Properties

Label 693.4.a.u.1.7
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-3.75652\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.75652 q^{2} +14.6245 q^{4} +20.4224 q^{5} +7.00000 q^{7} +31.5093 q^{8} +97.1395 q^{10} +11.0000 q^{11} -9.41327 q^{13} +33.2956 q^{14} +32.8790 q^{16} +10.5397 q^{17} -3.48558 q^{19} +298.667 q^{20} +52.3217 q^{22} -50.3192 q^{23} +292.075 q^{25} -44.7744 q^{26} +102.371 q^{28} +11.5606 q^{29} +169.249 q^{31} -95.6852 q^{32} +50.1321 q^{34} +142.957 q^{35} -283.695 q^{37} -16.5792 q^{38} +643.496 q^{40} -165.966 q^{41} -209.054 q^{43} +160.869 q^{44} -239.344 q^{46} -604.561 q^{47} +49.0000 q^{49} +1389.26 q^{50} -137.664 q^{52} -164.372 q^{53} +224.646 q^{55} +220.565 q^{56} +54.9883 q^{58} +292.736 q^{59} -202.920 q^{61} +805.036 q^{62} -718.160 q^{64} -192.242 q^{65} +750.145 q^{67} +154.137 q^{68} +679.977 q^{70} -14.6599 q^{71} +992.390 q^{73} -1349.40 q^{74} -50.9747 q^{76} +77.0000 q^{77} +1285.50 q^{79} +671.468 q^{80} -789.418 q^{82} +722.856 q^{83} +215.246 q^{85} -994.370 q^{86} +346.602 q^{88} -502.073 q^{89} -65.8929 q^{91} -735.891 q^{92} -2875.60 q^{94} -71.1840 q^{95} -532.376 q^{97} +233.069 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 30 q^{4} + 10 q^{5} + 56 q^{7} + 81 q^{8} + 9 q^{10} + 88 q^{11} + 16 q^{13} + 42 q^{14} + 122 q^{16} + 90 q^{17} - 42 q^{19} + 291 q^{20} + 66 q^{22} + 338 q^{23} + 244 q^{25} + 209 q^{26}+ \cdots + 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.75652 1.68168 0.840841 0.541282i \(-0.182061\pi\)
0.840841 + 0.541282i \(0.182061\pi\)
\(3\) 0 0
\(4\) 14.6245 1.82806
\(5\) 20.4224 1.82664 0.913318 0.407248i \(-0.133511\pi\)
0.913318 + 0.407248i \(0.133511\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 31.5093 1.39253
\(9\) 0 0
\(10\) 97.1395 3.07182
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −9.41327 −0.200829 −0.100414 0.994946i \(-0.532017\pi\)
−0.100414 + 0.994946i \(0.532017\pi\)
\(14\) 33.2956 0.635616
\(15\) 0 0
\(16\) 32.8790 0.513734
\(17\) 10.5397 0.150367 0.0751837 0.997170i \(-0.476046\pi\)
0.0751837 + 0.997170i \(0.476046\pi\)
\(18\) 0 0
\(19\) −3.48558 −0.0420867 −0.0210433 0.999779i \(-0.506699\pi\)
−0.0210433 + 0.999779i \(0.506699\pi\)
\(20\) 298.667 3.33919
\(21\) 0 0
\(22\) 52.3217 0.507046
\(23\) −50.3192 −0.456186 −0.228093 0.973639i \(-0.573249\pi\)
−0.228093 + 0.973639i \(0.573249\pi\)
\(24\) 0 0
\(25\) 292.075 2.33660
\(26\) −44.7744 −0.337730
\(27\) 0 0
\(28\) 102.371 0.690940
\(29\) 11.5606 0.0740260 0.0370130 0.999315i \(-0.488216\pi\)
0.0370130 + 0.999315i \(0.488216\pi\)
\(30\) 0 0
\(31\) 169.249 0.980582 0.490291 0.871559i \(-0.336891\pi\)
0.490291 + 0.871559i \(0.336891\pi\)
\(32\) −95.6852 −0.528591
\(33\) 0 0
\(34\) 50.1321 0.252870
\(35\) 142.957 0.690403
\(36\) 0 0
\(37\) −283.695 −1.26052 −0.630260 0.776384i \(-0.717052\pi\)
−0.630260 + 0.776384i \(0.717052\pi\)
\(38\) −16.5792 −0.0707765
\(39\) 0 0
\(40\) 643.496 2.54364
\(41\) −165.966 −0.632182 −0.316091 0.948729i \(-0.602371\pi\)
−0.316091 + 0.948729i \(0.602371\pi\)
\(42\) 0 0
\(43\) −209.054 −0.741406 −0.370703 0.928751i \(-0.620883\pi\)
−0.370703 + 0.928751i \(0.620883\pi\)
\(44\) 160.869 0.551180
\(45\) 0 0
\(46\) −239.344 −0.767160
\(47\) −604.561 −1.87626 −0.938130 0.346282i \(-0.887444\pi\)
−0.938130 + 0.346282i \(0.887444\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 1389.26 3.92942
\(51\) 0 0
\(52\) −137.664 −0.367126
\(53\) −164.372 −0.426004 −0.213002 0.977052i \(-0.568324\pi\)
−0.213002 + 0.977052i \(0.568324\pi\)
\(54\) 0 0
\(55\) 224.646 0.550751
\(56\) 220.565 0.526326
\(57\) 0 0
\(58\) 54.9883 0.124488
\(59\) 292.736 0.645949 0.322974 0.946408i \(-0.395317\pi\)
0.322974 + 0.946408i \(0.395317\pi\)
\(60\) 0 0
\(61\) −202.920 −0.425921 −0.212961 0.977061i \(-0.568311\pi\)
−0.212961 + 0.977061i \(0.568311\pi\)
\(62\) 805.036 1.64903
\(63\) 0 0
\(64\) −718.160 −1.40266
\(65\) −192.242 −0.366841
\(66\) 0 0
\(67\) 750.145 1.36783 0.683917 0.729560i \(-0.260275\pi\)
0.683917 + 0.729560i \(0.260275\pi\)
\(68\) 154.137 0.274880
\(69\) 0 0
\(70\) 679.977 1.16104
\(71\) −14.6599 −0.0245044 −0.0122522 0.999925i \(-0.503900\pi\)
−0.0122522 + 0.999925i \(0.503900\pi\)
\(72\) 0 0
\(73\) 992.390 1.59110 0.795551 0.605886i \(-0.207181\pi\)
0.795551 + 0.605886i \(0.207181\pi\)
\(74\) −1349.40 −2.11979
\(75\) 0 0
\(76\) −50.9747 −0.0769369
