Properties

Label 6930.2.a.n
Level $6930$
Weight $2$
Character orbit 6930.a
Self dual yes
Analytic conductor $55.336$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} - q^{11} + 2 q^{13} - q^{14} + q^{16} - 6 q^{17} - 4 q^{19} + q^{20} + q^{22} - 6 q^{23} + q^{25} - 2 q^{26} + q^{28} + 6 q^{29} + 2 q^{31} - q^{32} + 6 q^{34} + q^{35} + 2 q^{37} + 4 q^{38} - q^{40} + 12 q^{41} + 8 q^{43} - q^{44} + 6 q^{46} - 12 q^{47} + q^{49} - q^{50} + 2 q^{52} + 6 q^{53} - q^{55} - q^{56} - 6 q^{58} - 12 q^{59} - 10 q^{61} - 2 q^{62} + q^{64} + 2 q^{65} - 4 q^{67} - 6 q^{68} - q^{70} + 12 q^{71} + 2 q^{73} - 2 q^{74} - 4 q^{76} - q^{77} - 10 q^{79} + q^{80} - 12 q^{82} - 18 q^{83} - 6 q^{85} - 8 q^{86} + q^{88} - 6 q^{89} + 2 q^{91} - 6 q^{92} + 12 q^{94} - 4 q^{95} + 8 q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 1.00000 0 1.00000 −1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6930.2.a.n 1
3.b odd 2 1 6930.2.a.ba yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6930.2.a.n 1 1.a even 1 1 trivial
6930.2.a.ba yes 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6930))\):

\( T_{13} - 2 \)
\( T_{17} + 6 \)
\( T_{19} + 4 \)
\( T_{23} + 6 \)
\( T_{29} - 6 \)
\( T_{31} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( -1 + T \)
$11$ \( 1 + T \)
$13$ \( -2 + T \)
$17$ \( 6 + T \)
$19$ \( 4 + T \)
$23$ \( 6 + T \)
$29$ \( -6 + T \)
$31$ \( -2 + T \)
$37$ \( -2 + T \)
$41$ \( -12 + T \)
$43$ \( -8 + T \)
$47$ \( 12 + T \)
$53$ \( -6 + T \)
$59$ \( 12 + T \)
$61$ \( 10 + T \)
$67$ \( 4 + T \)
$71$ \( -12 + T \)
$73$ \( -2 + T \)
$79$ \( 10 + T \)
$83$ \( 18 + T \)
$89$ \( 6 + T \)
$97$ \( -8 + T \)
show more
show less