# Properties

 Label 6936.2.a.p.1.1 Level $6936$ Weight $2$ Character 6936.1 Self dual yes Analytic conductor $55.384$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$6936 = 2^{3} \cdot 3 \cdot 17^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6936.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$55.3842388420$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 24) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 6936.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000 q^{3} +2.00000 q^{5} +1.00000 q^{9} +O(q^{10})$$ $$q+1.00000 q^{3} +2.00000 q^{5} +1.00000 q^{9} -4.00000 q^{11} -2.00000 q^{13} +2.00000 q^{15} -4.00000 q^{19} +8.00000 q^{23} -1.00000 q^{25} +1.00000 q^{27} -6.00000 q^{29} -8.00000 q^{31} -4.00000 q^{33} -6.00000 q^{37} -2.00000 q^{39} +6.00000 q^{41} +4.00000 q^{43} +2.00000 q^{45} -7.00000 q^{49} -2.00000 q^{53} -8.00000 q^{55} -4.00000 q^{57} +4.00000 q^{59} +2.00000 q^{61} -4.00000 q^{65} -4.00000 q^{67} +8.00000 q^{69} -8.00000 q^{71} -10.0000 q^{73} -1.00000 q^{75} +8.00000 q^{79} +1.00000 q^{81} -4.00000 q^{83} -6.00000 q^{87} -6.00000 q^{89} -8.00000 q^{93} -8.00000 q^{95} -2.00000 q^{97} -4.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000 0.577350
$$4$$ 0 0
$$5$$ 2.00000 0.894427 0.447214 0.894427i $$-0.352416\pi$$
0.447214 + 0.894427i $$0.352416\pi$$
$$6$$ 0 0
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ −4.00000 −1.20605 −0.603023 0.797724i $$-0.706037\pi$$
−0.603023 + 0.797724i $$0.706037\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 2.00000 0.516398
$$16$$ 0 0
$$17$$ 0 0
$$18$$ 0 0
$$19$$ −4.00000 −0.917663 −0.458831 0.888523i $$-0.651732\pi$$
−0.458831 + 0.888523i $$0.651732\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 8.00000 1.66812 0.834058 0.551677i $$-0.186012\pi$$
0.834058 + 0.551677i $$0.186012\pi$$
$$24$$ 0 0
$$25$$ −1.00000 −0.200000
$$26$$ 0 0
$$27$$ 1.00000 0.192450
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ 0 0
$$33$$ −4.00000 −0.696311
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −6.00000 −0.986394 −0.493197 0.869918i $$-0.664172\pi$$
−0.493197 + 0.869918i $$0.664172\pi$$
$$38$$ 0 0
$$39$$ −2.00000 −0.320256
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ 0 0
$$45$$ 2.00000 0.298142
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ 0 0
$$49$$ −7.00000 −1.00000
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −2.00000 −0.274721 −0.137361 0.990521i $$-0.543862\pi$$
−0.137361 + 0.990521i $$0.543862\pi$$
$$54$$ 0 0
$$55$$ −8.00000 −1.07872
$$56$$ 0 0
$$57$$ −4.00000 −0.529813
$$58$$ 0 0
$$59$$ 4.00000 0.520756 0.260378 0.965507i $$-0.416153\pi$$
0.260378 + 0.965507i $$0.416153\pi$$
$$60$$ 0 0
$$61$$ 2.00000 0.256074 0.128037 0.991769i $$-0.459132\pi$$
0.128037 + 0.991769i $$0.459132\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −4.00000 −0.496139
$$66$$ 0 0
$$67$$ −4.00000 −0.488678 −0.244339 0.969690i $$-0.578571\pi$$
−0.244339 + 0.969690i $$0.578571\pi$$
$$68$$ 0 0
$$69$$ 8.00000 0.963087
$$70$$ 0 0
$$71$$ −8.00000 −0.949425 −0.474713 0.880141i $$-0.657448\pi$$
−0.474713 + 0.880141i $$0.657448\pi$$
$$72$$ 0 0
$$73$$ −10.0000 −1.17041 −0.585206 0.810885i $$-0.698986\pi$$
−0.585206 + 0.810885i $$0.698986\pi$$
$$74$$ 0 0
$$75$$ −1.00000 −0.115470
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ −4.00000 −0.439057 −0.219529 0.975606i $$-0.570452\pi$$
−0.219529 + 0.975606i $$0.570452\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ −6.00000 −0.643268
$$88$$ 0 0
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ −8.00000 −0.829561
$$94$$ 0 0
$$95$$ −8.00000 −0.820783
$$96$$ 0 0
$$97$$ −2.00000 −0.203069 −0.101535 0.994832i $$-0.532375\pi$$
−0.101535 + 0.994832i $$0.532375\pi$$
$$98$$ 0 0
$$99$$ −4.00000 −0.402015
$$100$$ 0 0
$$101$$ −18.0000 −1.79107 −0.895533 0.444994i $$-0.853206\pi$$
−0.895533 + 0.444994i $$0.853206\pi$$
$$102$$ 0 0
$$103$$ 16.0000 1.57653 0.788263 0.615338i $$-0.210980\pi$$
0.788263 + 0.615338i $$0.210980\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 12.0000 1.16008 0.580042 0.814587i $$-0.303036\pi$$
0.580042 + 0.814587i $$0.303036\pi$$
$$108$$ 0 0
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ −6.00000 −0.569495
$$112$$ 0 0
$$113$$ −18.0000 −1.69330 −0.846649 0.532152i $$-0.821383\pi$$
