Properties

Label 6930.2.a.p.1.1
Level $6930$
Weight $2$
Character 6930.1
Self dual yes
Analytic conductor $55.336$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2310)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6930.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} -1.00000 q^{8} -1.00000 q^{10} +1.00000 q^{11} -4.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +8.00000 q^{19} +1.00000 q^{20} -1.00000 q^{22} -6.00000 q^{23} +1.00000 q^{25} +4.00000 q^{26} +1.00000 q^{28} -6.00000 q^{29} -4.00000 q^{31} -1.00000 q^{32} +1.00000 q^{35} +8.00000 q^{37} -8.00000 q^{38} -1.00000 q^{40} -6.00000 q^{41} -4.00000 q^{43} +1.00000 q^{44} +6.00000 q^{46} -12.0000 q^{47} +1.00000 q^{49} -1.00000 q^{50} -4.00000 q^{52} -6.00000 q^{53} +1.00000 q^{55} -1.00000 q^{56} +6.00000 q^{58} +12.0000 q^{59} -10.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} -10.0000 q^{67} -1.00000 q^{70} +14.0000 q^{73} -8.00000 q^{74} +8.00000 q^{76} +1.00000 q^{77} +8.00000 q^{79} +1.00000 q^{80} +6.00000 q^{82} +4.00000 q^{86} -1.00000 q^{88} +12.0000 q^{89} -4.00000 q^{91} -6.00000 q^{92} +12.0000 q^{94} +8.00000 q^{95} -10.0000 q^{97} -1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −8.00000 −1.29777
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −1.00000 −0.119523
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 12.0000 1.23771
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 4.00000 0.392232
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 10.0000 0.905357
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 4.00000 0.350823
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 10.0000 0.863868
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) −14.0000 −1.15865
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −8.00000 −0.648886
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −12.0000 −0.899438
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) 0 0
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) −8.00000 −0.580381
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 16.0000 1.08366
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) 0 0
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) −28.0000 −1.85029 −0.925146 0.379611i \(-0.876058\pi\)
−0.925146 + 0.379611i \(0.876058\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 12.0000 0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −32.0000 −2.03611
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) −8.00000 −0.490511
\(267\) 0 0
\(268\) −10.0000 −0.610847
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) −1.00000 −0.0597614
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 0 0
\(283\) 2.00000 0.118888 0.0594438 0.998232i \(-0.481067\pi\)
0.0594438 + 0.998232i \(0.481067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 6.00000 0.352332
\(291\) 0 0
\(292\) 14.0000 0.819288
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) −8.00000 −0.460348
\(303\) 0 0
\(304\) 8.00000 0.458831
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) 26.0000 1.48390 0.741949 0.670456i \(-0.233902\pi\)
0.741949 + 0.670456i \(0.233902\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) 4.00000 0.227185
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 6.00000 0.334367
\(323\) 0 0
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) −14.0000 −0.775388
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −18.0000 −0.984916
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −3.00000 −0.163178
\(339\) 0 0
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.0000 0.635999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 16.0000 0.840941
\(363\) 0 0
\(364\) −4.00000 −0.209657
\(365\) 14.0000 0.732793
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) −8.00000 −0.415900
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 8.00000 0.410391
\(381\) 0 0
\(382\) −12.0000 −0.613973
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 1.00000 0.0509647
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) 18.0000 0.906827
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 16.0000 0.797017
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 0.196116
\(417\) 0 0
\(418\) −8.00000 −0.391293
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −14.0000 −0.681509
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0000 −0.483934
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 4.00000 0.192897
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) −48.0000 −2.29615
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 0 0
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) −12.0000 −0.564433
\(453\) 0 0
\(454\) 24.0000 1.12638
