Defining parameters
| Level: | \( N \) | \(=\) | \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6936.h (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 408 \) |
| Character field: | \(\Q\) | ||
| Sturm bound: | \(2448\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6936, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1260 | 1108 | 152 |
| Cusp forms | 1188 | 1052 | 136 |
| Eisenstein series | 72 | 56 | 16 |
Decomposition of \(S_{2}^{\mathrm{new}}(6936, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6936, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 2}\)