Properties

Label 693.4.a.u.1.8
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-4.31088\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.31088 q^{2} +20.2055 q^{4} -7.25200 q^{5} +7.00000 q^{7} +64.8218 q^{8} -38.5145 q^{10} +11.0000 q^{11} +47.6369 q^{13} +37.1762 q^{14} +182.617 q^{16} -31.5955 q^{17} +18.9406 q^{19} -146.530 q^{20} +58.4197 q^{22} +200.570 q^{23} -72.4085 q^{25} +252.994 q^{26} +141.438 q^{28} +224.264 q^{29} -237.936 q^{31} +451.284 q^{32} -167.800 q^{34} -50.7640 q^{35} +226.700 q^{37} +100.591 q^{38} -470.088 q^{40} -31.1161 q^{41} -176.064 q^{43} +222.260 q^{44} +1065.20 q^{46} +526.826 q^{47} +49.0000 q^{49} -384.553 q^{50} +962.527 q^{52} -342.689 q^{53} -79.7720 q^{55} +453.753 q^{56} +1191.04 q^{58} -283.465 q^{59} -216.971 q^{61} -1263.65 q^{62} +935.778 q^{64} -345.463 q^{65} -180.035 q^{67} -638.402 q^{68} -269.602 q^{70} -166.734 q^{71} +44.8888 q^{73} +1203.98 q^{74} +382.704 q^{76} +77.0000 q^{77} +349.350 q^{79} -1324.34 q^{80} -165.254 q^{82} +722.258 q^{83} +229.131 q^{85} -935.053 q^{86} +713.040 q^{88} +443.808 q^{89} +333.459 q^{91} +4052.61 q^{92} +2797.91 q^{94} -137.357 q^{95} -1804.50 q^{97} +260.233 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 30 q^{4} + 10 q^{5} + 56 q^{7} + 81 q^{8} + 9 q^{10} + 88 q^{11} + 16 q^{13} + 42 q^{14} + 122 q^{16} + 90 q^{17} - 42 q^{19} + 291 q^{20} + 66 q^{22} + 338 q^{23} + 244 q^{25} + 209 q^{26}+ \cdots + 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.31088 1.87768 0.938840 0.344353i \(-0.111902\pi\)
0.938840 + 0.344353i \(0.111902\pi\)
\(3\) 0 0
\(4\) 20.2055 2.52568
\(5\) −7.25200 −0.648639 −0.324319 0.945948i \(-0.605135\pi\)
−0.324319 + 0.945948i \(0.605135\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 64.8218 2.86475
\(9\) 0 0
\(10\) −38.5145 −1.21794
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 47.6369 1.01632 0.508158 0.861264i \(-0.330327\pi\)
0.508158 + 0.861264i \(0.330327\pi\)
\(14\) 37.1762 0.709696
\(15\) 0 0
\(16\) 182.617 2.85339
\(17\) −31.5955 −0.450766 −0.225383 0.974270i \(-0.572363\pi\)
−0.225383 + 0.974270i \(0.572363\pi\)
\(18\) 0 0
\(19\) 18.9406 0.228699 0.114349 0.993441i \(-0.463522\pi\)
0.114349 + 0.993441i \(0.463522\pi\)
\(20\) −146.530 −1.63826
\(21\) 0 0
\(22\) 58.4197 0.566142
\(23\) 200.570 1.81833 0.909167 0.416431i \(-0.136719\pi\)
0.909167 + 0.416431i \(0.136719\pi\)
\(24\) 0 0
\(25\) −72.4085 −0.579268
\(26\) 252.994 1.90832
\(27\) 0 0
\(28\) 141.438 0.954619
\(29\) 224.264 1.43603 0.718014 0.696029i \(-0.245052\pi\)
0.718014 + 0.696029i \(0.245052\pi\)
\(30\) 0 0
\(31\) −237.936 −1.37853 −0.689267 0.724507i \(-0.742067\pi\)
−0.689267 + 0.724507i \(0.742067\pi\)
\(32\) 451.284 2.49302
\(33\) 0 0
\(34\) −167.800 −0.846395
\(35\) −50.7640 −0.245162
\(36\) 0 0
\(37\) 226.700 1.00728 0.503639 0.863914i \(-0.331994\pi\)
0.503639 + 0.863914i \(0.331994\pi\)
\(38\) 100.591 0.429423
\(39\) 0 0
\(40\) −470.088 −1.85819
\(41\) −31.1161 −0.118525 −0.0592625 0.998242i \(-0.518875\pi\)
−0.0592625 + 0.998242i \(0.518875\pi\)
\(42\) 0 0
\(43\) −176.064 −0.624406 −0.312203 0.950015i \(-0.601067\pi\)
−0.312203 + 0.950015i \(0.601067\pi\)
\(44\) 222.260 0.761522
\(45\) 0 0
\(46\) 1065.20 3.41425
\(47\) 526.826 1.63501 0.817505 0.575922i \(-0.195357\pi\)
0.817505 + 0.575922i \(0.195357\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −384.553 −1.08768
\(51\) 0 0
\(52\) 962.527 2.56689
\(53\) −342.689 −0.888151 −0.444076 0.895989i \(-0.646468\pi\)
−0.444076 + 0.895989i \(0.646468\pi\)
\(54\) 0 0
\(55\) −79.7720 −0.195572
\(56\) 453.753 1.08277
\(57\) 0 0
\(58\) 1191.04 2.69640
\(59\) −283.465 −0.625492 −0.312746 0.949837i \(-0.601249\pi\)
−0.312746 + 0.949837i \(0.601249\pi\)
\(60\) 0 0
\(61\) −216.971 −0.455415 −0.227708 0.973730i \(-0.573123\pi\)
−0.227708 + 0.973730i \(0.573123\pi\)
\(62\) −1263.65 −2.58845
\(63\) 0 0
\(64\) 935.778 1.82769
\(65\) −345.463 −0.659222
\(66\) 0 0
\(67\) −180.035 −0.328280 −0.164140 0.986437i \(-0.552485\pi\)
−0.164140 + 0.986437i \(0.552485\pi\)
\(68\) −638.402 −1.13849
\(69\) 0 0
\(70\) −269.602 −0.460337
\(71\) −166.734 −0.278699 −0.139350 0.990243i \(-0.544501\pi\)
−0.139350 + 0.990243i \(0.544501\pi\)
\(72\) 0 0
\(73\) 44.8888 0.0719704 0.0359852 0.999352i \(-0.488543\pi\)
0.0359852 + 0.999352i \(0.488543\pi\)
\(74\) 1203.98 1.89135
\(75\) 0 0
\(76\) 382.704 0.577620
