Properties

Label 6930.2.a.bj.1.1
Level $6930$
Weight $2$
Character 6930.1
Self dual yes
Analytic conductor $55.336$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(55.3363286007\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6930.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{10} +1.00000 q^{11} -4.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -6.00000 q^{19} +1.00000 q^{20} +1.00000 q^{22} -6.00000 q^{23} +1.00000 q^{25} -4.00000 q^{26} +1.00000 q^{28} +2.00000 q^{29} +1.00000 q^{32} -2.00000 q^{34} +1.00000 q^{35} -10.0000 q^{37} -6.00000 q^{38} +1.00000 q^{40} -6.00000 q^{41} -2.00000 q^{43} +1.00000 q^{44} -6.00000 q^{46} -2.00000 q^{47} +1.00000 q^{49} +1.00000 q^{50} -4.00000 q^{52} -6.00000 q^{53} +1.00000 q^{55} +1.00000 q^{56} +2.00000 q^{58} -4.00000 q^{61} +1.00000 q^{64} -4.00000 q^{65} -8.00000 q^{67} -2.00000 q^{68} +1.00000 q^{70} +6.00000 q^{71} +6.00000 q^{73} -10.0000 q^{74} -6.00000 q^{76} +1.00000 q^{77} +4.00000 q^{79} +1.00000 q^{80} -6.00000 q^{82} -12.0000 q^{83} -2.00000 q^{85} -2.00000 q^{86} +1.00000 q^{88} +4.00000 q^{89} -4.00000 q^{91} -6.00000 q^{92} -2.00000 q^{94} -6.00000 q^{95} -2.00000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 2.00000 0.262613
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 1.00000 0.119523
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) −2.00000 −0.206284
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) 0 0
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −4.00000 −0.362143
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −4.00000 −0.350823
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) 18.0000 1.52674 0.763370 0.645961i \(-0.223543\pi\)
0.763370 + 0.645961i \(0.223543\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) −10.0000 −0.821995
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) −6.00000 −0.486664
\(153\) 0 0
\(154\) 1.00000 0.0805823
\(155\) 0 0
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 4.00000 0.299813
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) −4.00000 −0.296500
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) −10.0000 −0.735215
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) −2.00000 −0.145865
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 14.0000 0.997459 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −10.0000 −0.703598
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) 16.0000 1.08366
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) −6.00000 −0.395628
\(231\) 0 0
\(232\) 2.00000 0.131306
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) −2.00000 −0.130466
\(236\) 0 0
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −4.00000 −0.256074
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 24.0000 1.52708
\(248\) 0 0
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.0000 −1.24757 −0.623783 0.781598i \(-0.714405\pi\)
−0.623783 + 0.781598i \(0.714405\pi\)
\(258\) 0 0
\(259\) −10.0000 −0.621370
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) −12.0000 −0.741362
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 28.0000 1.70088 0.850439 0.526073i \(-0.176336\pi\)
0.850439 + 0.526073i \(0.176336\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −8.00000 −0.483298
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −4.00000 −0.240337 −0.120168 0.992754i \(-0.538343\pi\)
−0.120168 + 0.992754i \(0.538343\pi\)
\(278\) 18.0000 1.07957
\(279\) 0 0
\(280\) 1.00000 0.0597614
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 2.00000 0.118888 0.0594438 0.998232i \(-0.481067\pi\)
0.0594438 + 0.998232i \(0.481067\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 2.00000 0.117444
\(291\) 0 0
\(292\) 6.00000 0.351123
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10.0000 −0.581238
\(297\) 0 0
\(298\) −10.0000 −0.579284
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) −12.0000 −0.690522
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −30.0000 −1.71219 −0.856095 0.516818i \(-0.827116\pi\)
−0.856095 + 0.516818i \(0.827116\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) 0 0
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 2.00000 0.111979
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −6.00000 −0.334367
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −2.00000 −0.110264
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 3.00000 0.163178
\(339\) 0 0