−0.846649 + 0.532152i $$0.821383\pi$$
$$114$$ 0 0
$$115$$ 16.0000 1.49201
$$116$$ 0 0
$$117$$ −2.00000 −0.184900
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 6.00000 0.541002
$$124$$ 0 0
$$125$$ −12.0000 −1.07331
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 4.00000 0.352180
$$130$$ 0 0
$$131$$ 4.00000 0.349482 0.174741 0.984614i $$-0.444091\pi$$
0.174741 + 0.984614i $$0.444091\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 2.00000 0.172133
$$136$$ 0 0
$$137$$ −6.00000 −0.512615 −0.256307 0.966595i $$-0.582506\pi$$
−0.256307 + 0.966595i $$0.582506\pi$$
$$138$$ 0 0
$$139$$ 12.0000 1.01783 0.508913 0.860818i $$-0.330047\pi$$
0.508913 + 0.860818i $$0.330047\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 8.00000 0.668994
$$144$$ 0 0
$$145$$ −12.0000 −0.996546
$$146$$ 0 0
$$147$$ −7.00000 −0.577350
$$148$$ 0 0
$$149$$ 14.0000 1.14692 0.573462 0.819232i $$-0.305600\pi$$
0.573462 + 0.819232i $$0.305600\pi$$
$$150$$ 0 0
$$151$$ −16.0000 −1.30206 −0.651031 0.759051i $$-0.725663\pi$$
−0.651031 + 0.759051i $$0.725663\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −16.0000 −1.28515
$$156$$ 0 0
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ 0 0
$$159$$ −2.00000 −0.158610
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −12.0000 −0.939913 −0.469956 0.882690i $$-0.655730\pi$$
−0.469956 + 0.882690i $$0.655730\pi$$
$$164$$ 0 0
$$165$$ −8.00000 −0.622799
$$166$$ 0 0
$$167$$ −24.0000 −1.85718 −0.928588 0.371113i $$-0.878976\pi$$
−0.928588 + 0.371113i $$0.878976\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ −4.00000 −0.305888
$$172$$ 0 0
$$173$$ −6.00000 −0.456172 −0.228086 0.973641i $$-0.573247\pi$$
−0.228086 + 0.973641i $$0.573247\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 4.00000 0.300658
$$178$$ 0 0
$$179$$ 12.0000 0.896922 0.448461 0.893802i $$-0.351972\pi$$
0.448461 + 0.893802i $$0.351972\pi$$
$$180$$ 0 0
$$181$$ −6.00000 −0.445976 −0.222988 0.974821i $$-0.571581\pi$$
−0.222988 + 0.974821i $$0.571581\pi$$
$$182$$ 0 0
$$183$$ 2.00000 0.147844
$$184$$ 0 0
$$185$$ −12.0000 −0.882258
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ −2.00000 −0.143963 −0.0719816 0.997406i $$-0.522932\pi$$
−0.0719816 + 0.997406i $$0.522932\pi$$
$$194$$ 0 0
$$195$$ −4.00000 −0.286446
$$196$$ 0 0
$$197$$ 18.0000 1.28245 0.641223 0.767354i $$-0.278427\pi$$
0.641223 + 0.767354i $$0.278427\pi$$
$$198$$ 0 0
$$199$$ −16.0000 −1.13421 −0.567105 0.823646i $$-0.691937\pi$$
−0.567105 + 0.823646i $$0.691937\pi$$
$$200$$ 0 0
$$201$$ −4.00000 −0.282138
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 12.0000 0.838116
$$206$$ 0 0
$$207$$ 8.00000 0.556038
$$208$$ 0 0
$$209$$ 16.0000 1.10674
$$210$$ 0 0
$$211$$ 20.0000 1.37686 0.688428 0.725304i $$-0.258301\pi$$
0.688428 + 0.725304i $$0.258301\pi$$
$$212$$ 0 0
$$213$$ −8.00000 −0.548151
$$214$$ 0 0
$$215$$ 8.00000 0.545595
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −10.0000 −0.675737
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ −8.00000 −0.535720 −0.267860 0.963458i $$-0.586316\pi$$
−0.267860 + 0.963458i $$0.586316\pi$$
$$224$$ 0 0
$$225$$ −1.00000 −0.0666667
$$226$$ 0 0
$$227$$ −12.0000 −0.796468 −0.398234 0.917284i $$-0.630377\pi$$
−0.398234 + 0.917284i $$0.630377\pi$$
$$228$$ 0 0
$$229$$ 22.0000 1.45380 0.726900 0.686743i $$-0.240960\pi$$
0.726900 + 0.686743i $$0.240960\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −10.0000 −0.655122 −0.327561 0.944830i $$-0.606227\pi$$
−0.327561 + 0.944830i $$0.606227\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 8.00000 0.519656
$$238$$ 0 0
$$239$$ −16.0000 −1.03495 −0.517477 0.855697i $$-0.673129\pi$$
−0.517477 + 0.855697i $$0.673129\pi$$
$$240$$ 0 0
$$241$$ −18.0000 −1.15948 −0.579741 0.814801i $$-0.696846\pi$$
−0.579741 + 0.814801i $$0.696846\pi$$
$$242$$ 0 0
$$243$$ 1.00000 0.0641500
$$244$$ 0 0
$$245$$ −14.0000 −0.894427
$$246$$ 0 0
$$247$$ 8.00000 0.509028
$$248$$ 0 0
$$249$$ −4.00000 −0.253490
$$250$$ 0 0
$$251$$ 20.0000 1.26239 0.631194 0.775625i $$-0.282565\pi$$
0.631194 + 0.775625i $$0.282565\pi$$
$$252$$ 0 0
$$253$$ −32.0000 −2.01182
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 2.00000 0.124757 0.0623783 0.998053i $$-0.480131\pi$$
0.0623783 + 0.998053i $$0.480131\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ −6.00000 −0.371391