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 1285.50 1.83077 0.915383 0.402585i \(-0.131888\pi\)
0.915383 + 0.402585i \(0.131888\pi\)
\(80\) 671.468 0.938405
\(81\) 0 0
\(82\) −789.418 −1.06313
\(83\) 722.856 0.955949 0.477974 0.878374i \(-0.341371\pi\)
0.477974 + 0.878374i \(0.341371\pi\)
\(84\) 0 0
\(85\) 215.246 0.274667
\(86\) −994.370 −1.24681
\(87\) 0 0
\(88\) 346.602 0.419863
\(89\) −502.073 −0.597973 −0.298986 0.954257i \(-0.596649\pi\)
−0.298986 + 0.954257i \(0.596649\pi\)
\(90\) 0 0
\(91\) −65.8929 −0.0759061
\(92\) −735.891 −0.833934
\(93\) 0 0
\(94\) −2875.60 −3.15528
\(95\) −71.1840 −0.0768771
\(96\) 0 0
\(97\) −532.376 −0.557264 −0.278632 0.960398i \(-0.589881\pi\)
−0.278632 + 0.960398i \(0.589881\pi\)
\(98\) 233.069 0.240240
\(99\) 0 0
\(100\) 4271.43 4.27143
\(101\) −410.136 −0.404060 −0.202030 0.979379i \(-0.564754\pi\)
−0.202030 + 0.979379i \(0.564754\pi\)
\(102\) 0 0
\(103\) −1443.12 −1.38053 −0.690267 0.723555i \(-0.742507\pi\)
−0.690267 + 0.723555i \(0.742507\pi\)
\(104\) −296.606 −0.279659
\(105\) 0 0
\(106\) −781.838 −0.716404
\(107\) 2069.33 1.86963 0.934813 0.355140i \(-0.115567\pi\)
0.934813 + 0.355140i \(0.115567\pi\)
\(108\) 0 0
\(109\) −1944.14 −1.70840 −0.854198 0.519947i \(-0.825952\pi\)
−0.854198 + 0.519947i \(0.825952\pi\)
\(110\) 1068.53 0.926189
\(111\) 0 0
\(112\) 230.153 0.194173
\(113\) 65.0582 0.0541607 0.0270804 0.999633i \(-0.491379\pi\)
0.0270804 + 0.999633i \(0.491379\pi\)
\(114\) 0 0
\(115\) −1027.64 −0.833286
\(116\) 169.068 0.135324
\(117\) 0 0
\(118\) 1392.40 1.08628
\(119\) 73.7777 0.0568336
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −965.190 −0.716264
\(123\) 0 0
\(124\) 2475.18 1.79256
\(125\) 3412.07 2.44148
\(126\) 0 0
\(127\) −449.328 −0.313948 −0.156974 0.987603i \(-0.550174\pi\)
−0.156974 + 0.987603i \(0.550174\pi\)
\(128\) −2650.46 −1.83023
\(129\) 0 0
\(130\) −914.401 −0.616910
\(131\) −1988.69 −1.32636 −0.663179 0.748461i \(-0.730793\pi\)
−0.663179 + 0.748461i \(0.730793\pi\)
\(132\) 0 0
\(133\) −24.3991 −0.0159073
\(134\) 3568.08 2.30026
\(135\) 0 0
\(136\) 332.098 0.209391
\(137\) 2435.56 1.51886 0.759431 0.650587i \(-0.225477\pi\)
0.759431 + 0.650587i \(0.225477\pi\)
\(138\) 0 0
\(139\) −194.806 −0.118872 −0.0594360 0.998232i \(-0.518930\pi\)
−0.0594360 + 0.998232i \(0.518930\pi\)
\(140\) 2090.67 1.26210
\(141\) 0 0
\(142\) −69.7303 −0.0412087
\(143\) −103.546 −0.0605521
\(144\) 0 0
\(145\) 236.096 0.135219
\(146\) 4720.32 2.67573
\(147\) 0 0
\(148\) −4148.89 −2.30430
\(149\) −540.585 −0.297224 −0.148612 0.988896i \(-0.547481\pi\)
−0.148612 + 0.988896i \(0.547481\pi\)
\(150\) 0 0
\(151\) −1585.07 −0.854244 −0.427122 0.904194i \(-0.640472\pi\)
−0.427122 + 0.904194i \(0.640472\pi\)
\(152\) −109.828 −0.0586069
\(153\) 0 0
\(154\) 366.252 0.191646
\(155\) 3456.47 1.79117
\(156\) 0 0
\(157\) −2488.18 −1.26483 −0.632414 0.774630i \(-0.717936\pi\)
−0.632414 + 0.774630i \(0.717936\pi\)
\(158\) 6114.52 3.07877
\(159\) 0 0
\(160\) −1954.12 −0.965543
\(161\) −352.234 −0.172422
\(162\) 0 0
\(163\) 739.943 0.355563 0.177782 0.984070i \(-0.443108\pi\)
0.177782 + 0.984070i \(0.443108\pi\)
\(164\) −2427.16 −1.15566
\(165\) 0 0
\(166\) 3438.28 1.60760
\(167\) −2038.25 −0.944459 −0.472229 0.881476i \(-0.656551\pi\)
−0.472229 + 0.881476i \(0.656551\pi\)
\(168\) 0 0
\(169\) −2108.39 −0.959668
\(170\) 1023.82 0.461902
\(171\) 0 0
\(172\) −3057.30 −1.35533
\(173\) 1991.77 0.875326 0.437663 0.899139i \(-0.355806\pi\)
0.437663 + 0.899139i \(0.355806\pi\)
\(174\) 0 0
\(175\) 2044.52 0.883151
\(176\) 361.669 0.154897
\(177\) 0 0
\(178\) −2388.12 −1.00560
\(179\) 2650.93 1.10693 0.553463 0.832874i \(-0.313306\pi\)
0.553463 + 0.832874i \(0.313306\pi\)
\(180\) 0 0
\(181\) −4491.40 −1.84444 −0.922218 0.386671i \(-0.873625\pi\)
−0.922218 + 0.386671i \(0.873625\pi\)
\(182\) −313.421 −0.127650
\(183\) 0 0
\(184\) −1585.52 −0.635252
\(185\) −5793.74 −2.30251
\(186\) 0 0
\(187\) 115.936 0.0453375
\(188\) −8841.37 −3.42991
\(189\) 0 0
\(190\) −338.588 −0.129283
\(191\) −290.033 −0.109874 −0.0549372 0.998490i \(-0.517496\pi\)
−0.0549372 + 0.998490i \(0.517496\pi\)
\(192\) 0 0
\(193\) −1593.17 −0.594193 −0.297096 0.954847i \(-0.596018\pi\)
−0.297096 + 0.954847i \(0.596018\pi\)
\(194\) −2532.26 −0.937141
\(195\) 0 0
\(196\) 716.598 0.261151
\(197\) 3610.11 1.30563 0.652816 0.757516i \(-0.273587\pi\)
0.652816 + 0.757516i \(0.273587\pi\)
\(198\) 0 0
\(199\) 1880.64 0.669925 0.334962 0.942231i \(-0.391276\pi\)