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −2.00000 −0.107833
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −20.0000 −1.06449 −0.532246 0.846590i \(-0.678652\pi\)
−0.532246 + 0.846590i \(0.678652\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 4.00000 0.212000
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 14.0000 0.735824
\(363\) 0 0
\(364\) −4.00000 −0.209657
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) −10.0000 −0.519875
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) −20.0000 −1.03556 −0.517780 0.855514i \(-0.673242\pi\)
−0.517780 + 0.855514i \(0.673242\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) −2.00000 −0.103142
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) −6.00000 −0.307794
\(381\) 0 0
\(382\) 10.0000 0.511645
\(383\) −34.0000 −1.73732 −0.868659 0.495410i \(-0.835018\pi\)
−0.868659 + 0.495410i \(0.835018\pi\)
\(384\) 0 0
\(385\) 1.00000 0.0509647
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) 14.0000 0.705310
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −10.0000 −0.501886 −0.250943 0.968002i \(-0.580741\pi\)
−0.250943 + 0.968002i \(0.580741\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −32.0000 −1.59800 −0.799002 0.601329i \(-0.794638\pi\)
−0.799002 + 0.601329i \(0.794638\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) 2.00000 0.0992583
\(407\) −10.0000 −0.495682
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) −4.00000 −0.196116
\(417\) 0 0
\(418\) −6.00000 −0.293470
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) −14.0000 −0.681509
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) −4.00000 −0.193574
\(428\) 4.00000 0.193347
\(429\) 0 0
\(430\) −2.00000 −0.0964486
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 16.0000 0.766261
\(437\) 36.0000 1.72211
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 8.00000 0.380521
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) −8.00000 −0.378811
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 12.0000 0.564433
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 6.00000 0.280362
\(459\) 0 0
\(460\) −6.00000 −0.279751
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) 14.0000 0.648537
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) −2.00000 −0.0922531
\(471\) 0 0
\(472\) 0 0
\(473\) −2.00000 −0.0919601
\(474\) 0 0
\(475\) −6.00000 −0.275299
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) 12.0000 0.548867
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) −4.00000 −0.181071
\(489\) 0 0
\(490\) 1.00000 0.0451754
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) 0 0
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) −6.00000 −0.266733
\(507\) 0 0
\(508\) 20.0000 0.887357
\(509\) −14.0000 −0.620539 −0.310270 0.950649i \(-0.600419\pi\)
−0.310270 + 0.950649i \(0.600419\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −20.0000 −0.882162
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) −2.00000 −0.0879599
\(518\) −10.0000 −0.439375
\(519\) 0 0
\(520\) −4.00000 −0.175412
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −6.00000 −0.260623
\(531\) 0 0
\(532\) −6.00000 −0.260133
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) −14.0000 −0.603583
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 32.0000 1.37579 0.687894 0.725811i \(-0.258536\pi\)
0.687894 + 0.725811i \(0.258536\pi\)
\(542\) 28.0000 1.20270
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 16.0000 0.685365
\(546\) 0 0
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) −8.00000 −0.341743
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) −4.00000 −0.169944
\(555\) 0 0
\(556\) 18.0000 0.763370
\(557\) −6.00000 −0.254228 −0.127114 0.991888i \(-0.540571\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 1.00000 0.0422577
\(561\) 0 0
\(562\) −10.0000 −0.421825
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 2.00000 0.0840663
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 32.0000 1.32078 0.660391 0.750922i \(-0.270391\pi\)
0.660391 + 0.750922i \(0.270391\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −10.0000 −0.410997
\(593\) −14.0000 −0.574911 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) 24.0000 0.981433
\(599\) 34.0000 1.38920 0.694601 0.719395i \(-0.255581\pi\)
0.694601 + 0.719395i \(0.255581\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) −2.00000 −0.0815139
\(603\) 0 0
\(604\) −12.0000 −0.488273
