Properties

Label 693.4.a.u.1.6
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.09275\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.09275 q^{2} +1.56510 q^{4} -0.265436 q^{5} +7.00000 q^{7} -19.9015 q^{8} -0.820927 q^{10} +11.0000 q^{11} +9.99503 q^{13} +21.6492 q^{14} -74.0713 q^{16} +103.685 q^{17} +54.7132 q^{19} -0.415434 q^{20} +34.0202 q^{22} -26.6214 q^{23} -124.930 q^{25} +30.9121 q^{26} +10.9557 q^{28} -17.2658 q^{29} +202.086 q^{31} -69.8716 q^{32} +320.671 q^{34} -1.85805 q^{35} +244.564 q^{37} +169.214 q^{38} +5.28258 q^{40} +306.274 q^{41} +330.565 q^{43} +17.2161 q^{44} -82.3333 q^{46} +74.6534 q^{47} +49.0000 q^{49} -386.376 q^{50} +15.6432 q^{52} +428.190 q^{53} -2.91979 q^{55} -139.311 q^{56} -53.3988 q^{58} -350.175 q^{59} +153.419 q^{61} +625.001 q^{62} +376.475 q^{64} -2.65304 q^{65} +192.673 q^{67} +162.277 q^{68} -5.74649 q^{70} +821.902 q^{71} -727.976 q^{73} +756.376 q^{74} +85.6317 q^{76} +77.0000 q^{77} -410.417 q^{79} +19.6612 q^{80} +947.228 q^{82} -289.538 q^{83} -27.5217 q^{85} +1022.36 q^{86} -218.917 q^{88} -225.713 q^{89} +69.9652 q^{91} -41.6652 q^{92} +230.884 q^{94} -14.5229 q^{95} -420.449 q^{97} +151.545 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 30 q^{4} + 10 q^{5} + 56 q^{7} + 81 q^{8} + 9 q^{10} + 88 q^{11} + 16 q^{13} + 42 q^{14} + 122 q^{16} + 90 q^{17} - 42 q^{19} + 291 q^{20} + 66 q^{22} + 338 q^{23} + 244 q^{25} + 209 q^{26}+ \cdots + 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.09275 1.09345 0.546726 0.837312i \(-0.315874\pi\)
0.546726 + 0.837312i \(0.315874\pi\)
\(3\) 0 0
\(4\) 1.56510 0.195637
\(5\) −0.265436 −0.0237413 −0.0118707 0.999930i \(-0.503779\pi\)
−0.0118707 + 0.999930i \(0.503779\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −19.9015 −0.879532
\(9\) 0 0
\(10\) −0.820927 −0.0259600
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 9.99503 0.213240 0.106620 0.994300i \(-0.465997\pi\)
0.106620 + 0.994300i \(0.465997\pi\)
\(14\) 21.6492 0.413286
\(15\) 0 0
\(16\) −74.0713 −1.15736
\(17\) 103.685 1.47925 0.739626 0.673018i \(-0.235003\pi\)
0.739626 + 0.673018i \(0.235003\pi\)
\(18\) 0 0
\(19\) 54.7132 0.660636 0.330318 0.943870i \(-0.392844\pi\)
0.330318 + 0.943870i \(0.392844\pi\)
\(20\) −0.415434 −0.00464469
\(21\) 0 0
\(22\) 34.0202 0.329688
\(23\) −26.6214 −0.241345 −0.120673 0.992692i \(-0.538505\pi\)
−0.120673 + 0.992692i \(0.538505\pi\)
\(24\) 0 0
\(25\) −124.930 −0.999436
\(26\) 30.9121 0.233168
\(27\) 0 0
\(28\) 10.9557 0.0739440
\(29\) −17.2658 −0.110558 −0.0552790 0.998471i \(-0.517605\pi\)
−0.0552790 + 0.998471i \(0.517605\pi\)
\(30\) 0 0
\(31\) 202.086 1.17083 0.585415 0.810734i \(-0.300932\pi\)
0.585415 + 0.810734i \(0.300932\pi\)
\(32\) −69.8716 −0.385990
