Properties

Label 6930.2.a.v.1.1
Level $6930$
Weight $2$
Character 6930.1
Self dual yes
Analytic conductor $55.336$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6930.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{7} +1.00000 q^{8} -1.00000 q^{10} +1.00000 q^{11} +2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{19} -1.00000 q^{20} +1.00000 q^{22} -4.00000 q^{23} +1.00000 q^{25} +2.00000 q^{26} -1.00000 q^{28} -10.0000 q^{29} -4.00000 q^{31} +1.00000 q^{32} +1.00000 q^{35} -4.00000 q^{37} -2.00000 q^{38} -1.00000 q^{40} +6.00000 q^{41} +6.00000 q^{43} +1.00000 q^{44} -4.00000 q^{46} +6.00000 q^{47} +1.00000 q^{49} +1.00000 q^{50} +2.00000 q^{52} -6.00000 q^{53} -1.00000 q^{55} -1.00000 q^{56} -10.0000 q^{58} -12.0000 q^{59} -4.00000 q^{62} +1.00000 q^{64} -2.00000 q^{65} +2.00000 q^{67} +1.00000 q^{70} +2.00000 q^{71} -10.0000 q^{73} -4.00000 q^{74} -2.00000 q^{76} -1.00000 q^{77} -1.00000 q^{80} +6.00000 q^{82} -16.0000 q^{83} +6.00000 q^{86} +1.00000 q^{88} +18.0000 q^{89} -2.00000 q^{91} -4.00000 q^{92} +6.00000 q^{94} +2.00000 q^{95} -14.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) −2.00000 −0.324443
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) −10.0000 −1.31306
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.00000 0.119523
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.00000 0.646997
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −10.0000 −0.928477
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −2.00000 −0.175412
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) 2.00000 0.173422
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) 2.00000 0.167836
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) −2.00000 −0.162221
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 18.0000 1.40987 0.704934 0.709273i \(-0.250976\pi\)
0.704934 + 0.709273i \(0.250976\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −16.0000 −1.24184
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 6.00000 0.457496
\(173\) 10.0000 0.760286 0.380143 0.924928i \(-0.375875\pi\)
0.380143 + 0.924928i \(0.375875\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 18.0000 1.34916
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) −4.00000 −0.297318 −0.148659 0.988889i \(-0.547496\pi\)
−0.148659 + 0.988889i \(0.547496\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 0 0
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 0 0
\(193\) −26.0000 −1.87152 −0.935760 0.352636i \(-0.885285\pi\)
−0.935760 + 0.352636i \(0.885285\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 10.0000 0.701862
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) −6.00000 −0.406371
\(219\) 0 0
\(220\) −1.00000 −0.0674200
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −16.0000 −1.05731 −0.528655 0.848837i \(-0.677303\pi\)
−0.528655 + 0.848837i \(0.677303\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) 0 0
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) −20.0000 −1.23560
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 2.00000 0.122628
\(267\) 0 0
\(268\) 2.00000 0.122169
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −10.0000 −0.604122
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) 10.0000 0.599760
\(279\) 0 0
\(280\) 1.00000 0.0597614
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 10.0000 0.587220
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 16.0000 0.920697
\(303\) 0 0
\(304\) −2.00000 −0.114708
\(305\) 0 0
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) −1.00000 −0.0569803
\(309\) 0 0
\(310\) 4.00000 0.227185
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −10.0000 −0.559893
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 4.00000 0.222911
\(323\) 0 0
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 18.0000 0.996928
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) −6.00000 −0.330791
\(330\) 0 0
\(331\) −16.0000 −0.879440 −0.439720 0.898135i \(-0.644922\pi\)
−0.439720 + 0.898135i \(0.644922\pi\)
\(332\) −16.0000 −0.878114
\(333\) 0 0
\(334\) −2.00000 −0.109435
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) 10.0000 0.537603
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) −2.00000 −0.106149
\(356\) 18.0000 0.953998
\(357\) 0 0
\(358\) −16.0000 −0.845626
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −4.00000 −0.210235
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 4.00000 0.207950
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) 24.0000 1.24267 0.621336 0.783544i \(-0.286590\pi\)
0.621336 + 0.783544i \(0.286590\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 2.00000 0.102598
\(381\) 0 0
\(382\) −6.00000 −0.306987
\(383\) 14.0000 0.715367 0.357683 0.933843i \(-0.383567\pi\)
0.357683 + 0.933843i \(0.383567\pi\)
\(384\) 0 0
\(385\) 1.00000 0.0509647
\(386\) −26.0000 −1.32337
\(387\) 0 0
\(388\) −14.0000 −0.710742
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −22.0000 −1.10834
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 16.0000 0.799002 0.399501 0.916733i \(-0.369183\pi\)
0.399501 + 0.916733i \(0.369183\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 10.0000 0.496292
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) 16.0000 0.785409
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) −2.00000 −0.0978232
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) −28.0000 −1.36302
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) −6.00000 −0.289346
