Properties

Label 6930.2.a.x.1.1
Level $6930$
Weight $2$
Character 6930.1
Self dual yes
Analytic conductor $55.336$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6930.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} -1.00000 q^{10} +1.00000 q^{11} -6.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +2.00000 q^{17} -4.00000 q^{19} -1.00000 q^{20} +1.00000 q^{22} +4.00000 q^{23} +1.00000 q^{25} -6.00000 q^{26} +1.00000 q^{28} -6.00000 q^{29} +1.00000 q^{32} +2.00000 q^{34} -1.00000 q^{35} -2.00000 q^{37} -4.00000 q^{38} -1.00000 q^{40} +6.00000 q^{41} -4.00000 q^{43} +1.00000 q^{44} +4.00000 q^{46} -4.00000 q^{47} +1.00000 q^{49} +1.00000 q^{50} -6.00000 q^{52} +2.00000 q^{53} -1.00000 q^{55} +1.00000 q^{56} -6.00000 q^{58} -12.0000 q^{59} -2.00000 q^{61} +1.00000 q^{64} +6.00000 q^{65} -8.00000 q^{67} +2.00000 q^{68} -1.00000 q^{70} +8.00000 q^{71} -10.0000 q^{73} -2.00000 q^{74} -4.00000 q^{76} +1.00000 q^{77} -8.00000 q^{79} -1.00000 q^{80} +6.00000 q^{82} +12.0000 q^{83} -2.00000 q^{85} -4.00000 q^{86} +1.00000 q^{88} -10.0000 q^{89} -6.00000 q^{91} +4.00000 q^{92} -4.00000 q^{94} +4.00000 q^{95} -6.00000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −6.00000 −0.832050
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) −1.00000 −0.119523
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) −4.00000 −0.412568
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 6.00000 0.526235
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) −1.00000 −0.0845154
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) −6.00000 −0.501745
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 1.00000 0.0805823
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −10.0000 −0.749532
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) −6.00000 −0.444750
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −14.0000 −0.985037
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) −6.00000 −0.416025
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) −1.00000 −0.0674200
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) −4.00000 −0.263752
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) 24.0000 1.52708
\(248\) 0 0
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 6.00000 0.372104
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) −4.00000 −0.245256
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) −1.00000 −0.0597614
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 6.00000 0.352332
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) −24.0000 −1.38796
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 4.00000 0.222911
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 23.0000 1.25104
\(339\) 0 0
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 0 0
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) −20.0000 −1.05703
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 6.00000 0.315353
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) 2.00000 0.103975
\(371\) 2.00000 0.103835
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 36.0000 1.85409
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 4.00000 0.205196
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) 28.0000 1.43073 0.715367 0.698749i \(-0.246260\pi\)
0.715367 + 0.698749i \(0.246260\pi\)
\(384\) 0 0
\(385\) −1.00000 −0.0509647
\(386\) 6.00000 0.305392
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −34.0000 −1.69788 −0.848939 0.528490i \(-0.822758\pi\)
−0.848939 + 0.528490i \(0.822758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −14.0000 −0.696526
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) −2.00000 −0.0991363
\(408\) 0 0
\(409\) 34.0000 1.68119 0.840596 0.541663i \(-0.182205\pi\)
0.840596 + 0.541663i \(0.182205\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) −6.00000 −0.294174
\(417\) 0 0
\(418\) −4.00000 −0.195646
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) 2.00000 0.0971286
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) −2.00000 −0.0967868
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 4.00000 0.192897
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) −16.0000 −0.765384
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) −16.0000 −0.760183 −0.380091 0.924949i \(-0.624107\pi\)
−0.380091 + 0.924949i \(0.624107\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) −4.00000 −0.189405
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 6.00000 0.282216
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 6.00000 0.281284