0.334962 + 0.942231i \(0.391276\pi\)
\(200\) 9203.07 3.25378
\(201\) 0 0
\(202\) −1950.82 −0.679500
\(203\) 80.9244 0.0279792
\(204\) 0 0
\(205\) −3389.42 −1.15477
\(206\) −6864.23 −2.32162
\(207\) 0 0
\(208\) −309.499 −0.103172
\(209\) −38.3414 −0.0126896
\(210\) 0 0
\(211\) 2239.49 0.730676 0.365338 0.930875i \(-0.380953\pi\)
0.365338 + 0.930875i \(0.380953\pi\)
\(212\) −2403.85 −0.778760
\(213\) 0 0
\(214\) 9842.82 3.14412
\(215\) −4269.39 −1.35428
\(216\) 0 0
\(217\) 1184.74 0.370625
\(218\) −9247.35 −2.87298
\(219\) 0 0
\(220\) 3285.33 1.00680
\(221\) −99.2128 −0.0301981
\(222\) 0 0
\(223\) −3817.30 −1.14630 −0.573151 0.819450i \(-0.694279\pi\)
−0.573151 + 0.819450i \(0.694279\pi\)
\(224\) −669.796 −0.199789
\(225\) 0 0
\(226\) 309.451 0.0910812
\(227\) −4569.24 −1.33600 −0.667999 0.744162i \(-0.732849\pi\)
−0.667999 + 0.744162i \(0.732849\pi\)
\(228\) 0 0
\(229\) −1857.55 −0.536029 −0.268014 0.963415i \(-0.586367\pi\)
−0.268014 + 0.963415i \(0.586367\pi\)
\(230\) −4887.98 −1.40132
\(231\) 0 0
\(232\) 364.268 0.103083
\(233\) 4650.88 1.30768 0.653840 0.756633i \(-0.273157\pi\)
0.653840 + 0.756633i \(0.273157\pi\)
\(234\) 0 0
\(235\) −12346.6 −3.42724
\(236\) 4281.10 1.18083
\(237\) 0 0
\(238\) 350.925 0.0955760
\(239\) −5730.84 −1.55104 −0.775518 0.631326i \(-0.782511\pi\)
−0.775518 + 0.631326i \(0.782511\pi\)
\(240\) 0 0
\(241\) −655.807 −0.175287 −0.0876437 0.996152i \(-0.527934\pi\)
−0.0876437 + 0.996152i \(0.527934\pi\)
\(242\) 575.539 0.152880
\(243\) 0 0
\(244\) −2967.59 −0.778608
\(245\) 1000.70 0.260948
\(246\) 0 0
\(247\) 32.8107 0.00845221
\(248\) 5332.92 1.36549
\(249\) 0 0
\(250\) 16229.6 4.10579
\(251\) 4548.60 1.14385 0.571923 0.820308i \(-0.306198\pi\)
0.571923 + 0.820308i \(0.306198\pi\)
\(252\) 0 0
\(253\) −553.511 −0.137545
\(254\) −2137.24 −0.527961
\(255\) 0 0
\(256\) −6861.67 −1.67521
\(257\) −1097.31 −0.266336 −0.133168 0.991093i \(-0.542515\pi\)
−0.133168 + 0.991093i \(0.542515\pi\)
\(258\) 0 0
\(259\) −1985.87 −0.476432
\(260\) −2811.43 −0.670606
\(261\) 0 0
\(262\) −9459.25 −2.23051
\(263\) 350.041 0.0820701 0.0410350 0.999158i \(-0.486934\pi\)
0.0410350 + 0.999158i \(0.486934\pi\)
\(264\) 0 0
\(265\) −3356.87 −0.778155
\(266\) −116.055 −0.0267510
\(267\) 0 0
\(268\) 10970.5 2.50048
\(269\) −7534.44 −1.70774 −0.853872 0.520483i \(-0.825752\pi\)
−0.853872 + 0.520483i \(0.825752\pi\)
\(270\) 0 0
\(271\) 3284.96 0.736337 0.368168 0.929759i \(-0.379985\pi\)
0.368168 + 0.929759i \(0.379985\pi\)
\(272\) 346.534 0.0772489
\(273\) 0 0
\(274\) 11584.8 2.55425
\(275\) 3212.82 0.704511
\(276\) 0 0
\(277\) 2905.52 0.630238 0.315119 0.949052i \(-0.397956\pi\)
0.315119 + 0.949052i \(0.397956\pi\)
\(278\) −926.596 −0.199905
\(279\) 0 0
\(280\) 4504.47 0.961406
\(281\) 6691.39 1.42055 0.710275 0.703924i \(-0.248571\pi\)
0.710275 + 0.703924i \(0.248571\pi\)
\(282\) 0 0
\(283\) 4169.05 0.875704 0.437852 0.899047i \(-0.355739\pi\)
0.437852 + 0.899047i \(0.355739\pi\)
\(284\) −214.394 −0.0447955
\(285\) 0 0
\(286\) −492.518 −0.101829
\(287\) −1161.76 −0.238942
\(288\) 0 0
\(289\) −4801.92 −0.977390
\(290\) 1122.99 0.227395
\(291\) 0 0
\(292\) 14513.2 2.90863
\(293\) −5523.97 −1.10141 −0.550707 0.834699i \(-0.685642\pi\)
−0.550707 + 0.834699i \(0.685642\pi\)
\(294\) 0 0
\(295\) 5978.37 1.17991
\(296\) −8939.04 −1.75531
\(297\) 0 0
\(298\) −2571.30 −0.499837
\(299\) 473.668 0.0916152
\(300\) 0 0
\(301\) −1463.38 −0.280225
\(302\) −7539.39 −1.43657
\(303\) 0 0
\(304\) −114.602 −0.0216214
\(305\) −4144.11 −0.778003
\(306\) 0 0
\(307\) 8309.31 1.54475 0.772374 0.635168i \(-0.219069\pi\)
0.772374 + 0.635168i \(0.219069\pi\)
\(308\) 1126.08 0.208326
\(309\) 0 0
\(310\) 16440.8 3.01217
\(311\) −5556.42 −1.01311 −0.506553 0.862209i \(-0.669081\pi\)
−0.506553 + 0.862209i \(0.669081\pi\)
\(312\) 0 0
\(313\) 2102.94 0.379761 0.189881 0.981807i \(-0.439190\pi\)
0.189881 + 0.981807i \(0.439190\pi\)
\(314\) −11835.1 −2.12704
\(315\) 0 0
\(316\) 18799.8 3.34674
\(317\) 10308.3 1.82641 0.913203 0.407506i \(-0.133601\pi\)
0.913203 + 0.407506i \(0.133601\pi\)
\(318\) 0 0
\(319\) 127.167 0.0223197
\(320\) −14666.6 −2.56214
\(321\) 0 0
\(322\) −1675.41 −0.289959
\(323\) −36.7369 −0.00632847
\(324\) 0 0
\(325\) −2749.38 −0.469256
\(326\) 3519.55 0.597944
\(327\) 0 0
\(328\) −5229.46 −0.880331
\(329\) −4231.93 −0.709160
\(330\) 0 0
\(331\) 4541.31 0.754118 0.377059 0.926189i \(-0.376935\pi\)