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 349.350 0.497530 0.248765 0.968564i \(-0.419975\pi\)
0.248765 + 0.968564i \(0.419975\pi\)
\(80\) −1324.34 −1.85082
\(81\) 0 0
\(82\) −165.254 −0.222552
\(83\) 722.258 0.955158 0.477579 0.878589i \(-0.341514\pi\)
0.477579 + 0.878589i \(0.341514\pi\)
\(84\) 0 0
\(85\) 229.131 0.292385
\(86\) −935.053 −1.17243
\(87\) 0 0
\(88\) 713.040 0.863753
\(89\) 443.808 0.528579 0.264290 0.964443i \(-0.414863\pi\)
0.264290 + 0.964443i \(0.414863\pi\)
\(90\) 0 0
\(91\) 333.459 0.384131
\(92\) 4052.61 4.59254
\(93\) 0 0
\(94\) 2797.91 3.07002
\(95\) −137.357 −0.148343
\(96\) 0 0
\(97\) −1804.50 −1.88886 −0.944431 0.328710i \(-0.893386\pi\)
−0.944431 + 0.328710i \(0.893386\pi\)
\(98\) 260.233 0.268240
\(99\) 0 0
\(100\) −1463.05 −1.46305
\(101\) −1767.79 −1.74160 −0.870801 0.491635i \(-0.836399\pi\)
−0.870801 + 0.491635i \(0.836399\pi\)
\(102\) 0 0
\(103\) −1224.69 −1.17157 −0.585786 0.810465i \(-0.699214\pi\)
−0.585786 + 0.810465i \(0.699214\pi\)
\(104\) 3087.91 2.91149
\(105\) 0 0
\(106\) −1819.98 −1.66766
\(107\) −1720.89 −1.55481 −0.777405 0.629000i \(-0.783464\pi\)
−0.777405 + 0.629000i \(0.783464\pi\)
\(108\) 0 0
\(109\) 1811.71 1.59202 0.796011 0.605282i \(-0.206940\pi\)
0.796011 + 0.605282i \(0.206940\pi\)
\(110\) −423.660 −0.367222
\(111\) 0 0
\(112\) 1278.32 1.07848
\(113\) −780.246 −0.649552 −0.324776 0.945791i \(-0.605289\pi\)
−0.324776 + 0.945791i \(0.605289\pi\)
\(114\) 0 0
\(115\) −1454.53 −1.17944
\(116\) 4531.36 3.62695
\(117\) 0 0
\(118\) −1505.45 −1.17447
\(119\) −221.168 −0.170374
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1152.31 −0.855124
\(123\) 0 0
\(124\) −4807.61 −3.48174
\(125\) 1431.61 1.02437
\(126\) 0 0
\(127\) −1086.03 −0.758815 −0.379408 0.925230i \(-0.623872\pi\)
−0.379408 + 0.925230i \(0.623872\pi\)
\(128\) 1359.54 0.938806
\(129\) 0 0
\(130\) −1834.71 −1.23781
\(131\) −1626.30 −1.08466 −0.542328 0.840167i \(-0.682457\pi\)
−0.542328 + 0.840167i \(0.682457\pi\)
\(132\) 0 0
\(133\) 132.584 0.0864399
\(134\) −956.144 −0.616405
\(135\) 0 0
\(136\) −2048.08 −1.29133
\(137\) 2448.94 1.52721 0.763603 0.645686i \(-0.223429\pi\)
0.763603 + 0.645686i \(0.223429\pi\)
\(138\) 0 0
\(139\) −2647.66 −1.61562 −0.807811 0.589441i \(-0.799348\pi\)
−0.807811 + 0.589441i \(0.799348\pi\)
\(140\) −1025.71 −0.619203
\(141\) 0 0
\(142\) −885.503 −0.523308
\(143\) 524.006 0.306431
\(144\) 0 0
\(145\) −1626.36 −0.931463
\(146\) 238.399 0.135137
\(147\) 0 0
\(148\) 4580.59 2.54407
\(149\) 741.985 0.407958 0.203979 0.978975i \(-0.434613\pi\)
0.203979 + 0.978975i \(0.434613\pi\)
\(150\) 0 0
\(151\) 516.653 0.278441 0.139221 0.990261i \(-0.455540\pi\)
0.139221 + 0.990261i \(0.455540\pi\)
\(152\) 1227.76 0.655163
\(153\) 0 0
\(154\) 408.938 0.213982
\(155\) 1725.51 0.894171
\(156\) 0 0
\(157\) −3189.89 −1.62153 −0.810767 0.585368i \(-0.800950\pi\)
−0.810767 + 0.585368i \(0.800950\pi\)
\(158\) 1855.35 0.934203
\(159\) 0 0
\(160\) −3272.71 −1.61707
\(161\) 1403.99 0.687266
\(162\) 0 0
\(163\) −1350.81 −0.649100 −0.324550 0.945868i \(-0.605213\pi\)
−0.324550 + 0.945868i \(0.605213\pi\)
\(164\) −628.716 −0.299357
\(165\) 0 0
\(166\) 3835.83 1.79348
\(167\) 1538.13 0.712721 0.356360 0.934349i \(-0.384018\pi\)
0.356360 + 0.934349i \(0.384018\pi\)
\(168\) 0 0
\(169\) 72.2788 0.0328988
\(170\) 1216.89 0.549005
\(171\) 0 0
\(172\) −3557.45 −1.57705
\(173\) −256.648 −0.112789 −0.0563947 0.998409i \(-0.517961\pi\)
−0.0563947 + 0.998409i \(0.517961\pi\)
\(174\) 0 0
\(175\) −506.859 −0.218943
\(176\) 2008.79 0.860331
\(177\) 0 0
\(178\) 2357.01 0.992503
\(179\) 1362.17 0.568789 0.284394 0.958707i \(-0.408207\pi\)
0.284394 + 0.958707i \(0.408207\pi\)
\(180\) 0 0
\(181\) 2699.57 1.10860 0.554302 0.832315i \(-0.312985\pi\)
0.554302 + 0.832315i \(0.312985\pi\)
\(182\) 1770.96 0.721276
\(183\) 0 0
\(184\) 13001.3 5.20907
\(185\) −1644.03 −0.653360
\(186\) 0 0
\(187\) −347.550 −0.135911
\(188\) 10644.8 4.12952
\(189\) 0 0
\(190\) −729.489 −0.278540
\(191\) 93.4291 0.0353942 0.0176971 0.999843i \(-0.494367\pi\)
0.0176971 + 0.999843i \(0.494367\pi\)
\(192\) 0 0
\(193\) −1259.65 −0.469803 −0.234901 0.972019i \(-0.575477\pi\)
−0.234901 + 0.972019i \(0.575477\pi\)
\(194\) −9583.51 −3.54668
\(195\) 0 0
\(196\) 990.068 0.360812
\(197\) −1109.80 −0.401371 −0.200686 0.979656i \(-0.564317\pi\)
−0.200686 + 0.979656i \(0.564317\pi\)
\(198\) 0 0
\(199\) 1842.11 0.656200 0.328100 0.944643i \(-0.393592\pi\)
