Properties

Label 6930.2.a.j.1.1
Level $6930$
Weight $2$
Character 6930.1
Self dual yes
Analytic conductor $55.336$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2310)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6930.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} -1.00000 q^{10} -1.00000 q^{11} +4.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -4.00000 q^{19} +1.00000 q^{20} +1.00000 q^{22} -6.00000 q^{23} +1.00000 q^{25} -4.00000 q^{26} -1.00000 q^{28} +2.00000 q^{29} +8.00000 q^{31} -1.00000 q^{32} -1.00000 q^{35} +4.00000 q^{37} +4.00000 q^{38} -1.00000 q^{40} -10.0000 q^{41} -8.00000 q^{43} -1.00000 q^{44} +6.00000 q^{46} -8.00000 q^{47} +1.00000 q^{49} -1.00000 q^{50} +4.00000 q^{52} +10.0000 q^{53} -1.00000 q^{55} +1.00000 q^{56} -2.00000 q^{58} -4.00000 q^{59} +2.00000 q^{61} -8.00000 q^{62} +1.00000 q^{64} +4.00000 q^{65} -6.00000 q^{67} +1.00000 q^{70} -4.00000 q^{71} -2.00000 q^{73} -4.00000 q^{74} -4.00000 q^{76} +1.00000 q^{77} +4.00000 q^{79} +1.00000 q^{80} +10.0000 q^{82} -4.00000 q^{83} +8.00000 q^{86} +1.00000 q^{88} +4.00000 q^{89} -4.00000 q^{91} -6.00000 q^{92} +8.00000 q^{94} -4.00000 q^{95} +2.00000 q^{97} -1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 4.00000 0.554700
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.00000 0.119523
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 10.0000 1.10432
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −16.0000 −1.50515 −0.752577 0.658505i \(-0.771189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −4.00000 −0.350823
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 6.00000 0.518321
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) −1.00000 −0.0845154
\(141\) 0 0
\(142\) 4.00000 0.335673
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) −4.00000 −0.318223
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) −10.0000 −0.773823 −0.386912 0.922117i \(-0.626458\pi\)
−0.386912 + 0.922117i \(0.626458\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −4.00000 −0.299813
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 14.0000 0.997459 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −6.00000 −0.422159
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 10.0000 0.686803
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 12.0000 0.812743
\(219\) 0 0
\(220\) −1.00000 −0.0674200
\(221\) 0 0
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 16.0000 1.06430
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −12.0000 −0.792982 −0.396491 0.918039i \(-0.629772\pi\)
−0.396491 + 0.918039i \(0.629772\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) −8.00000 −0.508001
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) −4.00000 −0.245256
\(267\) 0 0
\(268\) −6.00000 −0.366508
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −8.00000 −0.483298
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 8.00000 0.479808
\(279\) 0 0
\(280\) 1.00000 0.0597614
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) −4.00000 −0.237356
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 10.0000 0.590281
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −2.00000 −0.117444
\(291\) 0 0
\(292\) −2.00000 −0.117041
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) −24.0000 −1.38796
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) −4.00000 −0.230174
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) −8.00000 −0.454369
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −6.00000 −0.334367
\(323\) 0 0
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 6.00000 0.332309
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) −4.00000 −0.219529
\(333\) 0 0
\(334\) 10.0000 0.547176
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) −3.00000 −0.163178
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) −14.0000 −0.752645
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) −4.00000 −0.212298
\(356\) 4.00000 0.212000
\(357\) 0 0
\(358\) −4.00000 −0.211407
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 8.00000 0.420471
\(363\) 0 0
\(364\) −4.00000 −0.209657
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) −10.0000 −0.519174
