 \beta - 5) q^{67} - 4 q^{69} + ( - \beta + 5) q^{71} + 4 q^{73} - q^{75} + 5 q^{77} + (\beta - 3) q^{79} + q^{81} + ( - \beta + 7) q^{83} - 3 q^{85} - q^{87} + (\beta + 6) q^{89} - \beta q^{91} + 4 q^{93} + (\beta + 1) q^{95} + ( - \beta + 7) q^{97} - 5 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 2 q^{9} - 10 q^{11} - 2 q^{15} - 6 q^{17} + 2 q^{19} + 2 q^{21} + 8 q^{23} + 2 q^{25} - 2 q^{27} + 2 q^{29} - 8 q^{31} + 10 q^{33} - 2 q^{35} - 8 q^{37} + 10 q^{43} + 2 q^{45} - 12 q^{47} - 12 q^{49} + 6 q^{51} + 10 q^{53} - 10 q^{55} - 2 q^{57} + 6 q^{59} - 2 q^{61} - 2 q^{63} - 10 q^{67} - 8 q^{69} + 10 q^{71} + 8 q^{73} - 2 q^{75} + 10 q^{77} - 6 q^{79} + 2 q^{81} + 14 q^{83} - 6 q^{85} - 2 q^{87} + 12 q^{89} + 8 q^{93} + 2 q^{95} + 14 q^{97} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.79129
2.79129
0 −1.00000 0 1.00000 0 −1.00000 0 1.00000 0
1.2 0 −1.00000 0 1.00000 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)
\(29\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6960.2.a.bw 2
4.b odd 2 1 435.2.a.f 2
12.b even 2 1 1305.2.a.m 2
20.d odd 2 1 2175.2.a.r 2
20.e even 4 2 2175.2.c.f 4
60.h even 2 1 6525.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.a.f 2 4.b odd 2 1
1305.2.a.m 2 12.b even 2 1
2175.2.a.r 2 20.d odd 2 1
2175.2.c.f 4 20.e even 4 2
6525.2.a.t 2 60.h even 2 1
6960.2.a.bw 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6960))\):

\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11} + 5 \) Copy content Toggle raw display
\( T_{13}^{2} - 21 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T + 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 21 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 20 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 84 \) Copy content Toggle raw display
$43$ \( T^{2} - 10T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 12T + 15 \) Copy content Toggle raw display
$53$ \( T^{2} - 10T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T - 12 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T - 188 \) Copy content Toggle raw display
$67$ \( T^{2} + 10T - 59 \) Copy content Toggle raw display
$71$ \( T^{2} - 10T + 4 \) Copy content Toggle raw display
$73$ \( (T - 4)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 6T - 12 \) Copy content Toggle raw display
$83$ \( T^{2} - 14T + 28 \) Copy content Toggle raw display
$89$ \( T^{2} - 12T + 15 \) Copy content Toggle raw display
$97$ \( T^{2} - 14T + 28 \) Copy content Toggle raw display
show more
show less