Properties

Label 6930.2.a.bm.1.1
Level $6930$
Weight $2$
Character 6930.1
Self dual yes
Analytic conductor $55.336$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6930.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{10} +1.00000 q^{11} +2.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +6.00000 q^{17} +2.00000 q^{19} +1.00000 q^{20} +1.00000 q^{22} +6.00000 q^{23} +1.00000 q^{25} +2.00000 q^{26} +1.00000 q^{28} +8.00000 q^{31} +1.00000 q^{32} +6.00000 q^{34} +1.00000 q^{35} -4.00000 q^{37} +2.00000 q^{38} +1.00000 q^{40} -12.0000 q^{41} -4.00000 q^{43} +1.00000 q^{44} +6.00000 q^{46} -12.0000 q^{47} +1.00000 q^{49} +1.00000 q^{50} +2.00000 q^{52} +1.00000 q^{55} +1.00000 q^{56} +2.00000 q^{61} +8.00000 q^{62} +1.00000 q^{64} +2.00000 q^{65} +8.00000 q^{67} +6.00000 q^{68} +1.00000 q^{70} -12.0000 q^{71} +2.00000 q^{73} -4.00000 q^{74} +2.00000 q^{76} +1.00000 q^{77} +14.0000 q^{79} +1.00000 q^{80} -12.0000 q^{82} -12.0000 q^{83} +6.00000 q^{85} -4.00000 q^{86} +1.00000 q^{88} -6.00000 q^{89} +2.00000 q^{91} +6.00000 q^{92} -12.0000 q^{94} +2.00000 q^{95} +8.00000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 2.00000 0.324443
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 1.00000 0.119523
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −12.0000 −1.32518
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 2.00000 0.175412
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 2.00000 0.173422
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 2.00000 0.162221
\(153\) 0 0
\(154\) 1.00000 0.0805823
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 14.0000 1.11378
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 2.00000 0.148250
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 6.00000 0.438763
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) −16.0000 −1.08366
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 0 0
\(237\) 0 0
\(238\) 6.00000 0.388922
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) 20.0000 1.28831 0.644157 0.764894i \(-0.277208\pi\)
0.644157 + 0.764894i \(0.277208\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 8.00000 0.508001
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 18.0000 1.11204
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.00000 0.122628
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 14.0000 0.839664
\(279\) 0 0
\(280\) 1.00000 0.0597614
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 2.00000 0.117041
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 14.0000 0.805609
\(303\) 0 0
\(304\) 2.00000 0.114708
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 6.00000 0.334367
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) −12.0000 −0.662589
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 0 0
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 6.00000 0.310253
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) 0 0
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 2.00000 0.102598
\(381\) 0 0
\(382\) 24.0000 1.22795
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 1.00000 0.0509647
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) 8.00000 0.406138
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 36.0000 1.82060
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 14.0000 0.704416
\(396\) 0 0
\(397\) 38.0000 1.90717 0.953583 0.301131i \(-0.0973643\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 16.0000 0.797017
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) −12.0000 −0.592638
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) 2.00000 0.0978232
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) −4.00000 −0.192897
\(431\) −30.0000 −1.44505 −0.722525 0.691345i \(-0.757018\pi\)
−0.722525 + 0.691345i \(0.757018\pi\)
\(432\) 0 0
\(433\) −4.00000 −0.192228 −0.0961139 0.995370i \(-0.530641\pi\)
−0.0961139 + 0.995370i \(0.530641\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) 12.0000 0.574038
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 12.0000 0.570782
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 8.00000 0.378811
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 6.00000 0.282216
\(453\) 0 0
\(454\) −24.0000 −1.12638
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) −10.0000 −0.467269
\(459\) 0 0
\(460\) 6.00000 0.279751
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) −22.0000 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) −12.0000 −0.553519
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 6.00000 0.275010
\(477\) 0 0
\(478\) −18.0000 −0.823301
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 20.0000 0.910975
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 8.00000 0.363261
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 2.00000 0.0905357
\(489\) 0 0
\(490\) 1.00000 0.0451754
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 6.00000 0.266733
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −24.0000 −1.05859
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) −4.00000 −0.175750
\(519\) 0 0
\(520\) 2.00000 0.0877058
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 2.00000 0.0867110
\(533\) −24.0000 −1.03956
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) 18.0000 0.776035
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 20.0000 0.859074
\(543\) 0 0
\(544\) 6.00000 0.257248
\(545\) −16.0000 −0.685365
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) 0 0
\(552\) 0 0
\(553\) 14.0000 0.595341
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) −6.00000 −0.254228 −0.127114 0.991888i \(-0.540571\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 1.00000 0.0422577
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 19.0000 0.790296
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 30.0000 1.23823 0.619116 0.785299i \(-0.287491\pi\)
0.619116 + 0.785299i \(0.287491\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 6.00000 0.245976
\(596\) 0 0
\(597\) 0 0
\(598\) 12.0000 0.490716
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 32.0000 1.30531 0.652654 0.757656i \(-0.273656\pi\)
0.652654 + 0.757656i \(0.273656\pi\)
\(602\) −4.00000 −0.163028
\(603\) 0 0
\(604\) 14.0000 0.569652
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 2.00000 0.0811107
\(609\) 0 0
\(610\) 2.00000 0.0809776
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) 1.00000 0.0402911
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 0 0
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.00000 0.319744
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 14.0000 0.556890
\(633\) 0 0
\(634\) 12.0000 0.476581
