Properties

Label 6930.2.a.n
Level 6930
Weight 2
Character orbit 6930.a
Self dual Yes
Analytic conductor 55.336
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6930.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} - q^{11} + 2q^{13} - q^{14} + q^{16} - 6q^{17} - 4q^{19} + q^{20} + q^{22} - 6q^{23} + q^{25} - 2q^{26} + q^{28} + 6q^{29} + 2q^{31} - q^{32} + 6q^{34} + q^{35} + 2q^{37} + 4q^{38} - q^{40} + 12q^{41} + 8q^{43} - q^{44} + 6q^{46} - 12q^{47} + q^{49} - q^{50} + 2q^{52} + 6q^{53} - q^{55} - q^{56} - 6q^{58} - 12q^{59} - 10q^{61} - 2q^{62} + q^{64} + 2q^{65} - 4q^{67} - 6q^{68} - q^{70} + 12q^{71} + 2q^{73} - 2q^{74} - 4q^{76} - q^{77} - 10q^{79} + q^{80} - 12q^{82} - 18q^{83} - 6q^{85} - 8q^{86} + q^{88} - 6q^{89} + 2q^{91} - 6q^{92} + 12q^{94} - 4q^{95} + 8q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 1.00000 0 1.00000 −1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(-1\)
\(11\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6930))\):

\( T_{13} - 2 \)
\( T_{17} + 6 \)
\( T_{19} + 4 \)
\( T_{23} + 6 \)
\( T_{29} - 6 \)
\( T_{31} - 2 \)