0.377059 + 0.926189i \(0.376935\pi\)
\(332\) 10571.4 1.74753
\(333\) 0 0
\(334\) −9694.98 −1.58828
\(335\) 15319.8 2.49853
\(336\) 0 0
\(337\) −5462.54 −0.882978 −0.441489 0.897267i \(-0.645550\pi\)
−0.441489 + 0.897267i \(0.645550\pi\)
\(338\) −10028.6 −1.61386
\(339\) 0 0
\(340\) 3147.85 0.502106
\(341\) 1861.74 0.295657
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −6587.15 −1.03243
\(345\) 0 0
\(346\) 9473.88 1.47202
\(347\) −1152.74 −0.178335 −0.0891677 0.996017i \(-0.528421\pi\)
−0.0891677 + 0.996017i \(0.528421\pi\)
\(348\) 0 0
\(349\) 228.903 0.0351086 0.0175543 0.999846i \(-0.494412\pi\)
0.0175543 + 0.999846i \(0.494412\pi\)
\(350\) 9724.81 1.48518
\(351\) 0 0
\(352\) −1052.54 −0.159376
\(353\) 4595.35 0.692877 0.346438 0.938073i \(-0.387391\pi\)
0.346438 + 0.938073i \(0.387391\pi\)
\(354\) 0 0
\(355\) −299.391 −0.0447607
\(356\) −7342.54 −1.09313
\(357\) 0 0
\(358\) 12609.2 1.86150
\(359\) 4528.50 0.665752 0.332876 0.942971i \(-0.391981\pi\)
0.332876 + 0.942971i \(0.391981\pi\)
\(360\) 0 0
\(361\) −6846.85 −0.998229
\(362\) −21363.4 −3.10176
\(363\) 0 0
\(364\) −963.648 −0.138761
\(365\) 20267.0 2.90636
\(366\) 0 0
\(367\) −9717.48 −1.38215 −0.691074 0.722784i \(-0.742862\pi\)
−0.691074 + 0.722784i \(0.742862\pi\)
\(368\) −1654.44 −0.234358
\(369\) 0 0
\(370\) −27558.0 −3.87209
\(371\) −1150.60 −0.161015
\(372\) 0 0
\(373\) 3647.49 0.506327 0.253164 0.967423i \(-0.418529\pi\)
0.253164 + 0.967423i \(0.418529\pi\)
\(374\) 551.454 0.0762433
\(375\) 0 0
\(376\) −19049.3 −2.61275
\(377\) −108.823 −0.0148665
\(378\) 0 0
\(379\) 4767.04 0.646085 0.323043 0.946384i \(-0.395294\pi\)
0.323043 + 0.946384i \(0.395294\pi\)
\(380\) −1041.03 −0.140536
\(381\) 0 0
\(382\) −1379.55 −0.184774
\(383\) 4701.46 0.627241 0.313620 0.949548i \(-0.398458\pi\)
0.313620 + 0.949548i \(0.398458\pi\)
\(384\) 0 0
\(385\) 1572.53 0.208164
\(386\) −7577.96 −0.999244
\(387\) 0 0
\(388\) −7785.71 −1.01871
\(389\) −11743.8 −1.53068 −0.765338 0.643629i \(-0.777428\pi\)
−0.765338 + 0.643629i \(0.777428\pi\)
\(390\) 0 0
\(391\) −530.348 −0.0685955
\(392\) 1543.96 0.198933
\(393\) 0 0
\(394\) 17171.5 2.19566
\(395\) 26253.1 3.34414
\(396\) 0 0
\(397\) −11857.0 −1.49895 −0.749477 0.662030i \(-0.769695\pi\)
−0.749477 + 0.662030i \(0.769695\pi\)
\(398\) 8945.30 1.12660
\(399\) 0 0
\(400\) 9603.12 1.20039
\(401\) 6776.89 0.843945 0.421972 0.906609i \(-0.361338\pi\)
0.421972 + 0.906609i \(0.361338\pi\)
\(402\) 0 0
\(403\) −1593.19 −0.196929
\(404\) −5998.01 −0.738644
\(405\) 0 0
\(406\) 384.918 0.0470522
\(407\) −3120.65 −0.380061
\(408\) 0 0
\(409\) 16441.2 1.98768 0.993842 0.110804i \(-0.0353425\pi\)
0.993842 + 0.110804i \(0.0353425\pi\)
\(410\) −16121.8 −1.94195
\(411\) 0 0
\(412\) −21104.9 −2.52369
\(413\) 2049.15 0.244146
\(414\) 0 0
\(415\) 14762.5 1.74617
\(416\) 900.710 0.106156
\(417\) 0 0
\(418\) −182.371 −0.0213399
\(419\) 8901.30 1.03784 0.518922 0.854821i \(-0.326333\pi\)
0.518922 + 0.854821i \(0.326333\pi\)
\(420\) 0 0
\(421\) 6562.92 0.759755 0.379878 0.925037i \(-0.375966\pi\)
0.379878 + 0.925037i \(0.375966\pi\)
\(422\) 10652.2 1.22876
\(423\) 0 0
\(424\) −5179.25 −0.593223
\(425\) 3078.37 0.351348
\(426\) 0 0
\(427\) −1420.44 −0.160983
\(428\) 30262.9 3.41778
\(429\) 0 0
\(430\) −20307.4 −2.27747
\(431\) 9669.77 1.08069 0.540344 0.841444i \(-0.318294\pi\)
0.540344 + 0.841444i \(0.318294\pi\)
\(432\) 0 0
\(433\) −6658.03 −0.738948 −0.369474 0.929241i \(-0.620462\pi\)
−0.369474 + 0.929241i \(0.620462\pi\)
\(434\) 5635.25 0.623274
\(435\) 0 0
\(436\) −28432.0 −3.12305
\(437\) 175.392 0.0191994
\(438\) 0 0
\(439\) 10345.5 1.12474 0.562372 0.826884i \(-0.309889\pi\)
0.562372 + 0.826884i \(0.309889\pi\)
\(440\) 7078.46 0.766937
\(441\) 0 0
\(442\) −471.907 −0.0507836
\(443\) 2402.96 0.257716 0.128858 0.991663i \(-0.458869\pi\)
0.128858 + 0.991663i \(0.458869\pi\)
\(444\) 0 0
\(445\) −10253.5 −1.09228
\(446\) −18157.1 −1.92772
\(447\) 0 0
\(448\) −5027.12 −0.530154
\(449\) −15030.3 −1.57978 −0.789890 0.613248i \(-0.789863\pi\)
−0.789890 + 0.613248i \(0.789863\pi\)
\(450\) 0 0
\(451\) −1825.62 −0.190610
\(452\) 951.441 0.0990089
\(453\) 0 0
\(454\) −21733.7 −2.24672
\(455\) −1345.69 −0.138653
\(456\) 0 0
\(457\) −16018.3 −1.63961 −0.819807 0.572641i \(-0.805919\pi\)
−0.819807 + 0.572641i \(0.805919\pi\)
\(458\) −8835.48 −0.901430
\(459\) 0 0
\(460\) −15028.7 −1.52329
\(461\) −5213.29 −0.526697 −0.263348 0.964701i \(-0.584827\pi\)
