Properties

Label 6930.2.a.bm
Level $6930$
Weight $2$
Character orbit 6930.a
Self dual yes
Analytic conductor $55.336$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} + q^{11} + 2q^{13} + q^{14} + q^{16} + 6q^{17} + 2q^{19} + q^{20} + q^{22} + 6q^{23} + q^{25} + 2q^{26} + q^{28} + 8q^{31} + q^{32} + 6q^{34} + q^{35} - 4q^{37} + 2q^{38} + q^{40} - 12q^{41} - 4q^{43} + q^{44} + 6q^{46} - 12q^{47} + q^{49} + q^{50} + 2q^{52} + q^{55} + q^{56} + 2q^{61} + 8q^{62} + q^{64} + 2q^{65} + 8q^{67} + 6q^{68} + q^{70} - 12q^{71} + 2q^{73} - 4q^{74} + 2q^{76} + q^{77} + 14q^{79} + q^{80} - 12q^{82} - 12q^{83} + 6q^{85} - 4q^{86} + q^{88} - 6q^{89} + 2q^{91} + 6q^{92} - 12q^{94} + 2q^{95} + 8q^{97} + q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 1.00000 0 1.00000 1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6930.2.a.bm 1
3.b odd 2 1 770.2.a.a 1
12.b even 2 1 6160.2.a.k 1
15.d odd 2 1 3850.2.a.ba 1
15.e even 4 2 3850.2.c.o 2
21.c even 2 1 5390.2.a.r 1
33.d even 2 1 8470.2.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.a 1 3.b odd 2 1
3850.2.a.ba 1 15.d odd 2 1
3850.2.c.o 2 15.e even 4 2
5390.2.a.r 1 21.c even 2 1
6160.2.a.k 1 12.b even 2 1
6930.2.a.bm 1 1.a even 1 1 trivial
8470.2.a.r 1 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6930))\):

\( T_{13} - 2 \)
\( T_{17} - 6 \)
\( T_{19} - 2 \)
\( T_{23} - 6 \)
\( T_{29} \)
\( T_{31} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( -1 + T \)
$11$ \( -1 + T \)
$13$ \( -2 + T \)
$17$ \( -6 + T \)
$19$ \( -2 + T \)
$23$ \( -6 + T \)
$29$ \( T \)
$31$ \( -8 + T \)
$37$ \( 4 + T \)
$41$ \( 12 + T \)
$43$ \( 4 + T \)
$47$ \( 12 + T \)
$53$ \( T \)
$59$ \( T \)
$61$ \( -2 + T \)
$67$ \( -8 + T \)
$71$ \( 12 + T \)
$73$ \( -2 + T \)
$79$ \( -14 + T \)
$83$ \( 12 + T \)
$89$ \( 6 + T \)
$97$ \( -8 + T \)
show more
show less