\(33\) 0 0
\(34\) 320.671 1.61749
\(35\) −1.85805 −0.00897337
\(36\) 0 0
\(37\) 244.564 1.08665 0.543326 0.839522i \(-0.317165\pi\)
0.543326 + 0.839522i \(0.317165\pi\)
\(38\) 169.214 0.722373
\(39\) 0 0
\(40\) 5.28258 0.0208812
\(41\) 306.274 1.16663 0.583316 0.812245i \(-0.301755\pi\)
0.583316 + 0.812245i \(0.301755\pi\)
\(42\) 0 0
\(43\) 330.565 1.17234 0.586171 0.810187i \(-0.300635\pi\)
0.586171 + 0.810187i \(0.300635\pi\)
\(44\) 17.2161 0.0589869
\(45\) 0 0
\(46\) −82.3333 −0.263900
\(47\) 74.6534 0.231688 0.115844 0.993267i \(-0.463043\pi\)
0.115844 + 0.993267i \(0.463043\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −386.376 −1.09284
\(51\) 0 0
\(52\) 15.6432 0.0417178
\(53\) 428.190 1.10974 0.554872 0.831936i \(-0.312767\pi\)
0.554872 + 0.831936i \(0.312767\pi\)
\(54\) 0 0
\(55\) −2.91979 −0.00715827
\(56\) −139.311 −0.332432
\(57\) 0 0
\(58\) −53.3988 −0.120890
\(59\) −350.175 −0.772694 −0.386347 0.922353i \(-0.626263\pi\)
−0.386347 + 0.922353i \(0.626263\pi\)
\(60\) 0 0
\(61\) 153.419 0.322021 0.161011 0.986953i \(-0.448525\pi\)
0.161011 + 0.986953i \(0.448525\pi\)
\(62\) 625.001 1.28025
\(63\) 0 0
\(64\) 376.475 0.735302
\(65\) −2.65304 −0.00506260
\(66\) 0 0
\(67\) 192.673 0.351325 0.175662 0.984450i \(-0.443793\pi\)
0.175662 + 0.984450i \(0.443793\pi\)
\(68\) 162.277 0.289397
\(69\) 0 0
\(70\) −5.74649 −0.00981195
\(71\) 821.902 1.37383 0.686914 0.726738i \(-0.258965\pi\)
0.686914 + 0.726738i \(0.258965\pi\)
\(72\) 0 0
\(73\) −727.976 −1.16717 −0.583583 0.812053i \(-0.698350\pi\)
−0.583583 + 0.812053i \(0.698350\pi\)
\(74\) 756.376 1.18820
\(75\) 0 0
\(76\) 85.6317 0.129245
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −410.417 −0.584500 −0.292250 0.956342i \(-0.594404\pi\)
−0.292250 + 0.956342i \(0.594404\pi\)
\(80\) 19.6612 0.0274773
\(81\) 0 0
\(82\) 947.228 1.27566
\(83\) −289.538 −0.382903 −0.191451 0.981502i \(-0.561319\pi\)
−0.191451 + 0.981502i \(0.561319\pi\)
\(84\) 0 0
\(85\) −27.5217 −0.0351194
\(86\) 1022.36 1.28190
\(87\) 0 0
\(88\) −218.917 −0.265189
\(89\) −225.713 −0.268826 −0.134413 0.990925i \(-0.542915\pi\)
−0.134413 + 0.990925i \(0.542915\pi\)
\(90\) 0 0
\(91\) 69.9652 0.0805972
\(92\) −41.6652 −0.0472162
\(93\) 0 0
\(94\) 230.884 0.253339
\(95\) −14.5229 −0.0156844
\(96\) 0 0
\(97\) −420.449 −0.440104 −0.220052 0.975488i \(-0.570623\pi\)
−0.220052 + 0.975488i \(0.570623\pi\)
\(98\) 151.545 0.156207
\(99\) 0 0
\(100\) −195.527 −0.195527
\(101\) 746.538 0.735478 0.367739 0.929929i \(-0.380132\pi\)
0.367739 + 0.929929i \(0.380132\pi\)
\(102\) 0 0
\(103\) 497.939 0.476344 0.238172 0.971223i \(-0.423452\pi\)
0.238172 + 0.971223i \(0.423452\pi\)
\(104\) −198.917 −0.187552
\(105\) 0 0
\(106\) 1324.28 1.21345