−0.263348 + 0.964701i \(0.584827\pi\)
\(462\) 0 0
\(463\) 9895.68 0.993285 0.496643 0.867955i \(-0.334566\pi\)
0.496643 + 0.867955i \(0.334566\pi\)
\(464\) 380.102 0.0380297
\(465\) 0 0
\(466\) 22122.0 2.19910
\(467\) 7100.05 0.703535 0.351768 0.936087i \(-0.385581\pi\)
0.351768 + 0.936087i \(0.385581\pi\)
\(468\) 0 0
\(469\) 5251.02 0.516993
\(470\) −58726.8 −5.76354
\(471\) 0 0
\(472\) 9223.91 0.899502
\(473\) −2299.60 −0.223542
\(474\) 0 0
\(475\) −1018.05 −0.0983397
\(476\) 1078.96 0.103895
\(477\) 0 0
\(478\) −27258.9 −2.60835
\(479\) −13396.6 −1.27788 −0.638941 0.769256i \(-0.720627\pi\)
−0.638941 + 0.769256i \(0.720627\pi\)
\(480\) 0 0
\(481\) 2670.50 0.253148
\(482\) −3119.36 −0.294778
\(483\) 0 0
\(484\) 1769.56 0.166187
\(485\) −10872.4 −1.01792
\(486\) 0 0
\(487\) −691.582 −0.0643503 −0.0321751 0.999482i \(-0.510243\pi\)
−0.0321751 + 0.999482i \(0.510243\pi\)
\(488\) −6393.85 −0.593107
\(489\) 0 0
\(490\) 4759.84 0.438832
\(491\) −1281.36 −0.117774 −0.0588868 0.998265i \(-0.518755\pi\)
−0.0588868 + 0.998265i \(0.518755\pi\)
\(492\) 0 0
\(493\) 121.845 0.0111311
\(494\) 156.065 0.0142139
\(495\) 0 0
\(496\) 5564.74 0.503758
\(497\) −102.620 −0.00926181
\(498\) 0 0
\(499\) 5185.81 0.465228 0.232614 0.972569i \(-0.425272\pi\)
0.232614 + 0.972569i \(0.425272\pi\)
\(500\) 49899.6 4.46316
\(501\) 0 0
\(502\) 21635.5 1.92358
\(503\) 20900.8 1.85273 0.926363 0.376631i \(-0.122918\pi\)
0.926363 + 0.376631i \(0.122918\pi\)
\(504\) 0 0
\(505\) −8375.96 −0.738070
\(506\) −2632.79 −0.231307
\(507\) 0 0
\(508\) −6571.18 −0.573915
\(509\) −16598.5 −1.44542 −0.722708 0.691153i \(-0.757103\pi\)
−0.722708 + 0.691153i \(0.757103\pi\)
\(510\) 0 0
\(511\) 6946.73 0.601380
\(512\) −11434.0 −0.986944
\(513\) 0 0
\(514\) −5219.38 −0.447893
\(515\) −29472.0 −2.52173
\(516\) 0 0
\(517\) −6650.17 −0.565714
\(518\) −9445.81 −0.801207
\(519\) 0 0
\(520\) −6057.40 −0.510836
\(521\) 20837.8 1.75225 0.876125 0.482085i \(-0.160120\pi\)
0.876125 + 0.482085i \(0.160120\pi\)
\(522\) 0 0
\(523\) −8513.29 −0.711779 −0.355889 0.934528i \(-0.615822\pi\)
−0.355889 + 0.934528i \(0.615822\pi\)
\(524\) −29083.5 −2.42466
\(525\) 0 0
\(526\) 1664.97 0.138016
\(527\) 1783.83 0.147448
\(528\) 0 0
\(529\) −9634.98 −0.791894
\(530\) −15967.0 −1.30861
\(531\) 0 0
\(532\) −356.823 −0.0290794
\(533\) 1562.28 0.126960
\(534\) 0 0
\(535\) 42260.8 3.41513
\(536\) 23636.6 1.90475
\(537\) 0 0
\(538\) −35837.7 −2.87188
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 23541.5 1.87085 0.935423 0.353532i \(-0.115019\pi\)
0.935423 + 0.353532i \(0.115019\pi\)
\(542\) 15625.0 1.23828
\(543\) 0 0
\(544\) −1008.49 −0.0794829
\(545\) −39704.1 −3.12062
\(546\) 0 0
\(547\) 2249.62 0.175844 0.0879220 0.996127i \(-0.471977\pi\)
0.0879220 + 0.996127i \(0.471977\pi\)
\(548\) 35618.8 2.77657
\(549\) 0 0
\(550\) 15281.8 1.18476
\(551\) −40.2955 −0.00311551
\(552\) 0 0
\(553\) 8998.53 0.691964
\(554\) 13820.2 1.05986
\(555\) 0 0
\(556\) −2848.93 −0.217305
\(557\) −2779.41 −0.211431 −0.105716 0.994396i \(-0.533713\pi\)
−0.105716 + 0.994396i \(0.533713\pi\)
\(558\) 0 0
\(559\) 1967.88 0.148896
\(560\) 4700.27 0.354684
\(561\) 0 0
\(562\) 31827.7 2.38891
\(563\) 18558.7 1.38927 0.694633 0.719364i \(-0.255567\pi\)
0.694633 + 0.719364i \(0.255567\pi\)
\(564\) 0 0
\(565\) 1328.65 0.0989320
\(566\) 19830.1 1.47266
\(567\) 0 0
\(568\) −461.925 −0.0341231
\(569\) 9417.67 0.693865 0.346932 0.937890i \(-0.387223\pi\)
0.346932 + 0.937890i \(0.387223\pi\)
\(570\) 0 0
\(571\) 19252.5 1.41102 0.705509 0.708701i \(-0.250718\pi\)
0.705509 + 0.708701i \(0.250718\pi\)
\(572\) −1514.30 −0.110693
\(573\) 0 0
\(574\) −5525.93 −0.401825
\(575\) −14697.0 −1.06592
\(576\) 0 0
\(577\) 17970.2 1.29655 0.648274 0.761407i \(-0.275491\pi\)
0.648274 + 0.761407i \(0.275491\pi\)
\(578\) −22840.4 −1.64366
\(579\) 0 0
\(580\) 3452.77 0.247187
\(581\) 5059.99 0.361315
\(582\) 0 0
\(583\) −1808.09 −0.128445
\(584\) 31269.5 2.21565
\(585\) 0 0
\(586\) −26274.9 −1.85223
\(587\) −18312.6 −1.28764 −0.643818 0.765179i \(-0.722651\pi\)
−0.643818 + 0.765179i \(0.722651\pi\)
\(588\) 0 0
\(589\) −589.932 −0.0412694
\(590\) 28436.2 1.98424
\(591\) 0 0
\(592\) −9327.61 −0.647572
\(593\) 5682.32 0.393499 0.196749 0.980454i \(-0.436961\pi\)
0.196749 + 0.980454i \(0.436961\pi\)
\(594\) 0 0
\(595\) 1506.72 0.103814
\(596\) −7905.75 −0.543343
\(597\) 0 0
\(598\) 2253.01 0.154068