$$262$$ 0 0
$$263$$ −8.00000 −0.493301 −0.246651 0.969104i $$-0.579330\pi$$
−0.246651 + 0.969104i $$0.579330\pi$$
$$264$$ 0 0
$$265$$ −4.00000 −0.245718
$$266$$ 0 0
$$267$$ −6.00000 −0.367194
$$268$$ 0 0
$$269$$ 10.0000 0.609711 0.304855 0.952399i $$-0.401392\pi$$
0.304855 + 0.952399i $$0.401392\pi$$
$$270$$ 0 0
$$271$$ 8.00000 0.485965 0.242983 0.970031i $$-0.421874\pi$$
0.242983 + 0.970031i $$0.421874\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 4.00000 0.241209
$$276$$ 0 0
$$277$$ 26.0000 1.56219 0.781094 0.624413i $$-0.214662\pi$$
0.781094 + 0.624413i $$0.214662\pi$$
$$278$$ 0 0
$$279$$ −8.00000 −0.478947
$$280$$ 0 0
$$281$$ 26.0000 1.55103 0.775515 0.631329i $$-0.217490\pi$$
0.775515 + 0.631329i $$0.217490\pi$$
$$282$$ 0 0
$$283$$ 28.0000 1.66443 0.832214 0.554455i $$-0.187073\pi$$
0.832214 + 0.554455i $$0.187073\pi$$
$$284$$ 0 0
$$285$$ −8.00000 −0.473879
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 0 0
$$290$$ 0 0
$$291$$ −2.00000 −0.117242
$$292$$ 0 0
$$293$$ −18.0000 −1.05157 −0.525786 0.850617i $$-0.676229\pi$$
−0.525786 + 0.850617i $$0.676229\pi$$
$$294$$ 0 0
$$295$$ 8.00000 0.465778
$$296$$ 0 0
$$297$$ −4.00000 −0.232104
$$298$$ 0 0
$$299$$ −16.0000 −0.925304
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ −18.0000 −1.03407
$$304$$ 0 0
$$305$$ 4.00000 0.229039
$$306$$ 0 0
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ 0 0
$$309$$ 16.0000 0.910208
$$310$$ 0 0
$$311$$ 24.0000 1.36092 0.680458 0.732787i $$-0.261781\pi$$
0.680458 + 0.732787i $$0.261781\pi$$
$$312$$ 0 0
$$313$$ 6.00000 0.339140 0.169570 0.985518i $$-0.445762\pi$$
0.169570 + 0.985518i $$0.445762\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −6.00000 −0.336994 −0.168497 0.985702i $$-0.553891\pi$$
−0.168497 + 0.985702i $$0.553891\pi$$
$$318$$ 0 0
$$319$$ 24.0000 1.34374
$$320$$ 0 0
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 2.00000 0.110940
$$326$$ 0 0
$$327$$ 2.00000 0.110600
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 20.0000 1.09930 0.549650 0.835395i $$-0.314761\pi$$
0.549650 + 0.835395i $$0.314761\pi$$
$$332$$ 0 0
$$333$$ −6.00000 −0.328798
$$334$$ 0 0
$$335$$ −8.00000 −0.437087
$$336$$ 0 0
$$337$$ −18.0000 −0.980522 −0.490261 0.871576i $$-0.663099\pi$$
−0.490261 + 0.871576i $$0.663099\pi$$
$$338$$ 0 0
$$339$$ −18.0000 −0.977626
$$340$$ 0 0
$$341$$ 32.0000 1.73290
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 16.0000 0.861411
$$346$$ 0 0
$$347$$ 12.0000 0.644194 0.322097 0.946707i $$-0.395612\pi$$
0.322097 + 0.946707i $$0.395612\pi$$
$$348$$ 0 0
$$349$$ 30.0000 1.60586 0.802932 0.596071i $$-0.203272\pi$$
0.802932 + 0.596071i $$0.203272\pi$$
$$350$$ 0 0
$$351$$ −2.00000 −0.106752
$$352$$ 0 0
$$353$$ 2.00000 0.106449 0.0532246 0.998583i $$-0.483050\pi$$
0.0532246 + 0.998583i $$0.483050\pi$$
$$354$$ 0 0
$$355$$ −16.0000 −0.849192
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 5.00000 0.262432
$$364$$ 0 0
$$365$$ −20.0000 −1.04685
$$366$$ 0 0
$$367$$ 8.00000 0.417597 0.208798 0.977959i $$-0.433045\pi$$
0.208798 + 0.977959i $$0.433045\pi$$
$$368$$ 0 0
$$369$$ 6.00000 0.312348
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −10.0000 −0.517780 −0.258890 0.965907i $$-0.583357\pi$$
−0.258890 + 0.965907i $$0.583357\pi$$
$$374$$ 0 0
$$375$$ −12.0000 −0.619677
$$376$$ 0 0
$$377$$ 12.0000 0.618031
$$378$$ 0 0
$$379$$ −20.0000 −1.02733 −0.513665 0.857991i $$-0.671713\pi$$
−0.513665 + 0.857991i $$0.671713\pi$$
$$380$$ 0 0
$$381$$ −8.00000 −0.409852
$$382$$ 0 0
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 4.00000 0.203331
$$388$$ 0 0
$$389$$ −2.00000 −0.101404 −0.0507020 0.998714i $$-0.516146\pi$$
−0.0507020 + 0.998714i $$0.516146\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 4.00000 0.201773
$$394$$ 0 0
$$395$$ 16.0000 0.805047
$$396$$ 0 0
$$397$$ −14.0000 −0.702640 −0.351320 0.936255i $$-0.614267\pi$$
−0.351320 + 0.936255i $$0.614267\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 30.0000 1.49813 0.749064 0.662497i $$-0.230503\pi$$
0.749064 + 0.662497i $$0.230503\pi$$
$$402$$ 0 0
$$403$$ 16.0000 0.797017
$$404$$ 0 0
$$405$$ 2.00000 0.0993808
$$406$$ 0 0
$$407$$ 24.0000 1.18964
$$408$$ 0 0
$$409$$ −6.00000 −0.296681 −0.148340 0.988936i $$-0.547393\pi$$
−0.148340 + 0.988936i $$0.547393\pi$$