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 6.00000 0.236433
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) −12.0000 −0.468521
\(657\) 0 0
\(658\) −12.0000 −0.467809
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 2.00000 0.0775567
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) 2.00000 0.0772091
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) 8.00000 0.307012
\(680\) 6.00000 0.230089
\(681\) 0 0
\(682\) 8.00000 0.306336
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 0 0
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 14.0000 0.531050
\(696\) 0 0
\(697\) −72.0000 −2.72719
\(698\) 14.0000 0.529908
\(699\) 0 0
\(700\) 1.00000 0.0377964
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 24.0000 0.903252
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) −12.0000 −0.450352
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 48.0000 1.79761
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) −30.0000 −1.11959
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) −15.0000 −0.558242
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 0 0
\(726\) 0 0
\(727\) 20.0000 0.741759 0.370879 0.928681i \(-0.379056\pi\)
0.370879 + 0.928681i \(0.379056\pi\)
\(728\) 2.00000 0.0741249
\(729\) 0 0
\(730\) 2.00000 0.0740233
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −4.00000 −0.147142 −0.0735712 0.997290i \(-0.523440\pi\)
−0.0735712 + 0.997290i \(0.523440\pi\)
\(740\) −4.00000 −0.147043
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 14.0000 0.512576
\(747\) 0 0
\(748\) 6.00000 0.219382
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) −12.0000 −0.437595
\(753\) 0 0
\(754\) 0 0
\(755\) 14.0000 0.509512
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) 2.00000 0.0725476
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) −16.0000 −0.579239
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 0 0
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 1.00000 0.0360375
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 8.00000 0.287183
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 36.0000 1.28736
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 14.0000 0.499681
\(786\) 0 0
\(787\) −16.0000 −0.570338 −0.285169 0.958477i \(-0.592050\pi\)
−0.285169 + 0.958477i \(0.592050\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 14.0000 0.498098
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 38.0000 1.34857
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) −72.0000 −2.54718
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −30.0000 −1.05934
\(803\) 2.00000 0.0705785
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) 16.0000 0.563576
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 38.0000 1.33436 0.667180 0.744896i \(-0.267501\pi\)
0.667180 + 0.744896i \(0.267501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) −4.00000 −0.139857
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −12.0000 −0.418803 −0.209401 0.977830i \(-0.567152\pi\)
−0.209401 + 0.977830i \(0.567152\pi\)
\(822\) 0 0
\(823\) 50.0000 1.74289 0.871445 0.490493i \(-0.163183\pi\)
0.871445 + 0.490493i \(0.163183\pi\)
\(824\) −16.0000 −0.557386
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) −12.0000 −0.416526
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 2.00000 0.0691714
\(837\) 0 0
\(838\) 0 0
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −10.0000 −0.344623
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 0 0
\(849\) 0 0
\(850\) 6.00000 0.205798
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) −16.0000 −0.545913 −0.272956 0.962026i \(-0.588002\pi\)
−0.272956 + 0.962026i \(0.588002\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) −30.0000 −1.02180
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 0 0
\(865\) 18.0000 0.612018
\(866\) −4.00000 −0.135926
\(867\) 0 0
\(868\) 8.00000 0.271538
\(869\) 14.0000 0.474917
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) −16.0000 −0.541828
\(873\) 0 0
\(874\) 12.0000 0.405906
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) −10.0000 −0.337676 −0.168838 0.985644i \(-0.554001\pi\)
−0.168838 + 0.985644i \(0.554001\pi\)
\(878\) −28.0000 −0.944954
\(879\) 0 0
\(880\) 1.00000 0.0337100
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) −6.00000 −0.201120
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) −24.0000 −0.803129
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −12.0000 −0.399556
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) 2.00000 0.0664822
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) −24.0000 −0.796468
\(909\) 0 0
\(910\) 2.00000 0.0662994
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 6.00000 0.197814
\(921\) 0 0
\(922\) 18.0000 0.592798
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) −22.0000 −0.722965
\(927\) 0 0
\(928\) 0 0
\(929\) −54.0000 −1.77168 −0.885841 0.463988i \(-0.846418\pi\)
−0.885841 + 0.463988i \(0.846418\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) 6.00000 0.196326
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 8.00000 0.261209
\(939\) 0 0
\(940\) −12.0000 −0.391397
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) −72.0000 −2.34464
\(944\) 0 0
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 2.00000 0.0648886
\(951\) 0 0
\(952\) 6.00000 0.194461
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) 24.0000 0.776622
\(956\) −18.0000 −0.582162
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) −8.00000 −0.257930
\(963\) 0 0
\(964\) 20.0000 0.644157
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 8.00000 0.256865
\(971\) 48.0000 1.54039 0.770197 0.637806i \(-0.220158\pi\)
0.770197 + 0.637806i \(0.220158\pi\)
\(972\) 0 0
\(973\) 14.0000 0.448819
\(974\) 2.00000 0.0640841
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 1.00000 0.0319438
\(981\) 0 0
\(982\) 36.0000 1.14881
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 0.127257
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 8.00000 0.254000
\(993\) 0 0
\(994\) −12.0000 −0.380617
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6930.2.a.bm.1.1 1
3.2 odd 2 770.2.a.a.1.1 1
12.11 even 2 6160.2.a.k.1.1 1
15.2 even 4 3850.2.c.o.1849.1 2
15.8 even 4 3850.2.c.o.1849.2 2
15.14 odd 2 3850.2.a.ba.1.1 1
21.20 even 2 5390.2.a.r.1.1 1
33.32 even 2 8470.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
770.2.a.a.1.1 1 3.2 odd 2
3850.2.a.ba.1.1 1 15.14 odd 2
3850.2.c.o.1849.1 2 15.2 even 4
3850.2.c.o.1849.2 2 15.8 even 4
5390.2.a.r.1.1 1 21.20 even 2
6160.2.a.k.1.1 1 12.11 even 2
6930.2.a.bm.1.1 1 1.1 even 1 trivial
8470.2.a.r.1.1 1 33.32 even 2