0.328100 + 0.944643i \(0.393592\pi\)
\(200\) −4693.65 −1.65945
\(201\) 0 0
\(202\) −9388.53 −3.27017
\(203\) 1569.85 0.542767
\(204\) 0 0
\(205\) 225.654 0.0768799
\(206\) −6504.17 −2.19984
\(207\) 0 0
\(208\) 8699.33 2.89995
\(209\) 208.347 0.0689552
\(210\) 0 0
\(211\) −3384.17 −1.10415 −0.552075 0.833795i \(-0.686164\pi\)
−0.552075 + 0.833795i \(0.686164\pi\)
\(212\) −6924.20 −2.24319
\(213\) 0 0
\(214\) −9139.44 −2.91944
\(215\) 1276.81 0.405014
\(216\) 0 0
\(217\) −1665.55 −0.521037
\(218\) 9621.78 2.98931
\(219\) 0 0
\(220\) −1611.83 −0.493953
\(221\) −1505.11 −0.458121
\(222\) 0 0
\(223\) −2571.75 −0.772274 −0.386137 0.922441i \(-0.626191\pi\)
−0.386137 + 0.922441i \(0.626191\pi\)
\(224\) 3158.99 0.942271
\(225\) 0 0
\(226\) −4143.79 −1.21965
\(227\) 853.596 0.249582 0.124791 0.992183i \(-0.460174\pi\)
0.124791 + 0.992183i \(0.460174\pi\)
\(228\) 0 0
\(229\) 4450.26 1.28420 0.642099 0.766622i \(-0.278064\pi\)
0.642099 + 0.766622i \(0.278064\pi\)
\(230\) −7724.85 −2.21462
\(231\) 0 0
\(232\) 14537.2 4.11385
\(233\) −1749.92 −0.492023 −0.246011 0.969267i \(-0.579120\pi\)
−0.246011 + 0.969267i \(0.579120\pi\)
\(234\) 0 0
\(235\) −3820.54 −1.06053
\(236\) −5727.55 −1.57979
\(237\) 0 0
\(238\) −1174.60 −0.319907
\(239\) 2354.68 0.637287 0.318644 0.947875i \(-0.396773\pi\)
0.318644 + 0.947875i \(0.396773\pi\)
\(240\) 0 0
\(241\) −5615.20 −1.50086 −0.750429 0.660951i \(-0.770153\pi\)
−0.750429 + 0.660951i \(0.770153\pi\)
\(242\) 642.617 0.170698
\(243\) 0 0
\(244\) −4384.01 −1.15023
\(245\) −355.348 −0.0926627
\(246\) 0 0
\(247\) 902.273 0.232430
\(248\) −15423.4 −3.94915
\(249\) 0 0
\(250\) 7603.09 1.92345
\(251\) −6267.38 −1.57607 −0.788035 0.615630i \(-0.788902\pi\)
−0.788035 + 0.615630i \(0.788902\pi\)
\(252\) 0 0
\(253\) 2206.27 0.548248
\(254\) −5767.77 −1.42481
\(255\) 0 0
\(256\) −265.889 −0.0649142
\(257\) 3537.51 0.858613 0.429307 0.903159i \(-0.358758\pi\)
0.429307 + 0.903159i \(0.358758\pi\)
\(258\) 0 0
\(259\) 1586.90 0.380716
\(260\) −6980.25 −1.66499
\(261\) 0 0
\(262\) −8637.06 −2.03664
\(263\) 2708.76 0.635093 0.317547 0.948243i \(-0.397141\pi\)
0.317547 + 0.948243i \(0.397141\pi\)
\(264\) 0 0
\(265\) 2485.18 0.576089
\(266\) 704.139 0.162307
\(267\) 0 0
\(268\) −3637.69 −0.829132
\(269\) 5442.62 1.23362 0.616808 0.787114i \(-0.288426\pi\)
0.616808 + 0.787114i \(0.288426\pi\)
\(270\) 0 0
\(271\) 1121.27 0.251337 0.125669 0.992072i \(-0.459892\pi\)
0.125669 + 0.992072i \(0.459892\pi\)
\(272\) −5769.88 −1.28621
\(273\) 0 0
\(274\) 13006.0 2.86760
\(275\) −796.493 −0.174656
\(276\) 0 0
\(277\) −4569.49 −0.991169 −0.495585 0.868560i \(-0.665046\pi\)
−0.495585 + 0.868560i \(0.665046\pi\)
\(278\) −14061.4 −3.03362
\(279\) 0 0
\(280\) −3290.61 −0.702328
\(281\) 363.403 0.0771488 0.0385744 0.999256i \(-0.487718\pi\)
0.0385744 + 0.999256i \(0.487718\pi\)
\(282\) 0 0
\(283\) 6985.88 1.46738 0.733688 0.679486i \(-0.237797\pi\)
0.733688 + 0.679486i \(0.237797\pi\)
\(284\) −3368.93 −0.703906
\(285\) 0 0
\(286\) 2782.94 0.575379
\(287\) −217.813 −0.0447982
\(288\) 0 0
\(289\) −3914.73 −0.796810
\(290\) −8637.42 −1.74899
\(291\) 0 0
\(292\) 907.000 0.181774
\(293\) 203.016 0.0404788 0.0202394 0.999795i \(-0.493557\pi\)
0.0202394 + 0.999795i \(0.493557\pi\)
\(294\) 0 0
\(295\) 2055.69 0.405718
\(296\) 14695.1 2.88560
\(297\) 0 0
\(298\) 3940.60 0.766015
\(299\) 9554.53 1.84800
\(300\) 0 0
\(301\) −1232.45 −0.236003
\(302\) 2743.88 0.522824
\(303\) 0 0
\(304\) 3458.88 0.652567
\(305\) 1573.48 0.295400
\(306\) 0 0
\(307\) −7669.96 −1.42589 −0.712944 0.701221i \(-0.752639\pi\)
−0.712944 + 0.701221i \(0.752639\pi\)
\(308\) 1555.82 0.287828
\(309\) 0 0
\(310\) 9163.99 1.67897
\(311\) 4233.11 0.771825 0.385912 0.922535i \(-0.373887\pi\)
0.385912 + 0.922535i \(0.373887\pi\)
\(312\) 0 0
\(313\) 4622.10 0.834685 0.417342 0.908749i \(-0.362962\pi\)
0.417342 + 0.908749i \(0.362962\pi\)
\(314\) −16941.1 −3.04472
\(315\) 0 0
\(316\) 7058.77 1.25660
\(317\) −998.546 −0.176921 −0.0884605 0.996080i \(-0.528195\pi\)
−0.0884605 + 0.996080i \(0.528195\pi\)
\(318\) 0 0
\(319\) 2466.90 0.432978
\(320\) −6786.27 −1.18551
\(321\) 0 0
\(322\) 7456.42 1.29047
\(323\) −598.438 −0.103090
\(324\) 0 0
\(325\) −3449.32 −0.588719
\(326\) −7173.98 −1.21880
\(327\) 0 0
\(328\) −2017.00 −0.339544
\(329\) 3687.78 0.617975
\(330\) 0 0
\(331\) 5612.23 0.931952 0.465976 0.884797i \(-0.345703\pi\)
0.465976 + 0.884797i \(0.345703\pi\)