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 6.00000 0.280362
\(459\) 0 0
\(460\) −4.00000 −0.186501
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 4.00000 0.184506
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 24.0000 1.09773
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 6.00000 0.272446
\(486\) 0 0
\(487\) −28.0000 −1.26880 −0.634401 0.773004i \(-0.718753\pi\)
−0.634401 + 0.773004i \(0.718753\pi\)
\(488\) −2.00000 −0.0905357
\(489\) 0 0
\(490\) −1.00000 −0.0451754
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −20.0000 −0.892644
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 4.00000 0.177822
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) 2.00000 0.0886484 0.0443242 0.999017i \(-0.485887\pi\)
0.0443242 + 0.999017i \(0.485887\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) −4.00000 −0.175920
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) 6.00000 0.263117
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −2.00000 −0.0868744
\(531\) 0 0
\(532\) −4.00000 −0.173422
\(533\) −36.0000 −1.55933
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) 2.00000 0.0862261
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) −18.0000 −0.768922
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) 24.0000 1.02243
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 26.0000 1.10463
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) −1.00000 −0.0422577
\(561\) 0 0
\(562\) 30.0000 1.26547
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −42.0000 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) −6.00000 −0.250873
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 6.00000 0.249136
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 2.00000 0.0828315
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 12.0000 0.494032
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) −24.0000 −0.981433
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) −4.00000 −0.163028
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 2.00000 0.0809776
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) 34.0000 1.37325 0.686624 0.727013i \(-0.259092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 1.00000 0.0402911
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.0000 −0.400642
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −8.00000 −0.318223
\(633\) 0 0
\(634\) −14.0000 −0.556011
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) −6.00000 −0.237542
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 32.0000 1.26196 0.630978 0.775800i \(-0.282654\pi\)
0.630978 + 0.775800i \(0.282654\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) −6.00000 −0.235339
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) −4.00000 −0.155936
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) 0 0
\(679\) −6.00000 −0.230259
\(680\) −2.00000 −0.0766965
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) −34.0000 −1.28692
\(699\) 0 0
\(700\) 1.00000 0.0377964
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) −14.0000 −0.526524
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) −8.00000 −0.300235
\(711\) 0 0
\(712\) −10.0000 −0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) −20.0000 −0.747435
\(717\) 0 0
\(718\) 16.0000 0.597115
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 6.00000 0.222988
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) −6.00000 −0.222375
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) −46.0000 −1.69905 −0.849524 0.527549i \(-0.823111\pi\)
−0.849524 + 0.527549i \(0.823111\pi\)
\(734\) 20.0000 0.738213
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 2.00000 0.0735215
\(741\) 0 0
\(742\) 2.00000 0.0734223
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 34.0000 1.24483
\(747\) 0 0
\(748\) 2.00000 0.0731272
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −4.00000 −0.145865
\(753\) 0 0
\(754\) 36.0000 1.31104
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) −12.0000 −0.435860
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) 14.0000 0.506834
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 28.0000 1.01168
\(767\) 72.0000 2.59977
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) −1.00000 −0.0360375
\(771\) 0 0
\(772\) 6.00000 0.215945
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) 8.00000 0.286079
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 2.00000 0.0713831
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) −18.0000 −0.641223
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 12.0000 0.426132