\(107\) −1070.37 −0.967069 −0.483535 0.875325i \(-0.660647\pi\)
−0.483535 + 0.875325i \(0.660647\pi\)
\(108\) 0 0
\(109\) −854.106 −0.750537 −0.375268 0.926916i \(-0.622449\pi\)
−0.375268 + 0.926916i \(0.622449\pi\)
\(110\) −9.03019 −0.00782723
\(111\) 0 0
\(112\) −518.499 −0.437442
\(113\) 1762.94 1.46764 0.733819 0.679345i \(-0.237736\pi\)
0.733819 + 0.679345i \(0.237736\pi\)
\(114\) 0 0
\(115\) 7.06627 0.00572986
\(116\) −27.0227 −0.0216293
\(117\) 0 0
\(118\) −1083.00 −0.844904
\(119\) 725.794 0.559105
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 474.487 0.352115
\(123\) 0 0
\(124\) 316.285 0.229058
\(125\) 66.3403 0.0474692
\(126\) 0 0
\(127\) −1506.49 −1.05259 −0.526295 0.850302i \(-0.676419\pi\)
−0.526295 + 0.850302i \(0.676419\pi\)
\(128\) 1723.31 1.19001
\(129\) 0 0
\(130\) −8.20519 −0.00553571
\(131\) 2215.23 1.47745 0.738725 0.674007i \(-0.235428\pi\)
0.738725 + 0.674007i \(0.235428\pi\)
\(132\) 0 0
\(133\) 382.993 0.249697
\(134\) 595.890 0.384157
\(135\) 0 0
\(136\) −2063.49 −1.30105
\(137\) 1059.21 0.660546 0.330273 0.943885i \(-0.392859\pi\)
0.330273 + 0.943885i \(0.392859\pi\)
\(138\) 0 0
\(139\) −2088.86 −1.27464 −0.637321 0.770599i \(-0.719957\pi\)
−0.637321 + 0.770599i \(0.719957\pi\)
\(140\) −2.90804 −0.00175553
\(141\) 0 0
\(142\) 2541.94 1.50222
\(143\) 109.945 0.0642944
\(144\) 0 0
\(145\) 4.58297 0.00262479
\(146\) −2251.45 −1.27624
\(147\) 0 0
\(148\) 382.768 0.212590
\(149\) −325.136 −0.178766 −0.0893832 0.995997i \(-0.528490\pi\)
−0.0893832 + 0.995997i \(0.528490\pi\)
\(150\) 0 0
\(151\) 596.206 0.321315 0.160657 0.987010i \(-0.448639\pi\)
0.160657 + 0.987010i \(0.448639\pi\)
\(152\) −1088.88 −0.581050
\(153\) 0 0
\(154\) 238.142 0.124610
\(155\) −53.6409 −0.0277970
\(156\) 0 0
\(157\) 751.800 0.382167 0.191083 0.981574i \(-0.438800\pi\)
0.191083 + 0.981574i \(0.438800\pi\)
\(158\) −1269.32 −0.639122
\(159\) 0 0
\(160\) 18.5464 0.00916390
\(161\) −186.350 −0.0912200
\(162\) 0 0
\(163\) −2174.54 −1.04493 −0.522464 0.852661i \(-0.674987\pi\)
−0.522464 + 0.852661i \(0.674987\pi\)
\(164\) 479.349 0.228237
\(165\) 0 0
\(166\) −895.469 −0.418686
\(167\) 2700.77 1.25145 0.625724 0.780044i \(-0.284803\pi\)
0.625724 + 0.780044i \(0.284803\pi\)
\(168\) 0 0
\(169\) −2097.10 −0.954529
\(170\) −85.1177 −0.0384013
\(171\) 0 0
\(172\) 517.368 0.229354
\(173\) −1937.95 −0.851674 −0.425837 0.904800i \(-0.640020\pi\)
−0.425837 + 0.904800i \(0.640020\pi\)
\(174\) 0 0
\(175\) −874.507 −0.377751
\(176\) −814.784 −0.348958
\(177\) 0 0
\(178\) −698.073 −0.293948
\(179\) −611.101 −0.255172 −0.127586 0.991827i \(-0.540723\pi\)
−0.127586 + 0.991827i \(0.540723\pi\)
\(180\) 0 0
\(181\) −4159.31 −1.70806 −0.854032 0.520221i \(-0.825850\pi\)
−0.854032 + 0.520221i \(0.825850\pi\)
\(182\) 216.385 0.0881292