\(431\) 14.0000 0.674356 0.337178 0.941441i \(-0.390528\pi\)
0.337178 + 0.941441i \(0.390528\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) −6.00000 −0.287348
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 0 0
\(442\) 0 0
\(443\) 28.0000 1.33032 0.665160 0.746701i \(-0.268363\pi\)
0.665160 + 0.746701i \(0.268363\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) 34.0000 1.59045 0.795226 0.606313i \(-0.207352\pi\)
0.795226 + 0.606313i \(0.207352\pi\)
\(458\) −16.0000 −0.747631
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) −10.0000 −0.464238
\(465\) 0 0
\(466\) −26.0000 −1.20443
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −2.00000 −0.0923514
\(470\) −6.00000 −0.276759
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) 6.00000 0.275880
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 2.00000 0.0914779
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.00000 −0.0451754
\(491\) −40.0000 −1.80517 −0.902587 0.430507i \(-0.858335\pi\)
−0.902587 + 0.430507i \(0.858335\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −2.00000 −0.0897123
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) −4.00000 −0.177822
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 24.0000 1.05859
\(515\) 0 0
\(516\) 0 0
\(517\) 6.00000 0.263880
\(518\) 4.00000 0.175750
\(519\) 0 0
\(520\) −2.00000 −0.0877058
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) −12.0000 −0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 6.00000 0.260623
\(531\) 0 0
\(532\) 2.00000 0.0867110
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 12.0000 0.515444
\(543\) 0 0
\(544\) 0 0
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) 30.0000 1.28271 0.641354 0.767245i \(-0.278373\pi\)
0.641354 + 0.767245i \(0.278373\pi\)
\(548\) −10.0000 −0.427179
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) 20.0000 0.852029
\(552\) 0 0
\(553\) 0 0
\(554\) 4.00000 0.169944
\(555\) 0 0
\(556\) 10.0000 0.424094
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 1.00000 0.0422577
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 8.00000 0.336265
\(567\) 0 0
\(568\) 2.00000 0.0839181
\(569\) −20.0000 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(570\) 0 0
\(571\) −24.0000 −1.00437 −0.502184 0.864761i \(-0.667470\pi\)
−0.502184 + 0.864761i \(0.667470\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) −17.0000 −0.707107
\(579\) 0 0
\(580\) 10.0000 0.415227
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 12.0000 0.494032
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) −8.00000 −0.327144
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) −6.00000 −0.244542
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) 16.0000 0.645707
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 4.00000 0.160644
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) −18.0000 −0.721155
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) 18.0000 0.718278
\(629\) 0 0
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) −10.0000 −0.395904
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 44.0000 1.73790 0.868948 0.494904i \(-0.164797\pi\)
0.868948 + 0.494904i \(0.164797\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) 0 0
\(647\) −2.00000 −0.0786281 −0.0393141 0.999227i \(-0.512517\pi\)
−0.0393141 + 0.999227i \(0.512517\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) 18.0000 0.704934
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 20.0000 0.781465
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 0 0
\(661\) 44.0000 1.71140 0.855701 0.517471i \(-0.173126\pi\)
0.855701 + 0.517471i \(0.173126\pi\)
\(662\) −16.0000 −0.621858
\(663\) 0 0
\(664\) −16.0000 −0.620920
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) 40.0000 1.54881
\(668\) −2.00000 −0.0773823
\(669\) 0 0
\(670\) −2.00000 −0.0772667
\(671\) 0 0
\(672\) 0 0
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) 0 0
\(679\) 14.0000 0.537271
\(680\) 0 0
\(681\) 0 0
\(682\) −4.00000 −0.153168
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 10.0000 0.382080
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) 6.00000 0.228748
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 10.0000 0.380143
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) 20.0000 0.757011
\(699\) 0 0
\(700\) −1.00000 −0.0377964
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) −2.00000 −0.0750587
\(711\) 0 0
\(712\) 18.0000 0.674579
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) −16.0000 −0.597948
\(717\) 0 0
\(718\) 18.0000 0.671754
\(719\) −32.0000 −1.19340 −0.596699 0.802465i \(-0.703521\pi\)
−0.596699 + 0.802465i \(0.703521\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.0000 −0.558242
\(723\) 0 0
\(724\) −4.00000 −0.148659
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) 0 0
\(732\) 0 0
\(733\) −46.0000 −1.69905 −0.849524 0.527549i \(-0.823111\pi\)
−0.849524 + 0.527549i \(0.823111\pi\)
\(734\) 24.0000 0.885856
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 2.00000 0.0736709
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) 6.00000 0.220267
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 24.0000 0.878702
\(747\) 0 0
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) −20.0000 −0.728357
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) 28.0000 1.01768 0.508839 0.860862i \(-0.330075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(758\) 16.0000 0.581146
\(759\) 0 0
\(760\) 2.00000 0.0725476
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 6.00000 0.217215