$$410$$ 0 0
$$411$$ −6.00000 −0.295958
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −8.00000 −0.392705
$$416$$ 0 0
$$417$$ 12.0000 0.587643
$$418$$ 0 0
$$419$$ −12.0000 −0.586238 −0.293119 0.956076i $$-0.594693\pi$$
−0.293119 + 0.956076i $$0.594693\pi$$
$$420$$ 0 0
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 8.00000 0.386244
$$430$$ 0 0
$$431$$ −32.0000 −1.54139 −0.770693 0.637207i $$-0.780090\pi$$
−0.770693 + 0.637207i $$0.780090\pi$$
$$432$$ 0 0
$$433$$ −14.0000 −0.672797 −0.336399 0.941720i $$-0.609209\pi$$
−0.336399 + 0.941720i $$0.609209\pi$$
$$434$$ 0 0
$$435$$ −12.0000 −0.575356
$$436$$ 0 0
$$437$$ −32.0000 −1.53077
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ 0 0
$$443$$ 20.0000 0.950229 0.475114 0.879924i $$-0.342407\pi$$
0.475114 + 0.879924i $$0.342407\pi$$
$$444$$ 0 0
$$445$$ −12.0000 −0.568855
$$446$$ 0 0
$$447$$ 14.0000 0.662177
$$448$$ 0 0
$$449$$ 14.0000 0.660701 0.330350 0.943858i $$-0.392833\pi$$
0.330350 + 0.943858i $$0.392833\pi$$
$$450$$ 0 0
$$451$$ −24.0000 −1.13012
$$452$$ 0 0
$$453$$ −16.0000 −0.751746
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −22.0000 −1.02912 −0.514558 0.857455i $$-0.672044\pi$$
−0.514558 + 0.857455i $$0.672044\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −26.0000 −1.21094 −0.605470 0.795868i $$-0.707015\pi$$
−0.605470 + 0.795868i $$0.707015\pi$$
$$462$$ 0 0
$$463$$ 8.00000 0.371792 0.185896 0.982569i $$-0.440481\pi$$
0.185896 + 0.982569i $$0.440481\pi$$
$$464$$ 0 0
$$465$$ −16.0000 −0.741982
$$466$$ 0 0
$$467$$ −36.0000 −1.66588 −0.832941 0.553362i $$-0.813345\pi$$
−0.832941 + 0.553362i $$0.813345\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ −2.00000 −0.0921551
$$472$$ 0 0
$$473$$ −16.0000 −0.735681
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ −2.00000 −0.0915737
$$478$$ 0 0
$$479$$ 16.0000 0.731059 0.365529 0.930800i $$-0.380888\pi$$
0.365529 + 0.930800i $$0.380888\pi$$
$$480$$ 0 0
$$481$$ 12.0000 0.547153
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −4.00000 −0.181631
$$486$$ 0 0
$$487$$ 32.0000 1.45006 0.725029 0.688718i $$-0.241826\pi$$
0.725029 + 0.688718i $$0.241826\pi$$
$$488$$ 0 0
$$489$$ −12.0000 −0.542659
$$490$$ 0 0
$$491$$ −12.0000 −0.541552 −0.270776 0.962642i $$-0.587280\pi$$
−0.270776 + 0.962642i $$0.587280\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ −8.00000 −0.359573
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −12.0000 −0.537194 −0.268597 0.963253i $$-0.586560\pi$$
−0.268597 + 0.963253i $$0.586560\pi$$
$$500$$ 0 0
$$501$$ −24.0000 −1.07224
$$502$$ 0 0
$$503$$ −24.0000 −1.07011 −0.535054 0.844818i $$-0.679709\pi$$
−0.535054 + 0.844818i $$0.679709\pi$$
$$504$$ 0 0
$$505$$ −36.0000 −1.60198
$$506$$ 0 0
$$507$$ −9.00000 −0.399704
$$508$$ 0 0
$$509$$ 6.00000 0.265945 0.132973 0.991120i $$-0.457548\pi$$
0.132973 + 0.991120i $$0.457548\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ −4.00000 −0.176604
$$514$$ 0 0
$$515$$ 32.0000 1.41009
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −6.00000 −0.263371
$$520$$ 0 0
$$521$$ −26.0000 −1.13908 −0.569540 0.821963i $$-0.692879\pi$$
−0.569540 + 0.821963i $$0.692879\pi$$
$$522$$ 0 0
$$523$$ 4.00000 0.174908 0.0874539 0.996169i $$-0.472127\pi$$
0.0874539 + 0.996169i $$0.472127\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 41.0000 1.78261
$$530$$ 0 0
$$531$$ 4.00000 0.173585
$$532$$ 0 0
$$533$$ −12.0000 −0.519778
$$534$$ 0 0
$$535$$ 24.0000 1.03761
$$536$$ 0 0
$$537$$ 12.0000 0.517838
$$538$$ 0 0
$$539$$ 28.0000 1.20605
$$540$$ 0 0
$$541$$ 18.0000 0.773880 0.386940 0.922105i $$-0.373532\pi$$
0.386940 + 0.922105i $$0.373532\pi$$
$$542$$ 0 0
$$543$$ −6.00000 −0.257485
$$544$$ 0 0
$$545$$ 4.00000 0.171341
$$546$$ 0 0
$$547$$ −44.0000 −1.88130 −0.940652 0.339372i $$-0.889785\pi$$
−0.940652 + 0.339372i $$0.889785\pi$$
$$548$$ 0 0
$$549$$ 2.00000 0.0853579
$$550$$ 0 0
$$551$$ 24.0000 1.02243
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ −12.0000 −0.509372
$$556$$ 0 0
$$557$$ −26.0000 −1.10166 −0.550828 0.834619i $$-0.685688\pi$$
−0.550828 + 0.834619i $$0.685688\pi$$
$$558$$ 0 0
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 28.0000 1.18006 0.590030 0.807382i $$-0.299116\pi$$
0.590030 + 0.807382i $$0.299116\pi$$
$$564$$ 0 0
$$565$$ −36.0000 −1.51453