\(332\) 14593.6 2.41243
\(333\) 0 0
\(334\) 8168.85 1.33826
\(335\) 1305.61 0.212935
\(336\) 0 0
\(337\) −4655.51 −0.752527 −0.376263 0.926513i \(-0.622791\pi\)
−0.376263 + 0.926513i \(0.622791\pi\)
\(338\) 383.864 0.0617735
\(339\) 0 0
\(340\) 4629.69 0.738471
\(341\) −2617.30 −0.415644
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −11412.8 −1.78876
\(345\) 0 0
\(346\) −1363.03 −0.211782
\(347\) −5166.96 −0.799357 −0.399678 0.916655i \(-0.630878\pi\)
−0.399678 + 0.916655i \(0.630878\pi\)
\(348\) 0 0
\(349\) 9167.31 1.40606 0.703030 0.711161i \(-0.251830\pi\)
0.703030 + 0.711161i \(0.251830\pi\)
\(350\) −2691.87 −0.411104
\(351\) 0 0
\(352\) 4964.12 0.751672
\(353\) −29.1770 −0.00439926 −0.00219963 0.999998i \(-0.500700\pi\)
−0.00219963 + 0.999998i \(0.500700\pi\)
\(354\) 0 0
\(355\) 1209.15 0.180775
\(356\) 8967.35 1.33502
\(357\) 0 0
\(358\) 7234.31 1.06800
\(359\) 1668.90 0.245352 0.122676 0.992447i \(-0.460852\pi\)
0.122676 + 0.992447i \(0.460852\pi\)
\(360\) 0 0
\(361\) −6500.25 −0.947697
\(362\) 14337.1 2.08161
\(363\) 0 0
\(364\) 6737.69 0.970194
\(365\) −325.534 −0.0466828
\(366\) 0 0
\(367\) 9479.10 1.34824 0.674121 0.738621i \(-0.264522\pi\)
0.674121 + 0.738621i \(0.264522\pi\)
\(368\) 36627.5 5.18842
\(369\) 0 0
\(370\) −8731.26 −1.22680
\(371\) −2398.83 −0.335690
\(372\) 0 0
\(373\) −1626.53 −0.225787 −0.112893 0.993607i \(-0.536012\pi\)
−0.112893 + 0.993607i \(0.536012\pi\)
\(374\) −1845.80 −0.255198
\(375\) 0 0
\(376\) 34149.8 4.68389
\(377\) 10683.3 1.45946
\(378\) 0 0
\(379\) −5377.26 −0.728790 −0.364395 0.931244i \(-0.618724\pi\)
−0.364395 + 0.931244i \(0.618724\pi\)
\(380\) −2775.37 −0.374667
\(381\) 0 0
\(382\) 496.191 0.0664590
\(383\) 13111.9 1.74931 0.874657 0.484743i \(-0.161087\pi\)
0.874657 + 0.484743i \(0.161087\pi\)
\(384\) 0 0
\(385\) −558.404 −0.0739193
\(386\) −6689.88 −0.882139
\(387\) 0 0
\(388\) −36460.8 −4.77067
\(389\) 895.272 0.116689 0.0583446 0.998297i \(-0.481418\pi\)
0.0583446 + 0.998297i \(0.481418\pi\)
\(390\) 0 0
\(391\) −6337.10 −0.819644
\(392\) 3176.27 0.409249
\(393\) 0 0
\(394\) −5894.03 −0.753647
\(395\) −2533.48 −0.322718
\(396\) 0 0
\(397\) −5690.01 −0.719329 −0.359664 0.933082i \(-0.617109\pi\)
−0.359664 + 0.933082i \(0.617109\pi\)
\(398\) 9783.24 1.23213
\(399\) 0 0
\(400\) −13223.0 −1.65288
\(401\) 2358.60 0.293723 0.146861 0.989157i \(-0.453083\pi\)
0.146861 + 0.989157i \(0.453083\pi\)
\(402\) 0 0
\(403\) −11334.5 −1.40103
\(404\) −35719.1 −4.39874
\(405\) 0 0
\(406\) 8337.28 1.01914
\(407\) 2493.70 0.303706
\(408\) 0 0
\(409\) 14655.6 1.77182 0.885908 0.463861i \(-0.153536\pi\)
0.885908 + 0.463861i \(0.153536\pi\)
\(410\) 1198.42 0.144356
\(411\) 0 0
\(412\) −24745.4 −2.95902
\(413\) −1984.26 −0.236414
\(414\) 0 0
\(415\) −5237.82 −0.619552
\(416\) 21497.8 2.53369
\(417\) 0 0
\(418\) 1106.50 0.129476
\(419\) −11602.7 −1.35281 −0.676407 0.736528i \(-0.736464\pi\)
−0.676407 + 0.736528i \(0.736464\pi\)
\(420\) 0 0
\(421\) 12579.8 1.45630 0.728149 0.685419i \(-0.240381\pi\)
0.728149 + 0.685419i \(0.240381\pi\)
\(422\) −17972.9 −2.07324
\(423\) 0 0
\(424\) −22213.7 −2.54433
\(425\) 2287.78 0.261114
\(426\) 0 0
\(427\) −1518.80 −0.172131
\(428\) −34771.4 −3.92696
\(429\) 0 0
\(430\) 6781.01 0.760486
\(431\) 10004.7 1.11812 0.559060 0.829127i \(-0.311162\pi\)
0.559060 + 0.829127i \(0.311162\pi\)
\(432\) 0 0
\(433\) −17934.2 −1.99045 −0.995223 0.0976238i \(-0.968876\pi\)
−0.995223 + 0.0976238i \(0.968876\pi\)
\(434\) −8845.55 −0.978341
\(435\) 0 0
\(436\) 36606.5 4.02094
\(437\) 3798.91 0.415850
\(438\) 0 0
\(439\) −16225.5 −1.76402 −0.882008 0.471234i \(-0.843809\pi\)
−0.882008 + 0.471234i \(0.843809\pi\)
\(440\) −5170.97 −0.560264
\(441\) 0 0
\(442\) −7993.47 −0.860205
\(443\) −10194.9 −1.09340 −0.546699 0.837329i \(-0.684116\pi\)
−0.546699 + 0.837329i \(0.684116\pi\)
\(444\) 0 0
\(445\) −3218.50 −0.342857
\(446\) −13658.3 −1.45008
\(447\) 0 0
\(448\) 6550.45 0.690803
\(449\) −395.095 −0.0415272 −0.0207636 0.999784i \(-0.506610\pi\)
−0.0207636 + 0.999784i \(0.506610\pi\)
\(450\) 0 0
\(451\) −342.277 −0.0357366
\(452\) −15765.2 −1.64056
\(453\) 0 0
\(454\) 4533.35 0.468635
\(455\) −2418.24 −0.249163
\(456\) 0 0
\(457\) 18408.4 1.88426 0.942130 0.335247i \(-0.108820\pi\)
0.942130 + 0.335247i \(0.108820\pi\)
\(458\) 23634.8 2.41131
\(459\) 0 0
\(460\) −29389.5 −2.97890
\(461\) 16511.8 1.66818 0.834089 0.551630i \(-0.185994\pi\)
