Properties

Label 6930.2.a.u
Level $6930$
Weight $2$
Character orbit 6930.a
Self dual yes
Analytic conductor $55.336$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - q^{5} - q^{7} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} - q^{5} - q^{7} + q^{8} - q^{10} + q^{11} + 2q^{13} - q^{14} + q^{16} - 6q^{17} + 4q^{19} - q^{20} + q^{22} - 4q^{23} + q^{25} + 2q^{26} - q^{28} + 2q^{29} + 8q^{31} + q^{32} - 6q^{34} + q^{35} - 10q^{37} + 4q^{38} - q^{40} + 6q^{41} + 12q^{43} + q^{44} - 4q^{46} - 12q^{47} + q^{49} + q^{50} + 2q^{52} - 6q^{53} - q^{55} - q^{56} + 2q^{58} + 12q^{59} + 6q^{61} + 8q^{62} + q^{64} - 2q^{65} + 8q^{67} - 6q^{68} + q^{70} + 8q^{71} + 14q^{73} - 10q^{74} + 4q^{76} - q^{77} - q^{80} + 6q^{82} - 4q^{83} + 6q^{85} + 12q^{86} + q^{88} + 6q^{89} - 2q^{91} - 4q^{92} - 12q^{94} - 4q^{95} - 14q^{97} + q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 −1.00000 0 −1.00000 1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6930.2.a.u 1
3.b odd 2 1 770.2.a.c 1
12.b even 2 1 6160.2.a.i 1
15.d odd 2 1 3850.2.a.t 1
15.e even 4 2 3850.2.c.h 2
21.c even 2 1 5390.2.a.i 1
33.d even 2 1 8470.2.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.c 1 3.b odd 2 1
3850.2.a.t 1 15.d odd 2 1
3850.2.c.h 2 15.e even 4 2
5390.2.a.i 1 21.c even 2 1
6160.2.a.i 1 12.b even 2 1
6930.2.a.u 1 1.a even 1 1 trivial
8470.2.a.ba 1 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6930))\):

\( T_{13} - 2 \)
\( T_{17} + 6 \)
\( T_{19} - 4 \)
\( T_{23} + 4 \)
\( T_{29} - 2 \)
\( T_{31} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( 1 + T \)
$7$ \( 1 + T \)
$11$ \( -1 + T \)
$13$ \( -2 + T \)
$17$ \( 6 + T \)
$19$ \( -4 + T \)
$23$ \( 4 + T \)
$29$ \( -2 + T \)
$31$ \( -8 + T \)
$37$ \( 10 + T \)
$41$ \( -6 + T \)
$43$ \( -12 + T \)
$47$ \( 12 + T \)
$53$ \( 6 + T \)
$59$ \( -12 + T \)
$61$ \( -6 + T \)
$67$ \( -8 + T \)
$71$ \( -8 + T \)
$73$ \( -14 + T \)
$79$ \( T \)
$83$ \( 4 + T \)
$89$ \( -6 + T \)
$97$ \( 14 + T \)
show more
show less