\(599\) 22748.4 1.55171 0.775854 0.630912i \(-0.217319\pi\)
0.775854 + 0.630912i \(0.217319\pi\)
\(600\) 0 0
\(601\) −4805.47 −0.326155 −0.163077 0.986613i \(-0.552142\pi\)
−0.163077 + 0.986613i \(0.552142\pi\)
\(602\) −6960.59 −0.471250
\(603\) 0 0
\(604\) −23180.7 −1.56161
\(605\) 2471.11 0.166058
\(606\) 0 0
\(607\) −15730.2 −1.05184 −0.525922 0.850533i \(-0.676280\pi\)
−0.525922 + 0.850533i \(0.676280\pi\)
\(608\) 333.518 0.0222466
\(609\) 0 0
\(610\) −19711.5 −1.30835
\(611\) 5690.90 0.376807
\(612\) 0 0
\(613\) −17586.7 −1.15876 −0.579380 0.815058i \(-0.696705\pi\)
−0.579380 + 0.815058i \(0.696705\pi\)
\(614\) 39523.4 2.59777
\(615\) 0 0
\(616\) 2426.22 0.158693
\(617\) 14671.7 0.957308 0.478654 0.878004i \(-0.341125\pi\)
0.478654 + 0.878004i \(0.341125\pi\)
\(618\) 0 0
\(619\) −1935.25 −0.125661 −0.0628305 0.998024i \(-0.520013\pi\)
−0.0628305 + 0.998024i \(0.520013\pi\)
\(620\) 50549.0 3.27435
\(621\) 0 0
\(622\) −26429.2 −1.70372
\(623\) −3514.51 −0.226012
\(624\) 0 0
\(625\) 33173.3 2.12309
\(626\) 10002.7 0.638638
\(627\) 0 0
\(628\) −36388.2 −2.31218
\(629\) −2990.06 −0.189541
\(630\) 0 0
\(631\) −1.75233 −0.000110554 0 −5.52768e−5 1.00000i \(-0.500018\pi\)
−5.52768e−5 1.00000i \(0.500018\pi\)
\(632\) 40505.3 2.54939
\(633\) 0 0
\(634\) 49031.5 3.07143
\(635\) −9176.36 −0.573469
\(636\) 0 0
\(637\) −461.250 −0.0286898
\(638\) 604.872 0.0375346
\(639\) 0 0
\(640\) −54128.7 −3.34317
\(641\) 9110.30 0.561366 0.280683 0.959801i \(-0.409439\pi\)
0.280683 + 0.959801i \(0.409439\pi\)
\(642\) 0 0
\(643\) −9073.67 −0.556502 −0.278251 0.960508i \(-0.589755\pi\)
−0.278251 + 0.960508i \(0.589755\pi\)
\(644\) −5151.23 −0.315197
\(645\) 0 0
\(646\) −174.740 −0.0106425
\(647\) 4814.56 0.292550 0.146275 0.989244i \(-0.453272\pi\)
0.146275 + 0.989244i \(0.453272\pi\)
\(648\) 0 0
\(649\) 3220.10 0.194761
\(650\) −13077.5 −0.789139
\(651\) 0 0
\(652\) 10821.3 0.649990
\(653\) 10772.3 0.645564 0.322782 0.946473i \(-0.395382\pi\)
0.322782 + 0.946473i \(0.395382\pi\)
\(654\) 0 0
\(655\) −40613.9 −2.42277
\(656\) −5456.78 −0.324773
\(657\) 0 0
\(658\) −20129.2 −1.19258
\(659\) −17455.5 −1.03182 −0.515910 0.856643i \(-0.672546\pi\)
−0.515910 + 0.856643i \(0.672546\pi\)
\(660\) 0 0
\(661\) 15398.9 0.906124 0.453062 0.891479i \(-0.350332\pi\)
0.453062 + 0.891479i \(0.350332\pi\)
\(662\) 21600.8 1.26819
\(663\) 0 0
\(664\) 22776.7 1.33119
\(665\) −498.288 −0.0290568
\(666\) 0 0
\(667\) −581.722 −0.0337696
\(668\) −29808.3 −1.72652
\(669\) 0 0
\(670\) 72868.8 4.20174
\(671\) −2232.11 −0.128420
\(672\) 0 0
\(673\) 14982.1 0.858126 0.429063 0.903275i \(-0.358844\pi\)
0.429063 + 0.903275i \(0.358844\pi\)
\(674\) −25982.7 −1.48489
\(675\) 0 0
\(676\) −30834.1 −1.75433
\(677\) 27825.6 1.57965 0.789827 0.613330i \(-0.210170\pi\)
0.789827 + 0.613330i \(0.210170\pi\)
\(678\) 0 0
\(679\) −3726.63 −0.210626
\(680\) 6782.24 0.382481
\(681\) 0 0
\(682\) 8855.40 0.497200
\(683\) 32920.0 1.84429 0.922145 0.386845i \(-0.126435\pi\)
0.922145 + 0.386845i \(0.126435\pi\)
\(684\) 0 0
\(685\) 49740.1 2.77441
\(686\) 1631.49 0.0908023
\(687\) 0 0
\(688\) −6873.49 −0.380885
\(689\) 1547.28 0.0855539
\(690\) 0 0
\(691\) −3157.37 −0.173823 −0.0869116 0.996216i \(-0.527700\pi\)
−0.0869116 + 0.996216i \(0.527700\pi\)
\(692\) 29128.5 1.60014
\(693\) 0 0
\(694\) −5483.03 −0.299904
\(695\) −3978.40 −0.217136
\(696\) 0 0
\(697\) −1749.22 −0.0950596
\(698\) 1088.78 0.0590416
\(699\) 0 0
\(700\) 29900.0 1.61445
\(701\) −15251.7 −0.821754 −0.410877 0.911691i \(-0.634777\pi\)
−0.410877 + 0.911691i \(0.634777\pi\)
\(702\) 0 0
\(703\) 988.843 0.0530511
\(704\) −7899.76 −0.422917
\(705\) 0 0
\(706\) 21857.8 1.16520
\(707\) −2870.95 −0.152720
\(708\) 0 0
\(709\) −30795.6 −1.63124 −0.815622 0.578585i \(-0.803605\pi\)
−0.815622 + 0.578585i \(0.803605\pi\)
\(710\) −1424.06 −0.0752733
\(711\) 0 0
\(712\) −15820.0 −0.832694
\(713\) −8516.48 −0.447328
\(714\) 0 0
\(715\) −2114.66 −0.110607
\(716\) 38768.4 2.02352
\(717\) 0 0
\(718\) 21539.9 1.11958
\(719\) 12226.1 0.634151 0.317076 0.948400i \(-0.397299\pi\)
0.317076 + 0.948400i \(0.397299\pi\)
\(720\) 0 0
\(721\) −10101.9 −0.521793
\(722\) −32567.2 −1.67870
\(723\) 0 0
\(724\) −65684.2 −3.37173
\(725\) 3376.57 0.172969
\(726\) 0 0
\(727\) 18279.6 0.932534 0.466267 0.884644i \(-0.345599\pi\)
0.466267 + 0.884644i \(0.345599\pi\)
\(728\) −2076.24 −0.105701
\(729\) 0 0
\(730\) 96400.3 4.88758
\(731\) −2203.36 −0.111483
\(732\) 0 0