0.834089 + 0.551630i \(0.185994\pi\)
\(462\) 0 0
\(463\) −15464.7 −1.55228 −0.776141 0.630559i \(-0.782826\pi\)
−0.776141 + 0.630559i \(0.782826\pi\)
\(464\) 40954.5 4.09755
\(465\) 0 0
\(466\) −9293.64 −0.923862
\(467\) −5014.38 −0.496869 −0.248435 0.968649i \(-0.579916\pi\)
−0.248435 + 0.968649i \(0.579916\pi\)
\(468\) 0 0
\(469\) −1260.24 −0.124078
\(470\) −20290.4 −1.99134
\(471\) 0 0
\(472\) −18374.7 −1.79188
\(473\) −1936.70 −0.188265
\(474\) 0 0
\(475\) −1371.46 −0.132478
\(476\) −4468.81 −0.430310
\(477\) 0 0
\(478\) 12505.4 1.19662
\(479\) −10525.9 −1.00405 −0.502026 0.864853i \(-0.667412\pi\)
−0.502026 + 0.864853i \(0.667412\pi\)
\(480\) 0 0
\(481\) 10799.3 1.02371
\(482\) −29821.7 −2.81813
\(483\) 0 0
\(484\) 2444.86 0.229608
\(485\) 13086.3 1.22519
\(486\) 0 0
\(487\) 15778.5 1.46815 0.734077 0.679066i \(-0.237615\pi\)
0.734077 + 0.679066i \(0.237615\pi\)
\(488\) −14064.5 −1.30465
\(489\) 0 0
\(490\) −1887.21 −0.173991
\(491\) 13536.1 1.24415 0.622073 0.782959i \(-0.286291\pi\)
0.622073 + 0.782959i \(0.286291\pi\)
\(492\) 0 0
\(493\) −7085.73 −0.647313
\(494\) 4791.86 0.436429
\(495\) 0 0
\(496\) −43451.2 −3.93350
\(497\) −1167.14 −0.105338
\(498\) 0 0
\(499\) 18101.7 1.62393 0.811967 0.583704i \(-0.198397\pi\)
0.811967 + 0.583704i \(0.198397\pi\)
\(500\) 28926.3 2.58725
\(501\) 0 0
\(502\) −33285.3 −2.95936
\(503\) −5147.40 −0.456285 −0.228142 0.973628i \(-0.573265\pi\)
−0.228142 + 0.973628i \(0.573265\pi\)
\(504\) 0 0
\(505\) 12820.0 1.12967
\(506\) 11717.2 1.02944
\(507\) 0 0
\(508\) −21943.7 −1.91653
\(509\) −7185.23 −0.625697 −0.312848 0.949803i \(-0.601283\pi\)
−0.312848 + 0.949803i \(0.601283\pi\)
\(510\) 0 0
\(511\) 314.222 0.0272023
\(512\) −12288.4 −1.06069
\(513\) 0 0
\(514\) 18787.3 1.61220
\(515\) 8881.43 0.759928
\(516\) 0 0
\(517\) 5795.08 0.492974
\(518\) 8427.85 0.714862
\(519\) 0 0
\(520\) −22393.6 −1.88850
\(521\) 6620.31 0.556700 0.278350 0.960480i \(-0.410212\pi\)
0.278350 + 0.960480i \(0.410212\pi\)
\(522\) 0 0
\(523\) 8525.60 0.712808 0.356404 0.934332i \(-0.384003\pi\)
0.356404 + 0.934332i \(0.384003\pi\)
\(524\) −32860.1 −2.73950
\(525\) 0 0
\(526\) 14385.9 1.19250
\(527\) 7517.70 0.621397
\(528\) 0 0
\(529\) 28061.2 2.30634
\(530\) 13198.5 1.08171
\(531\) 0 0
\(532\) 2678.93 0.218320
\(533\) −1482.28 −0.120459
\(534\) 0 0
\(535\) 12479.9 1.00851
\(536\) −11670.2 −0.940439
\(537\) 0 0
\(538\) 28905.1 2.31634
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −6872.24 −0.546138 −0.273069 0.961994i \(-0.588039\pi\)
−0.273069 + 0.961994i \(0.588039\pi\)
\(542\) 5954.94 0.471931
\(543\) 0 0
\(544\) −14258.5 −1.12377
\(545\) −13138.5 −1.03265
\(546\) 0 0
\(547\) −12050.5 −0.941940 −0.470970 0.882149i \(-0.656096\pi\)
−0.470970 + 0.882149i \(0.656096\pi\)
\(548\) 49482.0 3.85724
\(549\) 0 0
\(550\) −4230.08 −0.327948
\(551\) 4247.70 0.328417
\(552\) 0 0
\(553\) 2445.45 0.188049
\(554\) −24268.0 −1.86110
\(555\) 0 0
\(556\) −53497.2 −4.08055
\(557\) −24457.8 −1.86052 −0.930261 0.366899i \(-0.880420\pi\)
−0.930261 + 0.366899i \(0.880420\pi\)
\(558\) 0 0
\(559\) −8387.13 −0.634594
\(560\) −9270.38 −0.699545
\(561\) 0 0
\(562\) 1929.99 0.144861
\(563\) 14710.5 1.10120 0.550599 0.834770i \(-0.314399\pi\)
0.550599 + 0.834770i \(0.314399\pi\)
\(564\) 0 0
\(565\) 5658.34 0.421324
\(566\) 37101.2 2.75526
\(567\) 0 0
\(568\) −10808.0 −0.798403
\(569\) −24838.0 −1.82999 −0.914993 0.403470i \(-0.867804\pi\)
−0.914993 + 0.403470i \(0.867804\pi\)
\(570\) 0 0
\(571\) 5512.76 0.404031 0.202016 0.979382i \(-0.435251\pi\)
0.202016 + 0.979382i \(0.435251\pi\)
\(572\) 10587.8 0.773947
\(573\) 0 0
\(574\) −1156.78 −0.0841167
\(575\) −14522.9 −1.05330
\(576\) 0 0
\(577\) 8281.91 0.597539 0.298770 0.954325i \(-0.403424\pi\)
0.298770 + 0.954325i \(0.403424\pi\)
\(578\) −20790.6 −1.49615
\(579\) 0 0
\(580\) −32861.4 −2.35258
\(581\) 5055.80 0.361016
\(582\) 0 0
\(583\) −3769.58 −0.267788
\(584\) 2909.77 0.206177
\(585\) 0 0
\(586\) 1078.19 0.0760063
\(587\) 8424.68 0.592374 0.296187 0.955130i \(-0.404285\pi\)
0.296187 + 0.955130i \(0.404285\pi\)
\(588\) 0 0
\(589\) −4506.65 −0.315269
\(590\) 10917.5 0.761809
\(591\) 0 0
\(592\) 41399.4 2.87416
\(593\) 2199.00 0.152280 0.0761402 0.997097i \(-0.475740\pi\)
0.0761402 + 0.997097i \(0.475740\pi\)
\(594\) 0 0
\(595\) 1603.91 0.110511
\(596\) 14992.2 1.03037
\(597\) 0 0
\(598\) 50743.0 3.46996
\(599\) −8765.83 −0.597934 −0.298967 0.954264i \(-0.596642\pi\)