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −20.0000 −0.811775 −0.405887 0.913923i \(-0.633038\pi\)
−0.405887 + 0.913923i \(0.633038\pi\)
\(608\) −6.00000 −0.243332
\(609\) 0 0
\(610\) −4.00000 −0.161955
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 40.0000 1.61558 0.807792 0.589467i \(-0.200662\pi\)
0.807792 + 0.589467i \(0.200662\pi\)
\(614\) −30.0000 −1.21070
\(615\) 0 0
\(616\) 1.00000 0.0402911
\(617\) 36.0000 1.44931 0.724653 0.689114i \(-0.242000\pi\)
0.724653 + 0.689114i \(0.242000\pi\)
\(618\) 0 0
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.0000 −0.400963
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 20.0000 0.797452
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) 18.0000 0.714871
\(635\) 20.0000 0.793676
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 2.00000 0.0791808
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −36.0000 −1.42191 −0.710957 0.703235i \(-0.751738\pi\)
−0.710957 + 0.703235i \(0.751738\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) −6.00000 −0.236433
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) −42.0000 −1.65119 −0.825595 0.564263i \(-0.809160\pi\)
−0.825595 + 0.564263i \(0.809160\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −2.00000 −0.0779681
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 0 0
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) −6.00000 −0.232670
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) 0 0
\(670\) −8.00000 −0.309067
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) −2.00000 −0.0766965
\(681\) 0 0
\(682\) 0 0
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −2.00000 −0.0762493
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 18.0000 0.682779
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) 0 0
\(699\) 0 0
\(700\) 1.00000 0.0377964
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 60.0000 2.26294
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −20.0000 −0.752710
\(707\) −10.0000 −0.376089
\(708\) 0 0
\(709\) 42.0000 1.57734 0.788672 0.614815i \(-0.210769\pi\)
0.788672 + 0.614815i \(0.210769\pi\)
\(710\) 6.00000 0.225176
\(711\) 0 0
\(712\) 4.00000 0.149906
\(713\) 0 0
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) −24.0000 −0.895672
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 17.0000 0.632674
\(723\) 0 0
\(724\) 14.0000 0.520306
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) −4.00000 −0.148250
\(729\) 0 0
\(730\) 6.00000 0.222070
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) 28.0000 1.03420 0.517102 0.855924i \(-0.327011\pi\)
0.517102 + 0.855924i \(0.327011\pi\)
\(734\) 24.0000 0.885856
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 30.0000 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(740\) −10.0000 −0.367607
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) −20.0000 −0.732252
\(747\) 0 0
\(748\) −2.00000 −0.0731272
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) −2.00000 −0.0729325
\(753\) 0 0
\(754\) −8.00000 −0.291343
\(755\) −12.0000 −0.436725
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 16.0000 0.581146
\(759\) 0 0
\(760\) −6.00000 −0.217643
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 16.0000 0.579239
\(764\) 10.0000 0.361787
\(765\) 0 0
\(766\) −34.0000 −1.22847
\(767\) 0 0
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 1.00000 0.0360375
\(771\) 0 0
\(772\) 14.0000 0.503871
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) 36.0000 1.28983
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 12.0000 0.429119
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 18.0000 0.641631 0.320815 0.947142i \(-0.396043\pi\)
0.320815 + 0.947142i \(0.396043\pi\)
\(788\) 14.0000 0.498729
\(789\) 0 0
\(790\) 4.00000 0.142314
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) −10.0000 −0.354887
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) 4.00000 0.141510
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −32.0000 −1.12996
\(803\) 6.00000 0.211735
\(804\) 0 0
\(805\) −6.00000 −0.211472
\(806\) 0 0
\(807\) 0 0
\(808\) −10.0000 −0.351799
\(809\) −54.0000 −1.89854 −0.949269 0.314464i \(-0.898175\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) 6.00000 0.210688 0.105344 0.994436i \(-0.466406\pi\)
0.105344 + 0.994436i \(0.466406\pi\)
\(812\) 2.00000 0.0701862
\(813\) 0 0
\(814\) −10.0000 −0.350500
\(815\) 0 0
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 18.0000 0.629355