\(733\) 7407.39 0.373258 0.186629 0.982430i \(-0.440244\pi\)
0.186629 + 0.982430i \(0.440244\pi\)
\(734\) −46221.4 −2.32433
\(735\) 0 0
\(736\) 4814.80 0.241136
\(737\) 8251.60 0.412417
\(738\) 0 0
\(739\) −19188.4 −0.955151 −0.477576 0.878591i \(-0.658484\pi\)
−0.477576 + 0.878591i \(0.658484\pi\)
\(740\) −84730.3 −4.20912
\(741\) 0 0
\(742\) −5472.87 −0.270775
\(743\) 24324.6 1.20105 0.600527 0.799604i \(-0.294957\pi\)
0.600527 + 0.799604i \(0.294957\pi\)
\(744\) 0 0
\(745\) −11040.0 −0.542920
\(746\) 17349.4 0.851481
\(747\) 0 0
\(748\) 1695.51 0.0828795
\(749\) 14485.3 0.706652
\(750\) 0 0
\(751\) 18846.7 0.915748 0.457874 0.889017i \(-0.348611\pi\)
0.457874 + 0.889017i \(0.348611\pi\)
\(752\) −19877.3 −0.963899
\(753\) 0 0
\(754\) −517.620 −0.0250008
\(755\) −32370.9 −1.56039
\(756\) 0 0
\(757\) 22771.4 1.09332 0.546659 0.837356i \(-0.315900\pi\)
0.546659 + 0.837356i \(0.315900\pi\)
\(758\) 22674.5 1.08651
\(759\) 0 0
\(760\) −2242.96 −0.107053
\(761\) 24040.1 1.14514 0.572570 0.819856i \(-0.305947\pi\)
0.572570 + 0.819856i \(0.305947\pi\)
\(762\) 0 0
\(763\) −13609.0 −0.645713
\(764\) −4241.57 −0.200857
\(765\) 0 0
\(766\) 22362.6 1.05482
\(767\) −2755.60 −0.129725
\(768\) 0 0
\(769\) 6179.39 0.289772 0.144886 0.989448i \(-0.453718\pi\)
0.144886 + 0.989448i \(0.453718\pi\)
\(770\) 7479.74 0.350067
\(771\) 0 0
\(772\) −23299.3 −1.08622
\(773\) −22981.9 −1.06934 −0.534672 0.845060i \(-0.679565\pi\)
−0.534672 + 0.845060i \(0.679565\pi\)
\(774\) 0 0
\(775\) 49433.4 2.29123
\(776\) −16774.8 −0.776006
\(777\) 0 0
\(778\) −55859.4 −2.57411
\(779\) 578.487 0.0266065
\(780\) 0 0
\(781\) −161.259 −0.00738837
\(782\) −2522.61 −0.115356
\(783\) 0 0
\(784\) 1611.07 0.0733906
\(785\) −50814.6 −2.31038
\(786\) 0 0
\(787\) 32606.7 1.47688 0.738439 0.674320i \(-0.235563\pi\)
0.738439 + 0.674320i \(0.235563\pi\)
\(788\) 52795.9 2.38677
\(789\) 0 0
\(790\) 124873. 5.62378
\(791\) 455.408 0.0204708
\(792\) 0 0
\(793\) 1910.14 0.0855371
\(794\) −56397.9 −2.52077
\(795\) 0 0
\(796\) 27503.3 1.22466
\(797\) 11071.7 0.492072 0.246036 0.969261i \(-0.420872\pi\)
0.246036 + 0.969261i \(0.420872\pi\)
\(798\) 0 0
\(799\) −6371.87 −0.282129
\(800\) −27947.2 −1.23510
\(801\) 0 0
\(802\) 32234.4 1.41925
\(803\) 10916.3 0.479735
\(804\) 0 0
\(805\) −7193.47 −0.314952
\(806\) −7578.02 −0.331172
\(807\) 0 0
\(808\) −12923.1 −0.562665
\(809\) 11165.5 0.485241 0.242620 0.970121i \(-0.421993\pi\)
0.242620 + 0.970121i \(0.421993\pi\)
\(810\) 0 0
\(811\) −29993.4 −1.29866 −0.649329 0.760508i \(-0.724950\pi\)
−0.649329 + 0.760508i \(0.724950\pi\)
\(812\) 1183.48 0.0511476
\(813\) 0 0
\(814\) −14843.4 −0.639142
\(815\) 15111.4 0.649484
\(816\) 0 0
\(817\) 728.676 0.0312033
\(818\) 78202.6 3.34265
\(819\) 0 0
\(820\) −49568.4 −2.11098
\(821\) −18949.2 −0.805521 −0.402761 0.915305i \(-0.631949\pi\)
−0.402761 + 0.915305i \(0.631949\pi\)
\(822\) 0 0
\(823\) −23956.5 −1.01467 −0.507333 0.861750i \(-0.669368\pi\)
−0.507333 + 0.861750i \(0.669368\pi\)
\(824\) −45471.8 −1.92243
\(825\) 0 0
\(826\) 9746.83 0.410576
\(827\) 3592.80 0.151069 0.0755344 0.997143i \(-0.475934\pi\)
0.0755344 + 0.997143i \(0.475934\pi\)
\(828\) 0 0
\(829\) 21053.0 0.882029 0.441015 0.897500i \(-0.354619\pi\)
0.441015 + 0.897500i \(0.354619\pi\)
\(830\) 70217.9 2.93650
\(831\) 0 0
\(832\) 6760.23 0.281693
\(833\) 516.444 0.0214811
\(834\) 0 0
\(835\) −41626.0 −1.72518
\(836\) −560.722 −0.0231973
\(837\) 0 0
\(838\) 42339.2 1.74532
\(839\) 35430.1 1.45790 0.728952 0.684565i \(-0.240008\pi\)
0.728952 + 0.684565i \(0.240008\pi\)
\(840\) 0 0
\(841\) −24255.4 −0.994520
\(842\) 31216.6 1.27767
\(843\) 0 0
\(844\) 32751.3 1.33572
\(845\) −43058.4 −1.75296
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −5404.38 −0.218853
\(849\) 0 0
\(850\) 14642.3 0.590856
\(851\) 14275.3 0.575031
\(852\) 0 0
\(853\) 7079.82 0.284183 0.142092 0.989854i \(-0.454617\pi\)
0.142092 + 0.989854i \(0.454617\pi\)
\(854\) −6756.33 −0.270722
\(855\) 0 0
\(856\) 65203.3 2.60351
\(857\) 33199.2 1.32329 0.661647 0.749816i \(-0.269858\pi\)
0.661647 + 0.749816i \(0.269858\pi\)
\(858\) 0 0
\(859\) −34495.1 −1.37015 −0.685074 0.728474i \(-0.740230\pi\)
−0.685074 + 0.728474i \(0.740230\pi\)
\(860\) −62437.5 −2.47570
\(861\) 0 0
\(862\) 45994.4 1.81737
\(863\) −29250.4 −1.15376 −0.576880 0.816829i \(-0.695730\pi\)
−0.576880 + 0.816829i \(0.695730\pi\)
\(864\) 0 0
\(865\) 40676.7 1.59890