−0.298967 + 0.954264i \(0.596642\pi\)
\(600\) 0 0
\(601\) −15362.1 −1.04265 −0.521326 0.853357i \(-0.674563\pi\)
−0.521326 + 0.853357i \(0.674563\pi\)
\(602\) −6545.37 −0.443139
\(603\) 0 0
\(604\) 10439.2 0.703255
\(605\) −877.492 −0.0589672
\(606\) 0 0
\(607\) 1674.58 0.111976 0.0559878 0.998431i \(-0.482169\pi\)
0.0559878 + 0.998431i \(0.482169\pi\)
\(608\) 8547.59 0.570149
\(609\) 0 0
\(610\) 8356.55 0.554667
\(611\) 25096.4 1.66169
\(612\) 0 0
\(613\) −10407.8 −0.685756 −0.342878 0.939380i \(-0.611402\pi\)
−0.342878 + 0.939380i \(0.611402\pi\)
\(614\) −40734.2 −2.67736
\(615\) 0 0
\(616\) 4991.28 0.326468
\(617\) −8306.01 −0.541957 −0.270978 0.962585i \(-0.587347\pi\)
−0.270978 + 0.962585i \(0.587347\pi\)
\(618\) 0 0
\(619\) −20339.2 −1.32068 −0.660342 0.750965i \(-0.729588\pi\)
−0.660342 + 0.750965i \(0.729588\pi\)
\(620\) 34864.8 2.25839
\(621\) 0 0
\(622\) 22481.5 1.44924
\(623\) 3106.66 0.199784
\(624\) 0 0
\(625\) −1330.96 −0.0851813
\(626\) 24547.4 1.56727
\(627\) 0 0
\(628\) −64453.2 −4.09548
\(629\) −7162.71 −0.454047
\(630\) 0 0
\(631\) 3457.35 0.218122 0.109061 0.994035i \(-0.465216\pi\)
0.109061 + 0.994035i \(0.465216\pi\)
\(632\) 22645.5 1.42530
\(633\) 0 0
\(634\) −5303.16 −0.332201
\(635\) 7875.89 0.492197
\(636\) 0 0
\(637\) 2334.21 0.145188
\(638\) 13101.4 0.812995
\(639\) 0 0
\(640\) −9859.36 −0.608946
\(641\) 12098.8 0.745516 0.372758 0.927929i \(-0.378412\pi\)
0.372758 + 0.927929i \(0.378412\pi\)
\(642\) 0 0
\(643\) 5887.31 0.361077 0.180539 0.983568i \(-0.442216\pi\)
0.180539 + 0.983568i \(0.442216\pi\)
\(644\) 28368.2 1.73582
\(645\) 0 0
\(646\) −3178.23 −0.193569
\(647\) 21800.3 1.32467 0.662333 0.749210i \(-0.269566\pi\)
0.662333 + 0.749210i \(0.269566\pi\)
\(648\) 0 0
\(649\) −3118.12 −0.188593
\(650\) −18318.9 −1.10543
\(651\) 0 0
\(652\) −27293.7 −1.63942
\(653\) 28636.2 1.71611 0.858055 0.513559i \(-0.171673\pi\)
0.858055 + 0.513559i \(0.171673\pi\)
\(654\) 0 0
\(655\) 11793.9 0.703551
\(656\) −5682.34 −0.338198
\(657\) 0 0
\(658\) 19585.4 1.16036
\(659\) 23309.7 1.37787 0.688934 0.724824i \(-0.258079\pi\)
0.688934 + 0.724824i \(0.258079\pi\)
\(660\) 0 0
\(661\) 19540.2 1.14981 0.574906 0.818220i \(-0.305039\pi\)
0.574906 + 0.818220i \(0.305039\pi\)
\(662\) 29805.9 1.74991
\(663\) 0 0
\(664\) 46818.0 2.73628
\(665\) −961.501 −0.0560683
\(666\) 0 0
\(667\) 44980.6 2.61118
\(668\) 31078.7 1.80011
\(669\) 0 0
\(670\) 6933.96 0.399824
\(671\) −2386.68 −0.137313
\(672\) 0 0
\(673\) −17079.1 −0.978236 −0.489118 0.872218i \(-0.662681\pi\)
−0.489118 + 0.872218i \(0.662681\pi\)
\(674\) −24724.8 −1.41300
\(675\) 0 0
\(676\) 1460.43 0.0830921
\(677\) 22077.4 1.25333 0.626663 0.779290i \(-0.284420\pi\)
0.626663 + 0.779290i \(0.284420\pi\)
\(678\) 0 0
\(679\) −12631.5 −0.713923
\(680\) 14852.7 0.837608
\(681\) 0 0
\(682\) −13900.1 −0.780446
\(683\) −2423.70 −0.135784 −0.0678919 0.997693i \(-0.521627\pi\)
−0.0678919 + 0.997693i \(0.521627\pi\)
\(684\) 0 0
\(685\) −17759.7 −0.990605
\(686\) 1821.63 0.101385
\(687\) 0 0
\(688\) −32152.2 −1.78168
\(689\) −16324.7 −0.902642
\(690\) 0 0
\(691\) 34446.1 1.89637 0.948185 0.317720i \(-0.102917\pi\)
0.948185 + 0.317720i \(0.102917\pi\)
\(692\) −5185.69 −0.284870
\(693\) 0 0
\(694\) −27441.1 −1.50094
\(695\) 19200.8 1.04796
\(696\) 0 0
\(697\) 983.129 0.0534271
\(698\) 48686.5 2.64013
\(699\) 0 0
\(700\) −10241.3 −0.552980
\(701\) −12732.3 −0.686012 −0.343006 0.939333i \(-0.611445\pi\)
−0.343006 + 0.939333i \(0.611445\pi\)
\(702\) 0 0
\(703\) 4293.84 0.230363
\(704\) 10293.6 0.551070
\(705\) 0 0
\(706\) −154.956 −0.00826040
\(707\) −12374.5 −0.658264
\(708\) 0 0
\(709\) −2619.52 −0.138756 −0.0693782 0.997590i \(-0.522102\pi\)
−0.0693782 + 0.997590i \(0.522102\pi\)
\(710\) 6421.67 0.339438
\(711\) 0 0
\(712\) 28768.4 1.51425
\(713\) −47722.8 −2.50664
\(714\) 0 0
\(715\) −3800.10 −0.198763
\(716\) 27523.2 1.43658
\(717\) 0 0
\(718\) 8863.34 0.460692
\(719\) −20757.7 −1.07668 −0.538338 0.842729i \(-0.680948\pi\)
−0.538338 + 0.842729i \(0.680948\pi\)
\(720\) 0 0
\(721\) −8572.81 −0.442813
\(722\) −34522.1 −1.77947
\(723\) 0 0
\(724\) 54546.1 2.79999
\(725\) −16238.6 −0.831844
\(726\) 0 0
\(727\) 11099.5 0.566241 0.283120 0.959084i \(-0.408630\pi\)
0.283120 + 0.959084i \(0.408630\pi\)
\(728\) 21615.4 1.10044
\(729\) 0 0
\(730\) −1728.87 −0.0876554
\(731\) 5562.81 0.281461
\(732\) 0 0