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) −24.0000 −1.22795
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 1.00000 0.0509647
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) 2.00000 0.101535
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −14.0000 −0.705310
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 32.0000 1.59403
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 2.00000 0.0992583
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 10.0000 0.493865
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) 4.00000 0.196827
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) −4.00000 −0.196116
\(417\) 0 0
\(418\) −4.00000 −0.195646
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 2.00000 0.0973585
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) 0 0
\(426\) 0 0
\(427\) −2.00000 −0.0967868
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −12.0000 −0.574696
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) 8.00000 0.378811
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) −16.0000 −0.752577
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 12.0000 0.560723
\(459\) 0 0
\(460\) −6.00000 −0.279751
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 6.00000 0.277054
\(470\) 8.00000 0.369012
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) 8.00000 0.367840
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) −6.00000 −0.274434
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) −2.00000 −0.0905357
\(489\) 0 0
\(490\) −1.00000 −0.0451754
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) −42.0000 −1.87269 −0.936344 0.351085i \(-0.885813\pi\)
−0.936344 + 0.351085i \(0.885813\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) −6.00000 −0.266733
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) 4.00000 0.175750
\(519\) 0 0
\(520\) −4.00000 −0.175412
\(521\) −4.00000 −0.175243 −0.0876216 0.996154i \(-0.527927\pi\)
−0.0876216 + 0.996154i \(0.527927\pi\)
\(522\) 0 0
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −10.0000 −0.434372
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) −40.0000 −1.73259
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 6.00000 0.259161
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) −24.0000 −1.03089
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 8.00000 0.341743
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) −32.0000 −1.35346
\(560\) −1.00000 −0.0422577
\(561\) 0 0
\(562\) −16.0000 −0.674919
\(563\) −8.00000 −0.337160 −0.168580 0.985688i \(-0.553918\pi\)
−0.168580 + 0.985688i \(0.553918\pi\)
\(564\) 0 0
\(565\) −16.0000 −0.673125
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) 4.00000 0.167836
\(569\) 20.0000 0.838444 0.419222 0.907884i \(-0.362303\pi\)
0.419222 + 0.907884i \(0.362303\pi\)
\(570\) 0 0
\(571\) −6.00000 −0.251092 −0.125546 0.992088i \(-0.540068\pi\)
−0.125546 + 0.992088i \(0.540068\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) −10.0000 −0.417392
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 17.0000 0.707107
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) 4.00000 0.165948
\(582\) 0 0
\(583\) −10.0000 −0.414158
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −44.0000 −1.81607 −0.908037 0.418890i \(-0.862419\pi\)
−0.908037 + 0.418890i \(0.862419\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 4.00000 0.164677
\(591\) 0 0
\(592\) 4.00000 0.164399
\(593\) 12.0000 0.492781 0.246390 0.969171i \(-0.420755\pi\)
0.246390 + 0.969171i \(0.420755\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.00000 −0.0819232
\(597\) 0 0
\(598\) 24.0000 0.981433
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) −8.00000 −0.326056
\(603\) 0 0
\(604\) 4.00000 0.162758
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) −32.0000 −1.29458
\(612\) 0 0
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 22.0000 0.887848
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) −8.00000 −0.322068 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(618\) 0 0
\(619\) 18.0000 0.723481 0.361741 0.932279i \(-0.382183\pi\)
0.361741 + 0.932279i \(0.382183\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) −18.0000 −0.721734