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 10.0000 0.419222 0.209611 0.977785i $$-0.432780\pi$$
0.209611 + 0.977785i $$0.432780\pi$$
$$570$$ 0 0
$$571$$ −36.0000 −1.50655 −0.753277 0.657704i $$-0.771528\pi$$
−0.753277 + 0.657704i $$0.771528\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −8.00000 −0.333623
$$576$$ 0 0
$$577$$ 2.00000 0.0832611 0.0416305 0.999133i $$-0.486745\pi$$
0.0416305 + 0.999133i $$0.486745\pi$$
$$578$$ 0 0
$$579$$ −2.00000 −0.0831172
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 8.00000 0.331326
$$584$$ 0 0
$$585$$ −4.00000 −0.165380
$$586$$ 0 0
$$587$$ −44.0000 −1.81607 −0.908037 0.418890i $$-0.862419\pi$$
−0.908037 + 0.418890i $$0.862419\pi$$
$$588$$ 0 0
$$589$$ 32.0000 1.31854
$$590$$ 0 0
$$591$$ 18.0000 0.740421
$$592$$ 0 0
$$593$$ −14.0000 −0.574911 −0.287456 0.957794i $$-0.592809\pi$$
−0.287456 + 0.957794i $$0.592809\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −16.0000 −0.654836
$$598$$ 0 0
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ 38.0000 1.55005 0.775026 0.631929i $$-0.217737\pi$$
0.775026 + 0.631929i $$0.217737\pi$$
$$602$$ 0 0
$$603$$ −4.00000 −0.162893
$$604$$ 0 0
$$605$$ 10.0000 0.406558
$$606$$ 0 0
$$607$$ 40.0000 1.62355 0.811775 0.583970i $$-0.198502\pi$$
0.811775 + 0.583970i $$0.198502\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 38.0000 1.53481 0.767403 0.641165i $$-0.221549\pi$$
0.767403 + 0.641165i $$0.221549\pi$$
$$614$$ 0 0
$$615$$ 12.0000 0.483887
$$616$$ 0 0
$$617$$ −42.0000 −1.69086 −0.845428 0.534089i $$-0.820655\pi$$
−0.845428 + 0.534089i $$0.820655\pi$$
$$618$$ 0 0
$$619$$ 44.0000 1.76851 0.884255 0.467005i $$-0.154667\pi$$
0.884255 + 0.467005i $$0.154667\pi$$
$$620$$ 0 0
$$621$$ 8.00000 0.321029
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −19.0000 −0.760000
$$626$$ 0 0
$$627$$ 16.0000 0.638978
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 16.0000 0.636950 0.318475 0.947931i $$-0.396829\pi$$
0.318475 + 0.947931i $$0.396829\pi$$
$$632$$ 0 0
$$633$$ 20.0000 0.794929
$$634$$ 0 0
$$635$$ −16.0000 −0.634941
$$636$$ 0 0
$$637$$ 14.0000 0.554700
$$638$$ 0 0
$$639$$ −8.00000 −0.316475
$$640$$ 0 0
$$641$$ 14.0000 0.552967 0.276483 0.961019i $$-0.410831\pi$$
0.276483 + 0.961019i $$0.410831\pi$$
$$642$$ 0 0
$$643$$ −12.0000 −0.473234 −0.236617 0.971603i $$-0.576039\pi$$
−0.236617 + 0.971603i $$0.576039\pi$$
$$644$$ 0 0
$$645$$ 8.00000 0.315000
$$646$$ 0 0
$$647$$ 8.00000 0.314512 0.157256 0.987558i $$-0.449735\pi$$
0.157256 + 0.987558i $$0.449735\pi$$
$$648$$ 0 0
$$649$$ −16.0000 −0.628055
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −6.00000 −0.234798 −0.117399 0.993085i $$-0.537456\pi$$
−0.117399 + 0.993085i $$0.537456\pi$$
$$654$$ 0 0
$$655$$ 8.00000 0.312586
$$656$$ 0 0
$$657$$ −10.0000 −0.390137
$$658$$ 0 0
$$659$$ 12.0000 0.467454 0.233727 0.972302i $$-0.424908\pi$$
0.233727 + 0.972302i $$0.424908\pi$$
$$660$$ 0 0
$$661$$ −10.0000 −0.388955 −0.194477 0.980907i $$-0.562301\pi$$
−0.194477 + 0.980907i $$0.562301\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −48.0000 −1.85857
$$668$$ 0 0
$$669$$ −8.00000 −0.309298
$$670$$ 0 0
$$671$$ −8.00000 −0.308837
$$672$$ 0 0
$$673$$ −34.0000 −1.31060 −0.655302 0.755367i $$-0.727459\pi$$
−0.655302 + 0.755367i $$0.727459\pi$$
$$674$$ 0 0
$$675$$ −1.00000 −0.0384900
$$676$$ 0 0
$$677$$ 2.00000 0.0768662 0.0384331 0.999261i $$-0.487763\pi$$
0.0384331 + 0.999261i $$0.487763\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −12.0000 −0.459841
$$682$$ 0 0
$$683$$ −4.00000 −0.153056 −0.0765279 0.997067i $$-0.524383\pi$$
−0.0765279 + 0.997067i $$0.524383\pi$$
$$684$$ 0 0
$$685$$ −12.0000 −0.458496
$$686$$ 0 0
$$687$$ 22.0000 0.839352
$$688$$ 0 0
$$689$$ 4.00000 0.152388
$$690$$ 0 0
$$691$$ 4.00000 0.152167 0.0760836 0.997101i $$-0.475758\pi$$
0.0760836 + 0.997101i $$0.475758\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 24.0000 0.910372
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ −10.0000 −0.378235
$$700$$ 0 0
$$701$$ 6.00000 0.226617 0.113308 0.993560i $$-0.463855\pi$$
0.113308 + 0.993560i $$0.463855\pi$$
$$702$$ 0 0
$$703$$ 24.0000 0.905177
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 10.0000 0.375558 0.187779 0.982211i $$-0.439871\pi$$