\(183\) 0 0
\(184\) 529.807 0.212271
\(185\) −64.9161 −0.0257985
\(186\) 0 0
\(187\) 1140.53 0.446011
\(188\) 116.840 0.0453268
\(189\) 0 0
\(190\) −44.9155 −0.0171501
\(191\) 3784.50 1.43370 0.716849 0.697228i \(-0.245583\pi\)
0.716849 + 0.697228i \(0.245583\pi\)
\(192\) 0 0
\(193\) −3453.92 −1.28818 −0.644089 0.764951i \(-0.722763\pi\)
−0.644089 + 0.764951i \(0.722763\pi\)
\(194\) −1300.34 −0.481233
\(195\) 0 0
\(196\) 76.6899 0.0279482
\(197\) −290.349 −0.105008 −0.0525038 0.998621i \(-0.516720\pi\)
−0.0525038 + 0.998621i \(0.516720\pi\)
\(198\) 0 0
\(199\) −3122.45 −1.11229 −0.556143 0.831087i \(-0.687719\pi\)
−0.556143 + 0.831087i \(0.687719\pi\)
\(200\) 2486.29 0.879036
\(201\) 0 0
\(202\) 2308.85 0.804210
\(203\) −120.861 −0.0417870
\(204\) 0 0
\(205\) −81.2960 −0.0276974
\(206\) 1540.00 0.520859
\(207\) 0 0
\(208\) −740.345 −0.246796
\(209\) 601.846 0.199189
\(210\) 0 0
\(211\) 5433.98 1.77294 0.886471 0.462785i \(-0.153150\pi\)
0.886471 + 0.462785i \(0.153150\pi\)
\(212\) 670.160 0.217108
\(213\) 0 0
\(214\) −3310.38 −1.05744
\(215\) −87.7439 −0.0278329
\(216\) 0 0
\(217\) 1414.60 0.442532
\(218\) −2641.54 −0.820676
\(219\) 0 0
\(220\) −4.56977 −0.00140043
\(221\) 1036.33 0.315436
\(222\) 0 0
\(223\) −4360.37 −1.30938 −0.654690 0.755897i \(-0.727201\pi\)
−0.654690 + 0.755897i \(0.727201\pi\)
\(224\) −489.101 −0.145890
\(225\) 0 0
\(226\) 5452.32 1.60479
\(227\) −4239.18 −1.23949 −0.619745 0.784803i \(-0.712764\pi\)
−0.619745 + 0.784803i \(0.712764\pi\)
\(228\) 0 0
\(229\) 490.298 0.141484 0.0707419 0.997495i \(-0.477463\pi\)
0.0707419 + 0.997495i \(0.477463\pi\)
\(230\) 21.8542 0.00626532
\(231\) 0 0
\(232\) 343.616 0.0972393
\(233\) 606.792 0.170610 0.0853052 0.996355i \(-0.472813\pi\)
0.0853052 + 0.996355i \(0.472813\pi\)
\(234\) 0 0
\(235\) −19.8157 −0.00550056
\(236\) −548.059 −0.151168
\(237\) 0 0
\(238\) 2244.70 0.611354
\(239\) −3777.71 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(240\) 0 0
\(241\) 4230.52 1.13075 0.565377 0.824833i \(-0.308731\pi\)
0.565377 + 0.824833i \(0.308731\pi\)
\(242\) 374.223 0.0994047
\(243\) 0 0
\(244\) 240.116 0.0629994
\(245\) −13.0064 −0.00339161
\(246\) 0 0
\(247\) 546.861 0.140874
\(248\) −4021.82 −1.02978
\(249\) 0 0
\(250\) 205.174 0.0519053
\(251\) 1490.76 0.374883 0.187442 0.982276i \(-0.439980\pi\)
0.187442 + 0.982276i \(0.439980\pi\)
\(252\) 0 0
\(253\) −292.835 −0.0727684
\(254\) −4659.18 −1.15096
\(255\) 0 0
\(256\) 2317.98 0.565914
\(257\) −5303.01 −1.28713 −0.643566 0.765391i \(-0.722546\pi\)
−0.643566 + 0.765391i \(0.722546\pi\)
\(258\) 0 0
\(259\) 1711.95 0.410716
\(260\) −4.15227 −0.000990435 0
\(261\) 0 0
\(262\) 6851.16 1.61552
\(263\) 3045.28 0.713992 0.356996 0.934106i \(-0.383801\pi\)