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 0 0
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) −4.00000 −0.159111
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 4.00000 0.158486
\(638\) 2.00000 0.0791808
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 6.00000 0.236433
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) −6.00000 −0.234978
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) −10.0000 −0.390434
\(657\) 0 0
\(658\) −8.00000 −0.311872
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) −48.0000 −1.86698 −0.933492 0.358599i \(-0.883255\pi\)
−0.933492 + 0.358599i \(0.883255\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) 4.00000 0.155230
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) −10.0000 −0.386912
\(669\) 0 0
\(670\) 6.00000 0.231800
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) 8.00000 0.306336
\(683\) 8.00000 0.306111 0.153056 0.988218i \(-0.451089\pi\)
0.153056 + 0.988218i \(0.451089\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −8.00000 −0.304997
\(689\) 40.0000 1.52388
\(690\) 0 0
\(691\) −30.0000 −1.14125 −0.570627 0.821209i \(-0.693300\pi\)
−0.570627 + 0.821209i \(0.693300\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) 0 0
\(698\) −10.0000 −0.378506
\(699\) 0 0
\(700\) −1.00000 −0.0377964
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) −16.0000 −0.603451
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) −50.0000 −1.87779 −0.938895 0.344204i \(-0.888149\pi\)
−0.938895 + 0.344204i \(0.888149\pi\)
\(710\) 4.00000 0.150117
\(711\) 0 0
\(712\) −4.00000 −0.149906
\(713\) −48.0000 −1.79761
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) −18.0000 −0.671754
\(719\) −42.0000 −1.56634 −0.783168 0.621810i \(-0.786397\pi\)
−0.783168 + 0.621810i \(0.786397\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) −8.00000 −0.297318
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 4.00000 0.148250
\(729\) 0 0
\(730\) 2.00000 0.0740233
\(731\) 0 0
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 24.0000 0.885856
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 6.00000 0.221013
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) 10.0000 0.367112
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) 0 0
\(745\) −2.00000 −0.0732743
\(746\) 34.0000 1.24483
\(747\) 0 0
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) −8.00000 −0.291343
\(755\) 4.00000 0.145575
\(756\) 0 0
\(757\) −36.0000 −1.30844 −0.654221 0.756303i \(-0.727003\pi\)
−0.654221 + 0.756303i \(0.727003\pi\)
\(758\) 12.0000 0.435860
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 12.0000 0.434429
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) −1.00000 −0.0360375
\(771\) 0 0
\(772\) −2.00000 −0.0719816
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 40.0000 1.43315
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) −14.0000 −0.499046 −0.249523 0.968369i \(-0.580274\pi\)
−0.249523 + 0.968369i \(0.580274\pi\)
\(788\) 14.0000 0.498729
\(789\) 0 0
\(790\) −4.00000 −0.142314
\(791\) 16.0000 0.568895
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 10.0000 0.353112
\(803\) 2.00000 0.0705785
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) −32.0000 −1.12715
\(807\) 0 0
\(808\) −6.00000 −0.211079
\(809\) −4.00000 −0.140633 −0.0703163 0.997525i \(-0.522401\pi\)
−0.0703163 + 0.997525i \(0.522401\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) −2.00000 −0.0701862
\(813\) 0 0
\(814\) 4.00000 0.140200
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 22.0000 0.769212
\(819\) 0 0
\(820\) −10.0000 −0.349215
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) −4.00000 −0.139178
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) 0 0
\(829\) −16.0000 −0.555703 −0.277851 0.960624i \(-0.589622\pi\)
−0.277851 + 0.960624i \(0.589622\pi\)
\(830\) 4.00000 0.138842
\(831\) 0 0
\(832\) 4.00000 0.138675
\(833\) 0 0
\(834\) 0 0
\(835\) −10.0000 −0.346064
\(836\) 4.00000 0.138343
\(837\) 0 0
\(838\) −16.0000 −0.552711
\(839\) 18.0000 0.621429 0.310715 0.950503i \(-0.399432\pi\)
0.310715 + 0.950503i \(0.399432\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −30.0000 −1.03387