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) −34.0000 −1.18661 −0.593304 0.804978i \(-0.702177\pi\)
−0.593304 + 0.804978i \(0.702177\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) −12.0000 −0.416526
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) 0 0
\(836\) −6.00000 −0.207514
\(837\) 0 0
\(838\) −20.0000 −0.690889
\(839\) 10.0000 0.345238 0.172619 0.984989i \(-0.444777\pi\)
0.172619 + 0.984989i \(0.444777\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −26.0000 −0.896019
\(843\) 0 0
\(844\) −14.0000 −0.481900
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) 60.0000 2.05677
\(852\) 0 0
\(853\) 28.0000 0.958702 0.479351 0.877623i \(-0.340872\pi\)
0.479351 + 0.877623i \(0.340872\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) 12.0000 0.409435 0.204717 0.978821i \(-0.434372\pi\)
0.204717 + 0.978821i \(0.434372\pi\)
\(860\) −2.00000 −0.0681994
\(861\) 0 0
\(862\) −8.00000 −0.272481
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) −2.00000 −0.0679628
\(867\) 0 0
\(868\) 0 0
\(869\) 4.00000 0.135691
\(870\) 0 0
\(871\) 32.0000 1.08428
\(872\) 16.0000 0.541828
\(873\) 0 0
\(874\) 36.0000 1.21772
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) −28.0000 −0.945493 −0.472746 0.881199i \(-0.656737\pi\)
−0.472746 + 0.881199i \(0.656737\pi\)
\(878\) 24.0000 0.809961
\(879\) 0 0
\(880\) 1.00000 0.0337100
\(881\) −16.0000 −0.539054 −0.269527 0.962993i \(-0.586867\pi\)
−0.269527 + 0.962993i \(0.586867\pi\)
\(882\) 0 0
\(883\) 40.0000 1.34611 0.673054 0.739594i \(-0.264982\pi\)
0.673054 + 0.739594i \(0.264982\pi\)
\(884\) 8.00000 0.269069
\(885\) 0 0
\(886\) 8.00000 0.268765
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) 4.00000 0.134080
\(891\) 0 0
\(892\) −8.00000 −0.267860
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) 4.00000 0.133705
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −20.0000 −0.667409
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) −6.00000 −0.199778
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) 14.0000 0.465376
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) 12.0000 0.398234
\(909\) 0 0
\(910\) −4.00000 −0.132599
\(911\) 30.0000 0.993944 0.496972 0.867766i \(-0.334445\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) −12.0000 −0.396275
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) −6.00000 −0.197814
\(921\) 0 0
\(922\) 2.00000 0.0658665
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) −10.0000 −0.328798
\(926\) −16.0000 −0.525793
\(927\) 0 0
\(928\) 2.00000 0.0656532
\(929\) 36.0000 1.18112 0.590561 0.806993i \(-0.298907\pi\)
0.590561 + 0.806993i \(0.298907\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 14.0000 0.458585
\(933\) 0 0
\(934\) 4.00000 0.130884
\(935\) −2.00000 −0.0654070
\(936\) 0 0
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) −8.00000 −0.261209
\(939\) 0 0
\(940\) −2.00000 −0.0652328
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) 0 0
\(945\) 0 0
\(946\) −2.00000 −0.0650256
\(947\) −32.0000 −1.03986 −0.519930 0.854209i \(-0.674042\pi\)
−0.519930 + 0.854209i \(0.674042\pi\)
\(948\) 0 0
\(949\) −24.0000 −0.779073
\(950\) −6.00000 −0.194666
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 10.0000 0.323592
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) 28.0000 0.904639
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 40.0000 1.28965
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) 14.0000 0.450676
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) −2.00000 −0.0642161
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 18.0000 0.577054
\(974\) 0 0
\(975\) 0 0
\(976\) −4.00000 −0.128037
\(977\) 24.0000 0.767828 0.383914 0.923369i \(-0.374576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(978\) 0 0
\(979\) 4.00000 0.127841
\(980\) 1.00000 0.0319438
\(981\) 0 0
\(982\) −36.0000 −1.14881
\(983\) −10.0000 −0.318950 −0.159475 0.987202i \(-0.550980\pi\)
−0.159475 + 0.987202i \(0.550980\pi\)
\(984\) 0 0
\(985\) 14.0000 0.446077
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) 24.0000 0.763542
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) −48.0000 −1.52018 −0.760088 0.649821i \(-0.774844\pi\)
−0.760088 + 0.649821i \(0.774844\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6930.2.a.bj.1.1 yes 1
3.2 odd 2 6930.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6930.2.a.c.1.1 1 3.2 odd 2
6930.2.a.bj.1.1 yes 1 1.1 even 1 trivial