0.187779 + 0.982211i $$0.439871\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ 0 0
$$713$$ −64.0000 −2.39682
$$714$$ 0 0
$$715$$ 16.0000 0.598366
$$716$$ 0 0
$$717$$ −16.0000 −0.597531
$$718$$ 0 0
$$719$$ 32.0000 1.19340 0.596699 0.802465i $$-0.296479\pi$$
0.596699 + 0.802465i $$0.296479\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ −18.0000 −0.669427
$$724$$ 0 0
$$725$$ 6.00000 0.222834
$$726$$ 0 0
$$727$$ 48.0000 1.78022 0.890111 0.455744i $$-0.150627\pi$$
0.890111 + 0.455744i $$0.150627\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 14.0000 0.517102 0.258551 0.965998i $$-0.416755\pi$$
0.258551 + 0.965998i $$0.416755\pi$$
$$734$$ 0 0
$$735$$ −14.0000 −0.516398
$$736$$ 0 0
$$737$$ 16.0000 0.589368
$$738$$ 0 0
$$739$$ −4.00000 −0.147142 −0.0735712 0.997290i $$-0.523440\pi$$
−0.0735712 + 0.997290i $$0.523440\pi$$
$$740$$ 0 0
$$741$$ 8.00000 0.293887
$$742$$ 0 0
$$743$$ 8.00000 0.293492 0.146746 0.989174i $$-0.453120\pi$$
0.146746 + 0.989174i $$0.453120\pi$$
$$744$$ 0 0
$$745$$ 28.0000 1.02584
$$746$$ 0 0
$$747$$ −4.00000 −0.146352
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −24.0000 −0.875772 −0.437886 0.899030i $$-0.644273\pi$$
−0.437886 + 0.899030i $$0.644273\pi$$
$$752$$ 0 0
$$753$$ 20.0000 0.728841
$$754$$ 0 0
$$755$$ −32.0000 −1.16460
$$756$$ 0 0
$$757$$ 38.0000 1.38113 0.690567 0.723269i $$-0.257361\pi$$
0.690567 + 0.723269i $$0.257361\pi$$
$$758$$ 0 0
$$759$$ −32.0000 −1.16153
$$760$$ 0 0
$$761$$ −22.0000 −0.797499 −0.398750 0.917060i $$-0.630556\pi$$
−0.398750 + 0.917060i $$0.630556\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −8.00000 −0.288863
$$768$$ 0 0
$$769$$ 2.00000 0.0721218 0.0360609 0.999350i $$-0.488519\pi$$
0.0360609 + 0.999350i $$0.488519\pi$$
$$770$$ 0 0
$$771$$ 2.00000 0.0720282
$$772$$ 0 0
$$773$$ −18.0000 −0.647415 −0.323708 0.946157i $$-0.604929\pi$$
−0.323708 + 0.946157i $$0.604929\pi$$
$$774$$ 0 0
$$775$$ 8.00000 0.287368
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −24.0000 −0.859889
$$780$$ 0 0
$$781$$ 32.0000 1.14505
$$782$$ 0 0
$$783$$ −6.00000 −0.214423
$$784$$ 0 0
$$785$$ −4.00000 −0.142766
$$786$$ 0 0
$$787$$ −28.0000 −0.998092 −0.499046 0.866575i $$-0.666316\pi$$
−0.499046 + 0.866575i $$0.666316\pi$$
$$788$$ 0 0
$$789$$ −8.00000 −0.284808
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −4.00000 −0.142044
$$794$$ 0 0
$$795$$ −4.00000 −0.141865
$$796$$ 0 0
$$797$$ 22.0000 0.779280 0.389640 0.920967i $$-0.372599\pi$$
0.389640 + 0.920967i $$0.372599\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ 40.0000 1.41157
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 10.0000 0.352017
$$808$$ 0 0
$$809$$ −26.0000 −0.914111 −0.457056 0.889438i $$-0.651096\pi$$
−0.457056 + 0.889438i $$0.651096\pi$$
$$810$$ 0 0
$$811$$ −4.00000 −0.140459 −0.0702295 0.997531i $$-0.522373\pi$$
−0.0702295 + 0.997531i $$0.522373\pi$$
$$812$$ 0 0
$$813$$ 8.00000 0.280572
$$814$$ 0 0
$$815$$ −24.0000 −0.840683
$$816$$ 0 0
$$817$$ −16.0000 −0.559769
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −30.0000 −1.04701 −0.523504 0.852023i $$-0.675375\pi$$
−0.523504 + 0.852023i $$0.675375\pi$$
$$822$$ 0 0
$$823$$ 16.0000 0.557725 0.278862 0.960331i $$-0.410043\pi$$
0.278862 + 0.960331i $$0.410043\pi$$
$$824$$ 0 0
$$825$$ 4.00000 0.139262
$$826$$ 0 0
$$827$$ 28.0000 0.973655 0.486828 0.873498i $$-0.338154\pi$$
0.486828 + 0.873498i $$0.338154\pi$$
$$828$$ 0 0
$$829$$ −50.0000 −1.73657 −0.868286 0.496064i $$-0.834778\pi$$
−0.868286 + 0.496064i $$0.834778\pi$$
$$830$$ 0 0
$$831$$ 26.0000 0.901930
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ −48.0000 −1.66111
$$836$$ 0 0
$$837$$ −8.00000 −0.276520
$$838$$ 0 0
$$839$$ 24.0000 0.828572 0.414286 0.910147i $$-0.364031\pi$$
0.414286 + 0.910147i $$0.364031\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 26.0000 0.895488
$$844$$ 0 0
$$845$$ −18.0000 −0.619219
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 28.0000 0.960958
$$850$$ 0 0
$$851$$ −48.0000 −1.64542
$$852$$ 0 0
$$853$$ 10.0000 0.342393 0.171197 0.985237i $$-0.445237\pi$$
0.171197 + 0.985237i $$0.445237\pi$$
$$854$$ 0 0
$$855$$ −8.00000 −0.273594
$$856$$ 0 0
$$857$$ −42.0000 −1.43469 −0.717346 0.696717i $$-0.754643\pi$$
−0.717346 + 0.696717i $$0.754643\pi$$
$$858$$ 0 0
$$859$$ −12.0000 −0.409435 −0.204717 0.978821i $$-0.565628\pi$$
