Properties

Label 6930.2.a.g
Level $6930$
Weight $2$
Character orbit 6930.a
Self dual yes
Analytic conductor $55.336$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2310)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} + q^{11} + 4 q^{13} - q^{14} + q^{16} + 4 q^{17} + 8 q^{19} - q^{20} - q^{22} - 2 q^{23} + q^{25} - 4 q^{26} + q^{28} + 6 q^{29} - 4 q^{31} - q^{32} - 4 q^{34} - q^{35} + 4 q^{37} - 8 q^{38} + q^{40} - 2 q^{41} + 4 q^{43} + q^{44} + 2 q^{46} + 4 q^{47} + q^{49} - q^{50} + 4 q^{52} - 2 q^{53} - q^{55} - q^{56} - 6 q^{58} + 10 q^{61} + 4 q^{62} + q^{64} - 4 q^{65} + 14 q^{67} + 4 q^{68} + q^{70} - 8 q^{71} - 10 q^{73} - 4 q^{74} + 8 q^{76} + q^{77} + 4 q^{79} - q^{80} + 2 q^{82} + 4 q^{83} - 4 q^{85} - 4 q^{86} - q^{88} - 16 q^{89} + 4 q^{91} - 2 q^{92} - 4 q^{94} - 8 q^{95} - 14 q^{97} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 −1.00000 0 1.00000 −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6930.2.a.g 1
3.b odd 2 1 2310.2.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2310.2.a.p 1 3.b odd 2 1
6930.2.a.g 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6930))\):

\( T_{13} - 4 \) Copy content Toggle raw display
\( T_{17} - 4 \) Copy content Toggle raw display
\( T_{19} - 8 \) Copy content Toggle raw display
\( T_{23} + 2 \) Copy content Toggle raw display
\( T_{29} - 6 \) Copy content Toggle raw display
\( T_{31} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T - 4 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T + 2 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 4 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T - 14 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T - 4 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T + 16 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less