Properties

Label 6930.2.a.bv
Level $6930$
Weight $2$
Character orbit 6930.a
Self dual yes
Analytic conductor $55.336$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} +O(q^{10})\) \( q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} - q^{11} + ( 2 + 2 \beta ) q^{13} - q^{14} + q^{16} -2 \beta q^{17} + ( 5 - \beta ) q^{19} + q^{20} + q^{22} + ( 3 - 3 \beta ) q^{23} + q^{25} + ( -2 - 2 \beta ) q^{26} + q^{28} + ( 3 - \beta ) q^{29} + 2 q^{31} - q^{32} + 2 \beta q^{34} + q^{35} + ( -1 - \beta ) q^{37} + ( -5 + \beta ) q^{38} - q^{40} + ( -3 - 3 \beta ) q^{41} + 2 q^{43} - q^{44} + ( -3 + 3 \beta ) q^{46} + 4 \beta q^{47} + q^{49} - q^{50} + ( 2 + 2 \beta ) q^{52} + ( 9 + \beta ) q^{53} - q^{55} - q^{56} + ( -3 + \beta ) q^{58} + 4 \beta q^{59} + ( 2 + 4 \beta ) q^{61} -2 q^{62} + q^{64} + ( 2 + 2 \beta ) q^{65} -4 q^{67} -2 \beta q^{68} - q^{70} + ( -6 + 2 \beta ) q^{71} + ( -4 + 6 \beta ) q^{73} + ( 1 + \beta ) q^{74} + ( 5 - \beta ) q^{76} - q^{77} + ( -7 + 3 \beta ) q^{79} + q^{80} + ( 3 + 3 \beta ) q^{82} + ( 6 - 6 \beta ) q^{83} -2 \beta q^{85} -2 q^{86} + q^{88} + 2 \beta q^{89} + ( 2 + 2 \beta ) q^{91} + ( 3 - 3 \beta ) q^{92} -4 \beta q^{94} + ( 5 - \beta ) q^{95} + ( -1 - 9 \beta ) q^{97} - q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} + 2 q^{7} - 2 q^{8} + O(q^{10}) \) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} + 2 q^{7} - 2 q^{8} - 2 q^{10} - 2 q^{11} + 4 q^{13} - 2 q^{14} + 2 q^{16} + 10 q^{19} + 2 q^{20} + 2 q^{22} + 6 q^{23} + 2 q^{25} - 4 q^{26} + 2 q^{28} + 6 q^{29} + 4 q^{31} - 2 q^{32} + 2 q^{35} - 2 q^{37} - 10 q^{38} - 2 q^{40} - 6 q^{41} + 4 q^{43} - 2 q^{44} - 6 q^{46} + 2 q^{49} - 2 q^{50} + 4 q^{52} + 18 q^{53} - 2 q^{55} - 2 q^{56} - 6 q^{58} + 4 q^{61} - 4 q^{62} + 2 q^{64} + 4 q^{65} - 8 q^{67} - 2 q^{70} - 12 q^{71} - 8 q^{73} + 2 q^{74} + 10 q^{76} - 2 q^{77} - 14 q^{79} + 2 q^{80} + 6 q^{82} + 12 q^{83} - 4 q^{86} + 2 q^{88} + 4 q^{91} + 6 q^{92} + 10 q^{95} - 2 q^{97} - 2 q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−1.00000 0 1.00000 1.00000 0 1.00000 −1.00000 0 −1.00000
1.2 −1.00000 0 1.00000 1.00000 0 1.00000 −1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6930.2.a.bv 2
3.b odd 2 1 770.2.a.j 2
12.b even 2 1 6160.2.a.t 2
15.d odd 2 1 3850.2.a.bd 2
15.e even 4 2 3850.2.c.x 4
21.c even 2 1 5390.2.a.bs 2
33.d even 2 1 8470.2.a.br 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.j 2 3.b odd 2 1
3850.2.a.bd 2 15.d odd 2 1
3850.2.c.x 4 15.e even 4 2
5390.2.a.bs 2 21.c even 2 1
6160.2.a.t 2 12.b even 2 1
6930.2.a.bv 2 1.a even 1 1 trivial
8470.2.a.br 2 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6930))\):

\( T_{13}^{2} - 4 T_{13} - 8 \)
\( T_{17}^{2} - 12 \)
\( T_{19}^{2} - 10 T_{19} + 22 \)
\( T_{23}^{2} - 6 T_{23} - 18 \)
\( T_{29}^{2} - 6 T_{29} + 6 \)
\( T_{31} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ \( T^{2} \)
$5$ \( ( -1 + T )^{2} \)
$7$ \( ( -1 + T )^{2} \)
$11$ \( ( 1 + T )^{2} \)
$13$ \( -8 - 4 T + T^{2} \)
$17$ \( -12 + T^{2} \)
$19$ \( 22 - 10 T + T^{2} \)
$23$ \( -18 - 6 T + T^{2} \)
$29$ \( 6 - 6 T + T^{2} \)
$31$ \( ( -2 + T )^{2} \)
$37$ \( -2 + 2 T + T^{2} \)
$41$ \( -18 + 6 T + T^{2} \)
$43$ \( ( -2 + T )^{2} \)
$47$ \( -48 + T^{2} \)
$53$ \( 78 - 18 T + T^{2} \)
$59$ \( -48 + T^{2} \)
$61$ \( -44 - 4 T + T^{2} \)
$67$ \( ( 4 + T )^{2} \)
$71$ \( 24 + 12 T + T^{2} \)
$73$ \( -92 + 8 T + T^{2} \)
$79$ \( 22 + 14 T + T^{2} \)
$83$ \( -72 - 12 T + T^{2} \)
$89$ \( -12 + T^{2} \)
$97$ \( -242 + 2 T + T^{2} \)
show more
show less