\(794\) −34.0000 −1.20661
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −34.0000 −1.20058
\(803\) −10.0000 −0.352892
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) −14.0000 −0.492518
\(809\) 46.0000 1.61727 0.808637 0.588308i \(-0.200206\pi\)
0.808637 + 0.588308i \(0.200206\pi\)
\(810\) 0 0
\(811\) 52.0000 1.82597 0.912983 0.407997i \(-0.133772\pi\)
0.912983 + 0.407997i \(0.133772\pi\)
\(812\) −6.00000 −0.210559
\(813\) 0 0
\(814\) −2.00000 −0.0701000
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 34.0000 1.18878
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) −12.0000 −0.416526
\(831\) 0 0
\(832\) −6.00000 −0.208013
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) 0 0
\(836\) −4.00000 −0.138343
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −26.0000 −0.896019
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) −23.0000 −0.791224
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) 2.00000 0.0685994
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) −2.00000 −0.0684386
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 0 0
\(859\) −44.0000 −1.50126 −0.750630 0.660722i \(-0.770250\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) 4.00000 0.136399
\(861\) 0 0
\(862\) −8.00000 −0.272481
\(863\) 52.0000 1.77010 0.885050 0.465495i \(-0.154124\pi\)
0.885050 + 0.465495i \(0.154124\pi\)
\(864\) 0 0
\(865\) −14.0000 −0.476014
\(866\) −6.00000 −0.203888
\(867\) 0 0
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 14.0000 0.474100
\(873\) 0 0
\(874\) −16.0000 −0.541208
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) −24.0000 −0.809961
\(879\) 0 0
\(880\) −1.00000 −0.0337100
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) 56.0000 1.88455 0.942275 0.334840i \(-0.108682\pi\)
0.942275 + 0.334840i \(0.108682\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) −16.0000 −0.537531
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 10.0000 0.335201
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) 16.0000 0.535420
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −2.00000 −0.0667409
\(899\) 0 0
\(900\) 0 0
\(901\) 4.00000 0.133259
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) 32.0000 1.06254 0.531271 0.847202i \(-0.321714\pi\)
0.531271 + 0.847202i \(0.321714\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) 6.00000 0.198898
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) −26.0000 −0.860004
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 12.0000 0.396275
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) −4.00000 −0.131876
\(921\) 0 0
\(922\) −6.00000 −0.197599
\(923\) −48.0000 −1.57994
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 20.0000 0.657241
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) 10.0000 0.327561
\(933\) 0 0
\(934\) 0 0
\(935\) −2.00000 −0.0654070
\(936\) 0 0
\(937\) −50.0000 −1.63343 −0.816714 0.577042i \(-0.804207\pi\)
−0.816714 + 0.577042i \(0.804207\pi\)
\(938\) −8.00000 −0.261209
\(939\) 0 0
\(940\) 4.00000 0.130466
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) 0 0
\(949\) 60.0000 1.94768
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) 2.00000 0.0648204
\(953\) −22.0000 −0.712650 −0.356325 0.934362i \(-0.615970\pi\)
−0.356325 + 0.934362i \(0.615970\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) −18.0000 −0.581250
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 12.0000 0.386896
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 6.00000 0.192648
\(971\) 52.0000 1.66876 0.834380 0.551190i \(-0.185826\pi\)
0.834380 + 0.551190i \(0.185826\pi\)
\(972\) 0 0
\(973\) −20.0000 −0.641171
\(974\) −28.0000 −0.897178
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 0 0
\(979\) −10.0000 −0.319601
\(980\) −1.00000 −0.0319438
\(981\) 0 0
\(982\) −20.0000 −0.638226
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) 24.0000 0.763542
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) 28.0000 0.886325
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6930.2.a.x.1.1 1
3.2 odd 2 770.2.a.d.1.1 1
12.11 even 2 6160.2.a.e.1.1 1
15.2 even 4 3850.2.c.m.1849.1 2
15.8 even 4 3850.2.c.m.1849.2 2
15.14 odd 2 3850.2.a.s.1.1 1
21.20 even 2 5390.2.a.j.1.1 1
33.32 even 2 8470.2.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
770.2.a.d.1.1 1 3.2 odd 2
3850.2.a.s.1.1 1 15.14 odd 2
3850.2.c.m.1849.1 2 15.2 even 4
3850.2.c.m.1849.2 2 15.8 even 4
5390.2.a.j.1.1 1 21.20 even 2
6160.2.a.e.1.1 1 12.11 even 2
6930.2.a.x.1.1 1 1.1 even 1 trivial
8470.2.a.z.1.1 1 33.32 even 2