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) 14.0000 0.505841
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 1.00000 0.0360375
\(771\) 0 0
\(772\) −26.0000 −0.935760
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 10.0000 0.358517
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −18.0000 −0.642448
\(786\) 0 0
\(787\) 16.0000 0.570338 0.285169 0.958477i \(-0.407950\pi\)
0.285169 + 0.958477i \(0.407950\pi\)
\(788\) −22.0000 −0.783718
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 0 0
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 16.0000 0.564980
\(803\) −10.0000 −0.352892
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) −8.00000 −0.281788
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) −36.0000 −1.26569 −0.632846 0.774277i \(-0.718114\pi\)
−0.632846 + 0.774277i \(0.718114\pi\)
\(810\) 0 0
\(811\) 34.0000 1.19390 0.596951 0.802278i \(-0.296379\pi\)
0.596951 + 0.802278i \(0.296379\pi\)
\(812\) 10.0000 0.350931
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) −18.0000 −0.630512
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) −14.0000 −0.489499
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) 44.0000 1.53374 0.766872 0.641800i \(-0.221812\pi\)
0.766872 + 0.641800i \(0.221812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) 4.00000 0.139094 0.0695468 0.997579i \(-0.477845\pi\)
0.0695468 + 0.997579i \(0.477845\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 16.0000 0.555368
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) 0 0
\(834\) 0 0
\(835\) 2.00000 0.0692129
\(836\) −2.00000 −0.0691714
\(837\) 0 0
\(838\) −36.0000 −1.24360
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) −34.0000 −1.17172
\(843\) 0 0
\(844\) −28.0000 −0.963800
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) 0 0
\(853\) 50.0000 1.71197 0.855984 0.517003i \(-0.172952\pi\)
0.855984 + 0.517003i \(0.172952\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) −36.0000 −1.22974 −0.614868 0.788630i \(-0.710791\pi\)
−0.614868 + 0.788630i \(0.710791\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) −6.00000 −0.204598
\(861\) 0 0
\(862\) 14.0000 0.476842
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 0 0
\(865\) −10.0000 −0.340010
\(866\) 26.0000 0.883516
\(867\) 0 0
\(868\) 4.00000 0.135769
\(869\) 0 0
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) −12.0000 −0.405211 −0.202606 0.979260i \(-0.564941\pi\)
−0.202606 + 0.979260i \(0.564941\pi\)
\(878\) 20.0000 0.674967
\(879\) 0 0
\(880\) −1.00000 −0.0337100
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −30.0000 −1.00958 −0.504790 0.863242i \(-0.668430\pi\)
−0.504790 + 0.863242i \(0.668430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 28.0000 0.940678
\(887\) 14.0000 0.470074 0.235037 0.971986i \(-0.424479\pi\)
0.235037 + 0.971986i \(0.424479\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) −18.0000 −0.603361
\(891\) 0 0
\(892\) 0 0
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) 16.0000 0.534821
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −20.0000 −0.667409
\(899\) 40.0000 1.33407
\(900\) 0 0
\(901\) 0 0
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 4.00000 0.132964
\(906\) 0 0
\(907\) 58.0000 1.92586 0.962929 0.269754i \(-0.0869425\pi\)
0.962929 + 0.269754i \(0.0869425\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 2.00000 0.0662994
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) −16.0000 −0.529523
\(914\) 34.0000 1.12462
\(915\) 0 0
\(916\) −16.0000 −0.528655
\(917\) 20.0000 0.660458
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 4.00000 0.131876
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 4.00000 0.131448
\(927\) 0 0
\(928\) −10.0000 −0.328266
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) −2.00000 −0.0655474
\(932\) −26.0000 −0.851658
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 58.0000 1.89478 0.947389 0.320085i \(-0.103712\pi\)
0.947389 + 0.320085i \(0.103712\pi\)
\(938\) −2.00000 −0.0653023
\(939\) 0 0
\(940\) −6.00000 −0.195698
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 6.00000 0.195077
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) −2.00000 −0.0648886
\(951\) 0 0
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) 6.00000 0.194155
\(956\) 2.00000 0.0646846
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 10.0000 0.322917
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −8.00000 −0.257930
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) 26.0000 0.836970
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 14.0000 0.449513
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) −10.0000 −0.320585
\(974\) −24.0000 −0.769010
\(975\) 0 0
\(976\) 0 0
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) 18.0000 0.575282
\(980\) −1.00000 −0.0319438
\(981\) 0 0
\(982\) −40.0000 −1.27645
\(983\) 54.0000 1.72233 0.861166 0.508323i \(-0.169735\pi\)
0.861166 + 0.508323i \(0.169735\pi\)
\(984\) 0 0
\(985\) 22.0000 0.700978
\(986\) 0 0
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) −4.00000 −0.127000
\(993\) 0 0
\(994\) −2.00000 −0.0634361
\(995\) 8.00000 0.253617
\(996\) 0 0
\(997\) 18.0000 0.570066 0.285033 0.958518i \(-0.407995\pi\)
0.285033 + 0.958518i \(0.407995\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6930.2.a.v.1.1 yes 1
3.2 odd 2 6930.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6930.2.a.i.1.1 1 3.2 odd 2
6930.2.a.v.1.1 yes 1 1.1 even 1 trivial