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 28.0000 1.30835
\(459\) 0 0
\(460\) −6.00000 −0.279751
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) −10.0000 −0.461757
\(470\) 12.0000 0.553519
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 8.00000 0.367065
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −32.0000 −1.45907
\(482\) −14.0000 −0.637683
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −10.0000 −0.454077
\(486\) 0 0
\(487\) −28.0000 −1.26880 −0.634401 0.773004i \(-0.718753\pi\)
−0.634401 + 0.773004i \(0.718753\pi\)
\(488\) 10.0000 0.452679
\(489\) 0 0
\(490\) −1.00000 −0.0451754
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 32.0000 1.43975
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 6.00000 0.266733
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) −8.00000 −0.351500
\(519\) 0 0
\(520\) 4.00000 0.175412
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) −10.0000 −0.437269 −0.218635 0.975807i \(-0.570160\pi\)
−0.218635 + 0.975807i \(0.570160\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −12.0000 −0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 6.00000 0.260623
\(531\) 0 0
\(532\) 8.00000 0.346844
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) 10.0000 0.431934
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 16.0000 0.687259
\(543\) 0 0
\(544\) 0 0
\(545\) −16.0000 −0.685365
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) −12.0000 −0.512615
\(549\) 0 0
\(550\) −1.00000 −0.0426401
\(551\) −48.0000 −2.04487
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 1.00000 0.0422577
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) −12.0000 −0.504844
\(566\) −2.00000 −0.0840663
\(567\) 0 0
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −46.0000 −1.91501 −0.957503 0.288425i \(-0.906868\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 17.0000 0.707107
\(579\) 0 0
\(580\) −6.00000 −0.249136
\(581\) 0 0
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) −12.0000 −0.494032
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) −24.0000 −0.981433
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) −8.00000 −0.324443
\(609\) 0 0
\(610\) 10.0000 0.404888
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) −26.0000 −1.04927
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) −34.0000 −1.36658 −0.683288 0.730149i \(-0.739451\pi\)
−0.683288 + 0.730149i \(0.739451\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) −18.0000 −0.721734
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −26.0000 −1.03917
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) 0 0
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −8.00000 −0.318223
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 6.00000 0.237542
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) −6.00000 −0.236433
\(645\) 0 0
\(646\) 0 0
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) 14.0000 0.548282
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 8.00000 0.311164 0.155582 0.987823i \(-0.450275\pi\)
0.155582 + 0.987823i \(0.450275\pi\)
\(662\) 4.00000 0.155464
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 18.0000 0.696441
\(669\) 0 0
\(670\) 10.0000 0.386334
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) −14.0000 −0.539260
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) 0 0
\(682\) 4.00000 0.153168
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −34.0000 −1.29342 −0.646710 0.762736i \(-0.723856\pi\)
−0.646710 + 0.762736i \(0.723856\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 0 0
\(698\) 34.0000 1.28692
\(699\) 0 0
\(700\) 1.00000 0.0377964
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 64.0000 2.41381
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −12.0000 −0.449719
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 18.0000 0.671754
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) −45.0000 −1.67473
\(723\) 0 0
\(724\) −16.0000 −0.594635
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 4.00000 0.148250
\(729\) 0 0
\(730\) −14.0000 −0.518163
\(731\) 0 0
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) −10.0000 −0.368355
\(738\) 0 0
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) 8.00000 0.294086
\(741\) 0 0
\(742\) 6.00000 0.220267
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) −14.0000 −0.512576
\(747\) 0 0
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) −12.0000 −0.437595
\(753\) 0 0
\(754\) −24.0000 −0.874028
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) −8.00000 −0.290191
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) −16.0000 −0.579239
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) −48.0000 −1.73318
\(768\) 0 0