−0.204717 + 0.978821i $$0.565628\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −32.0000 −1.08929 −0.544646 0.838666i $$-0.683336\pi$$
−0.544646 + 0.838666i $$0.683336\pi$$
$$864$$ 0 0
$$865$$ −12.0000 −0.408012
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −32.0000 −1.08553
$$870$$ 0 0
$$871$$ 8.00000 0.271070
$$872$$ 0 0
$$873$$ −2.00000 −0.0676897
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 18.0000 0.607817 0.303908 0.952701i $$-0.401708\pi$$
0.303908 + 0.952701i $$0.401708\pi$$
$$878$$ 0 0
$$879$$ −18.0000 −0.607125
$$880$$ 0 0
$$881$$ −50.0000 −1.68454 −0.842271 0.539054i $$-0.818782\pi$$
−0.842271 + 0.539054i $$0.818782\pi$$
$$882$$ 0 0
$$883$$ −4.00000 −0.134611 −0.0673054 0.997732i $$-0.521440\pi$$
−0.0673054 + 0.997732i $$0.521440\pi$$
$$884$$ 0 0
$$885$$ 8.00000 0.268917
$$886$$ 0 0
$$887$$ −8.00000 −0.268614 −0.134307 0.990940i $$-0.542881\pi$$
−0.134307 + 0.990940i $$0.542881\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ −4.00000 −0.134005
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 24.0000 0.802232
$$896$$ 0 0
$$897$$ −16.0000 −0.534224
$$898$$ 0 0
$$899$$ 48.0000 1.60089
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −12.0000 −0.398893
$$906$$ 0 0
$$907$$ −4.00000 −0.132818 −0.0664089 0.997792i $$-0.521154\pi$$
−0.0664089 + 0.997792i $$0.521154\pi$$
$$908$$ 0 0
$$909$$ −18.0000 −0.597022
$$910$$ 0 0
$$911$$ −16.0000 −0.530104 −0.265052 0.964234i $$-0.585389\pi$$
−0.265052 + 0.964234i $$0.585389\pi$$
$$912$$ 0 0
$$913$$ 16.0000 0.529523
$$914$$ 0 0
$$915$$ 4.00000 0.132236
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 16.0000 0.527791 0.263896 0.964551i $$-0.414993\pi$$
0.263896 + 0.964551i $$0.414993\pi$$
$$920$$ 0 0
$$921$$ 12.0000 0.395413
$$922$$ 0 0
$$923$$ 16.0000 0.526646
$$924$$ 0 0
$$925$$ 6.00000 0.197279
$$926$$ 0 0
$$927$$ 16.0000 0.525509
$$928$$ 0 0
$$929$$ −50.0000 −1.64045 −0.820223 0.572043i $$-0.806151\pi$$
−0.820223 + 0.572043i $$0.806151\pi$$
$$930$$ 0 0
$$931$$ 28.0000 0.917663
$$932$$ 0 0
$$933$$ 24.0000 0.785725
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 42.0000 1.37208 0.686040 0.727564i $$-0.259347\pi$$
0.686040 + 0.727564i $$0.259347\pi$$
$$938$$ 0 0
$$939$$ 6.00000 0.195803
$$940$$ 0 0
$$941$$ −6.00000 −0.195594 −0.0977972 0.995206i $$-0.531180\pi$$
−0.0977972 + 0.995206i $$0.531180\pi$$
$$942$$ 0 0
$$943$$ 48.0000 1.56310
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −12.0000 −0.389948 −0.194974 0.980808i $$-0.562462\pi$$
−0.194974 + 0.980808i $$0.562462\pi$$
$$948$$ 0 0
$$949$$ 20.0000 0.649227
$$950$$ 0 0
$$951$$ −6.00000 −0.194563
$$952$$ 0 0
$$953$$ −54.0000 −1.74923 −0.874616 0.484817i $$-0.838886\pi$$
−0.874616 + 0.484817i $$0.838886\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 24.0000 0.775810
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ 12.0000 0.386695
$$964$$ 0 0
$$965$$ −4.00000 −0.128765
$$966$$ 0 0
$$967$$ −16.0000 −0.514525 −0.257263 0.966342i $$-0.582821\pi$$
−0.257263 + 0.966342i $$0.582821\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 36.0000 1.15529 0.577647 0.816286i $$-0.303971\pi$$
0.577647 + 0.816286i $$0.303971\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 2.00000 0.0640513
$$976$$ 0 0
$$977$$ −30.0000 −0.959785 −0.479893 0.877327i $$-0.659324\pi$$
−0.479893 + 0.877327i $$0.659324\pi$$
$$978$$ 0 0
$$979$$ 24.0000 0.767043
$$980$$ 0 0
$$981$$ 2.00000 0.0638551
$$982$$ 0 0
$$983$$ 24.0000 0.765481 0.382741 0.923856i $$-0.374980\pi$$
0.382741 + 0.923856i $$0.374980\pi$$
$$984$$ 0 0
$$985$$ 36.0000 1.14706
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 32.0000 1.01754
$$990$$ 0 0
$$991$$ −40.0000 −1.27064 −0.635321 0.772248i $$-0.719132\pi$$
−0.635321 + 0.772248i $$0.719132\pi$$
$$992$$ 0 0
$$993$$ 20.0000 0.634681
$$994$$ 0 0
$$995$$ −32.0000 −1.01447
$$996$$ 0 0
$$997$$ 26.0000 0.823428 0.411714 0.911313i $$-0.364930\pi$$
0.411714 + 0.911313i $$0.364930\pi$$
$$998$$ 0 0
$$999$$ −6.00000 −0.189832
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6936.2.a.p.1.1 1
17.16 even 2 24.2.a.a.1.1 1
51.50 odd 2 72.2.a.a.1.1 1
68.67 odd 2 48.2.a.a.1.1 1
85.33 odd 4 600.2.f.e.49.1 2
85.67 odd 4 600.2.f.e.49.2 2
85.84 even 2 600.2.a.h.1.1 1
119.16 even 6 1176.2.q.i.361.1 2
119.33 odd 6 1176.2.q.a.361.1 2