\(733\) 28379.9 1.43006 0.715030 0.699094i \(-0.246413\pi\)
0.715030 + 0.699094i \(0.246413\pi\)
\(734\) 50342.4 2.53157
\(735\) 0 0
\(736\) 90513.9 4.53314
\(737\) −1980.38 −0.0989802
\(738\) 0 0
\(739\) 2611.45 0.129991 0.0649957 0.997886i \(-0.479297\pi\)
0.0649957 + 0.997886i \(0.479297\pi\)
\(740\) −33218.4 −1.65018
\(741\) 0 0
\(742\) −12739.9 −0.630318
\(743\) 35458.7 1.75081 0.875407 0.483386i \(-0.160593\pi\)
0.875407 + 0.483386i \(0.160593\pi\)
\(744\) 0 0
\(745\) −5380.88 −0.264618
\(746\) −8638.29 −0.423955
\(747\) 0 0
\(748\) −7022.42 −0.343269
\(749\) −12046.2 −0.587663
\(750\) 0 0
\(751\) 15082.5 0.732845 0.366422 0.930449i \(-0.380582\pi\)
0.366422 + 0.930449i \(0.380582\pi\)
\(752\) 96207.4 4.66532
\(753\) 0 0
\(754\) 56737.5 2.74040
\(755\) −3746.77 −0.180608
\(756\) 0 0
\(757\) 11843.4 0.568633 0.284316 0.958731i \(-0.408233\pi\)
0.284316 + 0.958731i \(0.408233\pi\)
\(758\) −28558.0 −1.36843
\(759\) 0 0
\(760\) −8903.75 −0.424964
\(761\) −19043.4 −0.907128 −0.453564 0.891224i \(-0.649848\pi\)
−0.453564 + 0.891224i \(0.649848\pi\)
\(762\) 0 0
\(763\) 12682.0 0.601728
\(764\) 1887.78 0.0893945
\(765\) 0 0
\(766\) 69635.8 3.28465
\(767\) −13503.4 −0.635698
\(768\) 0 0
\(769\) 19957.0 0.935850 0.467925 0.883768i \(-0.345002\pi\)
0.467925 + 0.883768i \(0.345002\pi\)
\(770\) −2965.62 −0.138797
\(771\) 0 0
\(772\) −25451.9 −1.18657
\(773\) 2643.80 0.123015 0.0615076 0.998107i \(-0.480409\pi\)
0.0615076 + 0.998107i \(0.480409\pi\)
\(774\) 0 0
\(775\) 17228.6 0.798540
\(776\) −116971. −5.41111
\(777\) 0 0
\(778\) 4754.69 0.219105
\(779\) −589.358 −0.0271065
\(780\) 0 0
\(781\) −1834.07 −0.0840310
\(782\) −33655.6 −1.53903
\(783\) 0 0
\(784\) 8948.24 0.407628
\(785\) 23133.1 1.05179
\(786\) 0 0
\(787\) 38850.2 1.75967 0.879835 0.475279i \(-0.157653\pi\)
0.879835 + 0.475279i \(0.157653\pi\)
\(788\) −22424.1 −1.01374
\(789\) 0 0
\(790\) −13455.0 −0.605960
\(791\) −5461.72 −0.245507
\(792\) 0 0
\(793\) −10335.9 −0.462846
\(794\) −30219.0 −1.35067
\(795\) 0 0
\(796\) 37220.7 1.65735
\(797\) 18821.9 0.836520 0.418260 0.908327i \(-0.362640\pi\)
0.418260 + 0.908327i \(0.362640\pi\)
\(798\) 0 0
\(799\) −16645.3 −0.737007
\(800\) −32676.8 −1.44412
\(801\) 0 0
\(802\) 12526.2 0.551518
\(803\) 493.777 0.0216999
\(804\) 0 0
\(805\) −10181.7 −0.445787
\(806\) −60196.4 −2.63068
\(807\) 0 0
\(808\) −114591. −4.98925
\(809\) −38807.6 −1.68653 −0.843265 0.537498i \(-0.819370\pi\)
−0.843265 + 0.537498i \(0.819370\pi\)
\(810\) 0 0
\(811\) 17348.5 0.751157 0.375579 0.926791i \(-0.377444\pi\)
0.375579 + 0.926791i \(0.377444\pi\)
\(812\) 31719.5 1.37086
\(813\) 0 0
\(814\) 13243.8 0.570263
\(815\) 9796.06 0.421032
\(816\) 0 0
\(817\) −3334.75 −0.142801
\(818\) 77834.2 3.32690
\(819\) 0 0
\(820\) 4559.45 0.194174
\(821\) −44722.9 −1.90115 −0.950573 0.310502i \(-0.899503\pi\)
−0.950573 + 0.310502i \(0.899503\pi\)
\(822\) 0 0
\(823\) −8808.05 −0.373061 −0.186531 0.982449i \(-0.559724\pi\)
−0.186531 + 0.982449i \(0.559724\pi\)
\(824\) −79386.4 −3.35626
\(825\) 0 0
\(826\) −10538.2 −0.443909
\(827\) −23454.1 −0.986191 −0.493096 0.869975i \(-0.664135\pi\)
−0.493096 + 0.869975i \(0.664135\pi\)
\(828\) 0 0
\(829\) −7484.57 −0.313570 −0.156785 0.987633i \(-0.550113\pi\)
−0.156785 + 0.987633i \(0.550113\pi\)
\(830\) −27817.4 −1.16332
\(831\) 0 0
\(832\) 44577.6 1.85751
\(833\) −1548.18 −0.0643952
\(834\) 0 0
\(835\) −11154.6 −0.462298
\(836\) 4209.74 0.174159
\(837\) 0 0
\(838\) −61620.6 −2.54015
\(839\) 39660.2 1.63197 0.815985 0.578073i \(-0.196195\pi\)
0.815985 + 0.578073i \(0.196195\pi\)
\(840\) 0 0
\(841\) 25905.4 1.06217
\(842\) 66809.8 2.73446
\(843\) 0 0
\(844\) −68378.7 −2.78873
\(845\) −524.166 −0.0213395
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −62581.0 −2.53424
\(849\) 0 0
\(850\) 12150.1 0.490289
\(851\) 45469.2 1.83157
\(852\) 0 0
\(853\) −1477.78 −0.0593180 −0.0296590 0.999560i \(-0.509442\pi\)
−0.0296590 + 0.999560i \(0.509442\pi\)
\(854\) −8066.16 −0.323207
\(855\) 0 0
\(856\) −111551. −4.45414
\(857\) −371.368 −0.0148024 −0.00740122 0.999973i \(-0.502356\pi\)
−0.00740122 + 0.999973i \(0.502356\pi\)
\(858\) 0 0
\(859\) −33342.7 −1.32437 −0.662187 0.749339i \(-0.730372\pi\)
−0.662187 + 0.749339i \(0.730372\pi\)
\(860\) 25798.6 1.02294
\(861\) 0 0
\(862\) 53133.8 2.09947
\(863\) −23208.8 −0.915452 −0.457726 0.889093i \(-0.651336\pi\)
−0.457726 + 0.889093i \(0.651336\pi\)
\(864\) 0 0
\(865\) 1861.21 0.0731596