\(843\) 0 0
\(844\) −2.00000 −0.0688428
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) 10.0000 0.343401
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) 44.0000 1.50653 0.753266 0.657716i \(-0.228477\pi\)
0.753266 + 0.657716i \(0.228477\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) −44.0000 −1.50301 −0.751506 0.659727i \(-0.770672\pi\)
−0.751506 + 0.659727i \(0.770672\pi\)
\(858\) 0 0
\(859\) 30.0000 1.02359 0.511793 0.859109i \(-0.328981\pi\)
0.511793 + 0.859109i \(0.328981\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) −30.0000 −1.02180
\(863\) 34.0000 1.15737 0.578687 0.815550i \(-0.303565\pi\)
0.578687 + 0.815550i \(0.303565\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) −34.0000 −1.15537
\(867\) 0 0
\(868\) −8.00000 −0.271538
\(869\) −4.00000 −0.135691
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 12.0000 0.406371
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −1.00000 −0.0337100
\(881\) 44.0000 1.48240 0.741199 0.671286i \(-0.234258\pi\)
0.741199 + 0.671286i \(0.234258\pi\)
\(882\) 0 0
\(883\) 50.0000 1.68263 0.841317 0.540542i \(-0.181781\pi\)
0.841317 + 0.540542i \(0.181781\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) 34.0000 1.14161 0.570804 0.821086i \(-0.306632\pi\)
0.570804 + 0.821086i \(0.306632\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) −4.00000 −0.134080
\(891\) 0 0
\(892\) −8.00000 −0.267860
\(893\) 32.0000 1.07084
\(894\) 0 0
\(895\) 4.00000 0.133705
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) 0 0
\(902\) −10.0000 −0.332964
\(903\) 0 0
\(904\) 16.0000 0.532152
\(905\) −8.00000 −0.265929
\(906\) 0 0
\(907\) −2.00000 −0.0664089 −0.0332045 0.999449i \(-0.510571\pi\)
−0.0332045 + 0.999449i \(0.510571\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 4.00000 0.132599
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 4.00000 0.132381
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) −12.0000 −0.396491
\(917\) 4.00000 0.132092
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 6.00000 0.197814
\(921\) 0 0
\(922\) −2.00000 −0.0658665
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) 20.0000 0.657241
\(927\) 0 0
\(928\) −2.00000 −0.0656532
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) 0 0
\(937\) 50.0000 1.63343 0.816714 0.577042i \(-0.195793\pi\)
0.816714 + 0.577042i \(0.195793\pi\)
\(938\) −6.00000 −0.195907
\(939\) 0 0
\(940\) −8.00000 −0.260931
\(941\) −50.0000 −1.62995 −0.814977 0.579494i \(-0.803250\pi\)
−0.814977 + 0.579494i \(0.803250\pi\)
\(942\) 0 0
\(943\) 60.0000 1.95387
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) 28.0000 0.909878 0.454939 0.890523i \(-0.349661\pi\)
0.454939 + 0.890523i \(0.349661\pi\)
\(948\) 0 0
\(949\) −8.00000 −0.259691
\(950\) 4.00000 0.129777
\(951\) 0 0
\(952\) 0 0
\(953\) −46.0000 −1.49009 −0.745043 0.667016i \(-0.767571\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(954\) 0 0
\(955\) 24.0000 0.776622
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) −16.0000 −0.516937
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) −16.0000 −0.515861
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −2.00000 −0.0642161
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) −20.0000 −0.640841
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) −44.0000 −1.40768 −0.703842 0.710356i \(-0.748534\pi\)
−0.703842 + 0.710356i \(0.748534\pi\)
\(978\) 0 0
\(979\) −4.00000 −0.127841
\(980\) 1.00000 0.0319438
\(981\) 0 0
\(982\) 4.00000 0.127645
\(983\) −16.0000 −0.510321 −0.255160 0.966899i \(-0.582128\pi\)
−0.255160 + 0.966899i \(0.582128\pi\)
\(984\) 0 0
\(985\) 14.0000 0.446077
\(986\) 0 0
\(987\) 0 0
\(988\) −16.0000 −0.509028
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) −8.00000 −0.254000
\(993\) 0 0
\(994\) −4.00000 −0.126872
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −40.0000 −1.26681 −0.633406 0.773819i \(-0.718344\pi\)
−0.633406 + 0.773819i \(0.718344\pi\)
\(998\) −16.0000 −0.506471
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6930.2.a.j.1.1 1
3.2 odd 2 2310.2.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2310.2.a.s.1.1 1 3.2 odd 2
6930.2.a.j.1.1 1 1.1 even 1 trivial