119.67 even 6 1176.2.q.i.961.1 2
119.101 odd 6 1176.2.q.a.961.1 2
119.118 odd 2 1176.2.a.i.1.1 1
136.67 odd 2 192.2.a.b.1.1 1
136.101 even 2 192.2.a.d.1.1 1
153.16 even 6 648.2.i.g.433.1 2
153.50 odd 6 648.2.i.b.217.1 2
153.67 even 6 648.2.i.g.217.1 2
153.101 odd 6 648.2.i.b.433.1 2
187.186 odd 2 2904.2.a.c.1.1 1
204.203 even 2 144.2.a.b.1.1 1
221.135 odd 4 4056.2.c.e.337.2 2
221.203 odd 4 4056.2.c.e.337.1 2
221.220 even 2 4056.2.a.i.1.1 1
255.152 even 4 1800.2.f.c.649.2 2
255.203 even 4 1800.2.f.c.649.1 2
255.254 odd 2 1800.2.a.m.1.1 1
272.67 odd 4 768.2.d.d.385.2 2
272.101 even 4 768.2.d.e.385.2 2
272.203 odd 4 768.2.d.d.385.1 2
272.237 even 4 768.2.d.e.385.1 2
323.322 odd 2 8664.2.a.j.1.1 1
340.67 even 4 1200.2.f.b.49.1 2
340.203 even 4 1200.2.f.b.49.2 2
340.339 odd 2 1200.2.a.d.1.1 1
357.101 even 6 3528.2.s.y.3313.1 2
357.152 even 6 3528.2.s.y.361.1 2
357.254 odd 6 3528.2.s.j.361.1 2
357.305 odd 6 3528.2.s.j.3313.1 2
357.356 even 2 3528.2.a.d.1.1 1
408.101 odd 2 576.2.a.d.1.1 1
408.203 even 2 576.2.a.b.1.1 1
476.67 odd 6 2352.2.q.l.961.1 2
476.135 odd 6 2352.2.q.l.1537.1 2
476.271 even 6 2352.2.q.r.1537.1 2
476.339 even 6 2352.2.q.r.961.1 2
476.475 even 2 2352.2.a.i.1.1 1
561.560 even 2 8712.2.a.u.1.1 1
612.67 odd 6 1296.2.i.m.865.1 2
612.203 even 6 1296.2.i.e.865.1 2
612.407 even 6 1296.2.i.e.433.1 2
612.475 odd 6 1296.2.i.m.433.1 2
680.67 even 4 4800.2.f.bg.3649.2 2
680.203 even 4 4800.2.f.bg.3649.1 2
680.237 odd 4 4800.2.f.d.3649.1 2
680.339 odd 2 4800.2.a.cc.1.1 1
680.373 odd 4 4800.2.f.d.3649.2 2
680.509 even 2 4800.2.a.q.1.1 1
748.747 even 2 5808.2.a.s.1.1 1
816.101 odd 4 2304.2.d.i.1153.2 2
816.203 even 4 2304.2.d.k.1153.2 2
816.509 odd 4 2304.2.d.i.1153.1 2
816.611 even 4 2304.2.d.k.1153.1 2
884.883 odd 2 8112.2.a.be.1.1 1
952.237 odd 2 9408.2.a.h.1.1 1
952.475 even 2 9408.2.a.cc.1.1 1
1020.203 odd 4 3600.2.f.r.2449.1 2
1020.407 odd 4 3600.2.f.r.2449.2 2
1020.1019 even 2 3600.2.a.v.1.1 1
1428.1427 odd 2 7056.2.a.q.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
24.2.a.a.1.1 1 17.16 even 2
48.2.a.a.1.1 1 68.67 odd 2
72.2.a.a.1.1 1 51.50 odd 2
144.2.a.b.1.1 1 204.203 even 2
192.2.a.b.1.1 1 136.67 odd 2
192.2.a.d.1.1 1 136.101 even 2
576.2.a.b.1.1 1 408.203 even 2
576.2.a.d.1.1 1 408.101 odd 2
600.2.a.h.1.1 1 85.84 even 2
600.2.f.e.49.1 2 85.33 odd 4
600.2.f.e.49.2 2 85.67 odd 4
648.2.i.b.217.1 2 153.50 odd 6
648.2.i.b.433.1 2 153.101 odd 6
648.2.i.g.217.1 2 153.67 even 6
648.2.i.g.433.1 2 153.16 even 6
768.2.d.d.385.1 2 272.203 odd 4
768.2.d.d.385.2 2 272.67 odd 4
768.2.d.e.385.1 2 272.237 even 4
768.2.d.e.385.2 2 272.101 even 4
1176.2.a.i.1.1 1 119.118 odd 2
1176.2.q.a.361.1 2 119.33 odd 6
1176.2.q.a.961.1 2 119.101 odd 6
1176.2.q.i.361.1 2 119.16 even 6
1176.2.q.i.961.1 2 119.67 even 6
1200.2.a.d.1.1 1 340.339 odd 2
1200.2.f.b.49.1 2 340.67 even 4
1200.2.f.b.49.2 2 340.203 even 4
1296.2.i.e.433.1 2 612.407 even 6
1296.2.i.e.865.1 2 612.203 even 6
1296.2.i.m.433.1 2 612.475 odd 6
1296.2.i.m.865.1 2 612.67 odd 6
1800.2.a.m.1.1 1 255.254 odd 2
1800.2.f.c.649.1 2 255.203 even 4
1800.2.f.c.649.2 2 255.152 even 4
2304.2.d.i.1153.1 2 816.509 odd 4
2304.2.d.i.1153.2 2 816.101 odd 4
2304.2.d.k.1153.1 2 816.611 even 4
2304.2.d.k.1153.2 2 816.203 even 4
2352.2.a.i.1.1 1 476.475 even 2
2352.2.q.l.961.1 2 476.67 odd 6
2352.2.q.l.1537.1 2 476.135 odd 6
2352.2.q.r.961.1 2 476.339 even 6
2352.2.q.r.1537.1 2 476.271 even 6
2904.2.a.c.1.1 1 187.186 odd 2
3528.2.a.d.1.1 1 357.356 even 2
3528.2.s.j.361.1 2 357.254 odd 6
3528.2.s.j.3313.1 2 357.305 odd 6
3528.2.s.y.361.1 2 357.152 even 6
3528.2.s.y.3313.1 2 357.101 even 6
3600.2.a.v.1.1 1 1020.1019 even 2
3600.2.f.r.2449.1 2 1020.203 odd 4
3600.2.f.r.2449.2 2 1020.407 odd 4
4056.2.a.i.1.1 1 221.220 even 2
4056.2.c.e.337.1 2 221.203 odd 4
4056.2.c.e.337.2 2 221.135 odd 4
4800.2.a.q.1.1 1 680.509 even 2
4800.2.a.cc.1.1 1 680.339 odd 2
4800.2.f.d.3649.1 2 680.237 odd 4
4800.2.f.d.3649.2 2 680.373 odd 4
4800.2.f.bg.3649.1 2 680.203 even 4
4800.2.f.bg.3649.2 2 680.67 even 4
5808.2.a.s.1.1 1 748.747 even 2
6936.2.a.p.1.1 1 1.1 even 1 trivial
7056.2.a.q.1.1 1 1428.1427 odd 2
8112.2.a.be.1.1 1 884.883 odd 2
8664.2.a.j.1.1 1 323.322 odd 2
8712.2.a.u.1.1 1 561.560 even 2
9408.2.a.h.1.1 1 952.237 odd 2
9408.2.a.cc.1.1 1 952.475 even 2