\(866\) −95246.5 −3.73742
\(867\) 0 0
\(868\) −33653.2 −1.31597
\(869\) 3842.85 0.150011
\(870\) 0 0
\(871\) −8576.31 −0.333636
\(872\) 117438. 4.56074
\(873\) 0 0
\(874\) 20175.6 0.780834
\(875\) 10021.2 0.387177
\(876\) 0 0
\(877\) −20778.9 −0.800059 −0.400030 0.916502i \(-0.631000\pi\)
−0.400030 + 0.916502i \(0.631000\pi\)
\(878\) −86172.0 −3.31226
\(879\) 0 0
\(880\) −14567.7 −0.558044
\(881\) 29688.6 1.13534 0.567669 0.823257i \(-0.307845\pi\)
0.567669 + 0.823257i \(0.307845\pi\)
\(882\) 0 0
\(883\) 36836.6 1.40391 0.701953 0.712223i \(-0.252312\pi\)
0.701953 + 0.712223i \(0.252312\pi\)
\(884\) −30411.5 −1.15707
\(885\) 0 0
\(886\) −54144.0 −2.05305
\(887\) 37539.3 1.42102 0.710511 0.703686i \(-0.248464\pi\)
0.710511 + 0.703686i \(0.248464\pi\)
\(888\) 0 0
\(889\) −7602.21 −0.286805
\(890\) −17093.1 −0.643776
\(891\) 0 0
\(892\) −51963.4 −1.95052
\(893\) 9978.40 0.373924
\(894\) 0 0
\(895\) −9878.45 −0.368939
\(896\) 9516.75 0.354835
\(897\) 0 0
\(898\) −2098.30 −0.0779747
\(899\) −53360.5 −1.97961
\(900\) 0 0
\(901\) 10827.4 0.400349
\(902\) −1817.80 −0.0671020
\(903\) 0 0
\(904\) −50576.9 −1.86080
\(905\) −19577.3 −0.719084
\(906\) 0 0
\(907\) −31373.5 −1.14856 −0.574278 0.818660i \(-0.694717\pi\)
−0.574278 + 0.818660i \(0.694717\pi\)
\(908\) 17247.3 0.630365
\(909\) 0 0
\(910\) −12843.0 −0.467848
\(911\) −6292.83 −0.228859 −0.114430 0.993431i \(-0.536504\pi\)
−0.114430 + 0.993431i \(0.536504\pi\)
\(912\) 0 0
\(913\) 7944.84 0.287991
\(914\) 97764.7 3.53804
\(915\) 0 0
\(916\) 89919.5 3.24348
\(917\) −11384.1 −0.409962
\(918\) 0 0
\(919\) −36983.0 −1.32748 −0.663742 0.747961i \(-0.731033\pi\)
−0.663742 + 0.747961i \(0.731033\pi\)
\(920\) −94285.4 −3.37880
\(921\) 0 0
\(922\) 87692.1 3.13230
\(923\) −7942.68 −0.283247
\(924\) 0 0
\(925\) −16415.0 −0.583484
\(926\) −82131.4 −2.91469
\(927\) 0 0
\(928\) 101207. 3.58004
\(929\) −20223.9 −0.714234 −0.357117 0.934060i \(-0.616240\pi\)
−0.357117 + 0.934060i \(0.616240\pi\)
\(930\) 0 0
\(931\) 928.090 0.0326712
\(932\) −35358.0 −1.24269
\(933\) 0 0
\(934\) −26630.8 −0.932961
\(935\) 2520.44 0.0881573
\(936\) 0 0
\(937\) −1301.80 −0.0453873 −0.0226936 0.999742i \(-0.507224\pi\)
−0.0226936 + 0.999742i \(0.507224\pi\)
\(938\) −6693.01 −0.232979
\(939\) 0 0
\(940\) −77195.8 −2.67856
\(941\) −19149.5 −0.663395 −0.331697 0.943386i \(-0.607621\pi\)
−0.331697 + 0.943386i \(0.607621\pi\)
\(942\) 0 0
\(943\) −6240.96 −0.215518
\(944\) −51765.6 −1.78477
\(945\) 0 0
\(946\) −10285.6 −0.353502
\(947\) 32816.0 1.12606 0.563030 0.826437i \(-0.309636\pi\)
0.563030 + 0.826437i \(0.309636\pi\)
\(948\) 0 0
\(949\) 2138.37 0.0731447
\(950\) −7283.66 −0.248751
\(951\) 0 0
\(952\) −14336.5 −0.488077
\(953\) 46677.1 1.58659 0.793294 0.608838i \(-0.208364\pi\)
0.793294 + 0.608838i \(0.208364\pi\)
\(954\) 0 0
\(955\) −677.548 −0.0229581
\(956\) 47577.4 1.60959
\(957\) 0 0
\(958\) −55901.8 −1.88529
\(959\) 17142.6 0.577229
\(960\) 0 0
\(961\) 26822.5 0.900356
\(962\) 57353.9 1.92221
\(963\) 0 0
\(964\) −113458. −3.79069
\(965\) 9135.02 0.304732
\(966\) 0 0
\(967\) −24701.2 −0.821445 −0.410723 0.911760i \(-0.634724\pi\)
−0.410723 + 0.911760i \(0.634724\pi\)
\(968\) 7843.44 0.260431
\(969\) 0 0
\(970\) 69499.6 2.30051
\(971\) 6025.41 0.199140 0.0995699 0.995031i \(-0.468253\pi\)
0.0995699 + 0.995031i \(0.468253\pi\)
\(972\) 0 0
\(973\) −18533.6 −0.610648
\(974\) 83797.6 2.75672
\(975\) 0 0
\(976\) −39622.7 −1.29948
\(977\) −53291.7 −1.74509 −0.872545 0.488533i \(-0.837532\pi\)
−0.872545 + 0.488533i \(0.837532\pi\)
\(978\) 0 0
\(979\) 4881.89 0.159373
\(980\) −7179.98 −0.234037
\(981\) 0 0
\(982\) 71888.7 2.33611
\(983\) −30172.7 −0.979003 −0.489502 0.872002i \(-0.662821\pi\)
−0.489502 + 0.872002i \(0.662821\pi\)
\(984\) 0 0
\(985\) 8048.29 0.260345
\(986\) −37631.5 −1.21545
\(987\) 0 0
\(988\) 18230.8 0.587045
\(989\) −35313.0 −1.13538
\(990\) 0 0
\(991\) −37208.5 −1.19270 −0.596351 0.802724i \(-0.703383\pi\)
−0.596351 + 0.802724i \(0.703383\pi\)
\(992\) −107377. −3.43671
\(993\) 0 0
\(994\) −6198.52 −0.197792
\(995\) −13359.0 −0.425637
\(996\) 0 0
\(997\) −4163.25 −0.132248 −0.0661241 0.997811i \(-0.521063\pi\)
−0.0661241 + 0.997811i \(0.521063\pi\)
\(998\) 96135.9 3.04923
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.u.1.8 yes 8
3.2 odd 2 693.4.a.r.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.r.1.1 8 3.2 odd 2
693.4.a.u.1.8 yes 8 1.1 even 1 trivial