\(769\) −46.0000 −1.65880 −0.829401 0.558653i \(-0.811318\pi\)
−0.829401 + 0.558653i \(0.811318\pi\)
\(770\) −1.00000 −0.0360375
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −48.0000 −1.71978
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 2.00000 0.0713831
\(786\) 0 0
\(787\) 50.0000 1.78231 0.891154 0.453701i \(-0.149897\pi\)
0.891154 + 0.453701i \(0.149897\pi\)
\(788\) −18.0000 −0.641223
\(789\) 0 0
\(790\) −8.00000 −0.284627
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 40.0000 1.42044
\(794\) 34.0000 1.20661
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 18.0000 0.635602
\(803\) 14.0000 0.494049
\(804\) 0 0
\(805\) −6.00000 −0.211472
\(806\) −16.0000 −0.563576
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) 24.0000 0.843795 0.421898 0.906644i \(-0.361364\pi\)
0.421898 + 0.906644i \(0.361364\pi\)
\(810\) 0 0
\(811\) 56.0000 1.96643 0.983213 0.182462i \(-0.0584065\pi\)
0.983213 + 0.182462i \(0.0584065\pi\)
\(812\) −6.00000 −0.210559
\(813\) 0 0
\(814\) −8.00000 −0.280400
\(815\) 14.0000 0.490399
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) 22.0000 0.769212
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 32.0000 1.11141 0.555703 0.831381i \(-0.312449\pi\)
0.555703 + 0.831381i \(0.312449\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 0 0
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) 8.00000 0.276686
\(837\) 0 0
\(838\) −24.0000 −0.829066
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 10.0000 0.344623
\(843\) 0 0
\(844\) 14.0000 0.481900
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) −4.00000 −0.136957 −0.0684787 0.997653i \(-0.521815\pi\)
−0.0684787 + 0.997653i \(0.521815\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −12.0000 −0.409912 −0.204956 0.978771i \(-0.565705\pi\)
−0.204956 + 0.978771i \(0.565705\pi\)
\(858\) 0 0
\(859\) −46.0000 −1.56950 −0.784750 0.619813i \(-0.787209\pi\)
−0.784750 + 0.619813i \(0.787209\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 6.00000 0.204361
\(863\) −30.0000 −1.02121 −0.510606 0.859815i \(-0.670579\pi\)
−0.510606 + 0.859815i \(0.670579\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) 8.00000 0.271381
\(870\) 0 0
\(871\) 40.0000 1.35535
\(872\) 16.0000 0.541828
\(873\) 0 0
\(874\) 48.0000 1.62362
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 1.00000 0.0337100
\(881\) 12.0000 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(882\) 0 0
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) −42.0000 −1.41022 −0.705111 0.709097i \(-0.749103\pi\)
−0.705111 + 0.709097i \(0.749103\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) −96.0000 −3.21252
\(894\) 0 0
\(895\) −12.0000 −0.401116
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) −16.0000 −0.531858
\(906\) 0 0
\(907\) 26.0000 0.863316 0.431658 0.902037i \(-0.357929\pi\)
0.431658 + 0.902037i \(0.357929\pi\)
\(908\) −24.0000 −0.796468
\(909\) 0 0
\(910\) 4.00000 0.132599
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −26.0000 −0.860004
\(915\) 0 0
\(916\) −28.0000 −0.925146
\(917\) −12.0000 −0.396275
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 6.00000 0.197814
\(921\) 0 0
\(922\) 18.0000 0.592798
\(923\) 0 0
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 4.00000 0.131448
\(927\) 0 0
\(928\) 6.00000 0.196960
\(929\) 24.0000 0.787414 0.393707 0.919236i \(-0.371192\pi\)
0.393707 + 0.919236i \(0.371192\pi\)
\(930\) 0 0
\(931\) 8.00000 0.262189
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 10.0000 0.326512
\(939\) 0 0
\(940\) −12.0000 −0.391397
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 0 0
\(949\) −56.0000 −1.81784
\(950\) −8.00000 −0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 32.0000 1.03172
\(963\) 0 0
\(964\) 14.0000 0.450910
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 10.0000 0.321081
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 28.0000 0.897178
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) −24.0000 −0.767828 −0.383914 0.923369i \(-0.625424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 1.00000 0.0319438
\(981\) 0 0
\(982\) 12.0000 0.382935
\(983\) 12.0000 0.382741 0.191370 0.981518i \(-0.438707\pi\)
0.191370 + 0.981518i \(0.438707\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) −32.0000 −1.01806
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 0 0
\(995\) 20.0000 0.634043
\(996\) 0 0
\(997\) −40.0000 −1.26681 −0.633406 0.773819i \(-0.718344\pi\)
−0.633406 + 0.773819i \(0.718344\pi\)
\(998\) 40.0000 1.26618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6930.2.a.p.1.1 1
3.2 odd 2 2310.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2310.2.a.t.1.1 1 3.2 odd 2
6930.2.a.p.1.1 1 1.1 even 1 trivial