\(866\) −31669.0 −1.24268
\(867\) 0 0
\(868\) 17326.2 0.677524
\(869\) 14140.5 0.551997
\(870\) 0 0
\(871\) −7061.32 −0.274700
\(872\) −61258.6 −2.37899
\(873\) 0 0
\(874\) 834.253 0.0322872
\(875\) 23884.5 0.922792
\(876\) 0 0
\(877\) −18933.8 −0.729017 −0.364509 0.931200i \(-0.618763\pi\)
−0.364509 + 0.931200i \(0.618763\pi\)
\(878\) 49208.5 1.89146
\(879\) 0 0
\(880\) 7386.14 0.282940
\(881\) −3304.16 −0.126356 −0.0631782 0.998002i \(-0.520124\pi\)
−0.0631782 + 0.998002i \(0.520124\pi\)
\(882\) 0 0
\(883\) −49863.9 −1.90040 −0.950200 0.311642i \(-0.899121\pi\)
−0.950200 + 0.311642i \(0.899121\pi\)
\(884\) −1450.93 −0.0552038
\(885\) 0 0
\(886\) 11429.7 0.433396
\(887\) −9440.57 −0.357366 −0.178683 0.983907i \(-0.557184\pi\)
−0.178683 + 0.983907i \(0.557184\pi\)
\(888\) 0 0
\(889\) −3145.30 −0.118661
\(890\) −48771.1 −1.83687
\(891\) 0 0
\(892\) −55826.0 −2.09551
\(893\) 2107.25 0.0789656
\(894\) 0 0
\(895\) 54138.4 2.02195
\(896\) −18553.2 −0.691762
\(897\) 0 0
\(898\) −71491.6 −2.65669
\(899\) 1956.63 0.0725886
\(900\) 0 0
\(901\) −1732.43 −0.0640572
\(902\) −8683.60 −0.320546
\(903\) 0 0
\(904\) 2049.94 0.0754204
\(905\) −91725.1 −3.36911
\(906\) 0 0
\(907\) −15019.6 −0.549852 −0.274926 0.961465i \(-0.588653\pi\)
−0.274926 + 0.961465i \(0.588653\pi\)
\(908\) −66822.7 −2.44228
\(909\) 0 0
\(910\) −6400.81 −0.233170
\(911\) 49140.5 1.78715 0.893576 0.448912i \(-0.148188\pi\)
0.893576 + 0.448912i \(0.148188\pi\)
\(912\) 0 0
\(913\) 7951.41 0.288229
\(914\) −76191.2 −2.75731
\(915\) 0 0
\(916\) −27165.7 −0.979891
\(917\) −13920.8 −0.501316
\(918\) 0 0
\(919\) −25127.9 −0.901953 −0.450976 0.892536i \(-0.648924\pi\)
−0.450976 + 0.892536i \(0.648924\pi\)
\(920\) −32380.2 −1.16037
\(921\) 0 0
\(922\) −24797.1 −0.885737
\(923\) 137.998 0.00492119
\(924\) 0 0
\(925\) −82860.2 −2.94533
\(926\) 47069.0 1.67039
\(927\) 0 0
\(928\) −1106.18 −0.0391295
\(929\) −31742.8 −1.12104 −0.560520 0.828141i \(-0.689399\pi\)
−0.560520 + 0.828141i \(0.689399\pi\)
\(930\) 0 0
\(931\) −170.793 −0.00601239
\(932\) 68016.6 2.39051
\(933\) 0 0
\(934\) 33771.5 1.18312
\(935\) 2367.70 0.0828151
\(936\) 0 0
\(937\) 20656.6 0.720193 0.360096 0.932915i \(-0.382744\pi\)
0.360096 + 0.932915i \(0.382744\pi\)
\(938\) 24976.6 0.869417
\(939\) 0 0
\(940\) −180562. −6.26520
\(941\) −25644.1 −0.888389 −0.444195 0.895930i \(-0.646510\pi\)
−0.444195 + 0.895930i \(0.646510\pi\)
\(942\) 0 0
\(943\) 8351.25 0.288393
\(944\) 9624.86 0.331846
\(945\) 0 0
\(946\) −10938.1 −0.375927
\(947\) 10594.3 0.363535 0.181767 0.983342i \(-0.441818\pi\)
0.181767 + 0.983342i \(0.441818\pi\)
\(948\) 0 0
\(949\) −9341.64 −0.319539
\(950\) −4842.37 −0.165376
\(951\) 0 0
\(952\) 2324.69 0.0791423
\(953\) −26865.9 −0.913190 −0.456595 0.889675i \(-0.650931\pi\)
−0.456595 + 0.889675i \(0.650931\pi\)
\(954\) 0 0
\(955\) −5923.16 −0.200701
\(956\) −83810.5 −2.83538
\(957\) 0 0
\(958\) −63721.1 −2.14899
\(959\) 17048.9 0.574076
\(960\) 0 0
\(961\) −1145.75 −0.0384595
\(962\) 12702.3 0.425715
\(963\) 0 0
\(964\) −9590.82 −0.320435
\(965\) −32536.5 −1.08537
\(966\) 0 0
\(967\) −1932.19 −0.0642555 −0.0321278 0.999484i \(-0.510228\pi\)
−0.0321278 + 0.999484i \(0.510228\pi\)
\(968\) 3812.63 0.126593
\(969\) 0 0
\(970\) −51714.7 −1.71181
\(971\) −11171.9 −0.369231 −0.184615 0.982811i \(-0.559104\pi\)
−0.184615 + 0.982811i \(0.559104\pi\)
\(972\) 0 0
\(973\) −1363.64 −0.0449294
\(974\) −3289.52 −0.108217
\(975\) 0 0
\(976\) −6671.78 −0.218810
\(977\) −27986.4 −0.916441 −0.458221 0.888839i \(-0.651513\pi\)
−0.458221 + 0.888839i \(0.651513\pi\)
\(978\) 0 0
\(979\) −5522.80 −0.180296
\(980\) 14634.7 0.477028
\(981\) 0 0
\(982\) −6094.79 −0.198058
\(983\) 7580.83 0.245972 0.122986 0.992408i \(-0.460753\pi\)
0.122986 + 0.992408i \(0.460753\pi\)
\(984\) 0 0
\(985\) 73727.1 2.38492
\(986\) 579.559 0.0187190
\(987\) 0 0
\(988\) 479.839 0.0154511
\(989\) 10519.4 0.338219
\(990\) 0 0
\(991\) 19489.4 0.624723 0.312361 0.949963i \(-0.398880\pi\)
0.312361 + 0.949963i \(0.398880\pi\)
\(992\) −16194.6 −0.518326
\(993\) 0 0
\(994\) −488.112 −0.0155754
\(995\) 38407.2 1.22371
\(996\) 0 0
\(997\) 56728.1 1.80200 0.901001 0.433816i \(-0.142833\pi\)
0.901001 + 0.433816i \(0.142833\pi\)
\(998\) 24666.4 0.782365
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.u.1.7 yes 8
3.2 odd 2 693.4.a.r.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.r.1.2 8 3.2 odd 2
693.4.a.u.1.7 yes 8 1.1 even 1 trivial