0.356996 + 0.934106i \(0.383801\pi\)
\(264\) 0 0
\(265\) −113.657 −0.0263468
\(266\) 1184.50 0.273031
\(267\) 0 0
\(268\) 301.553 0.0687323
\(269\) 3818.96 0.865598 0.432799 0.901490i \(-0.357526\pi\)
0.432799 + 0.901490i \(0.357526\pi\)
\(270\) 0 0
\(271\) −5898.73 −1.32222 −0.661111 0.750288i \(-0.729915\pi\)
−0.661111 + 0.750288i \(0.729915\pi\)
\(272\) −7680.07 −1.71203
\(273\) 0 0
\(274\) 3275.89 0.722276
\(275\) −1374.22 −0.301341
\(276\) 0 0
\(277\) −2009.89 −0.435966 −0.217983 0.975953i \(-0.569948\pi\)
−0.217983 + 0.975953i \(0.569948\pi\)
\(278\) −6460.34 −1.39376
\(279\) 0 0
\(280\) 36.9781 0.00789236
\(281\) −5431.49 −1.15308 −0.576540 0.817069i \(-0.695598\pi\)
−0.576540 + 0.817069i \(0.695598\pi\)
\(282\) 0 0
\(283\) 3145.14 0.660632 0.330316 0.943870i \(-0.392845\pi\)
0.330316 + 0.943870i \(0.392845\pi\)
\(284\) 1286.36 0.268772
\(285\) 0 0
\(286\) 340.033 0.0703028
\(287\) 2143.92 0.440946
\(288\) 0 0
\(289\) 5837.55 1.18819
\(290\) 14.1740 0.00287008
\(291\) 0 0
\(292\) −1139.35 −0.228341
\(293\) −295.533 −0.0589257 −0.0294628 0.999566i \(-0.509380\pi\)
−0.0294628 + 0.999566i \(0.509380\pi\)
\(294\) 0 0
\(295\) 92.9491 0.0183448
\(296\) −4867.20 −0.955745
\(297\) 0 0
\(298\) −1005.56 −0.195472
\(299\) −266.082 −0.0514646
\(300\) 0 0
\(301\) 2313.96 0.443104
\(302\) 1843.92 0.351342
\(303\) 0 0
\(304\) −4052.68 −0.764596
\(305\) −40.7229 −0.00764520
\(306\) 0 0
\(307\) −7797.26 −1.44955 −0.724777 0.688983i \(-0.758057\pi\)
−0.724777 + 0.688983i \(0.758057\pi\)
\(308\) 120.513 0.0222950
\(309\) 0 0
\(310\) −165.898 −0.0303947
\(311\) −2086.15 −0.380370 −0.190185 0.981748i \(-0.560909\pi\)
−0.190185 + 0.981748i \(0.560909\pi\)
\(312\) 0 0
\(313\) 5866.76 1.05945 0.529727 0.848168i \(-0.322294\pi\)
0.529727 + 0.848168i \(0.322294\pi\)
\(314\) 2325.13 0.417881
\(315\) 0 0
\(316\) −642.343 −0.114350
\(317\) 2415.74 0.428017 0.214008 0.976832i \(-0.431348\pi\)
0.214008 + 0.976832i \(0.431348\pi\)
\(318\) 0 0
\(319\) −189.924 −0.0333345
\(320\) −99.9299 −0.0174570
\(321\) 0 0
\(322\) −576.333 −0.0997447
\(323\) 5672.94 0.977246
\(324\) 0 0
\(325\) −1248.67 −0.213120
\(326\) −6725.32 −1.14258
\(327\) 0 0
\(328\) −6095.32 −1.02609
\(329\) 522.574 0.0875697
\(330\) 0 0
\(331\) 8503.14 1.41201 0.706004 0.708208i \(-0.250496\pi\)
0.706004 + 0.708208i \(0.250496\pi\)
\(332\) −453.156 −0.0749101
\(333\) 0 0
\(334\) 8352.81 1.36840
\(335\) −51.1424 −0.00834091
\(336\) 0 0
\(337\) 10827.2 1.75013 0.875065 0.484005i \(-0.160818\pi\)
0.875065 + 0.484005i \(0.160818\pi\)
\(338\) −6485.80 −1.04373
\(339\) 0 0
\(340\) −43.0742 −0.00687066
\(341\) 2222.95 0.353018
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −6578.76 −1.03111
\(345\) 0 0
\(346\) −5993.59 −0.931265
\(347\) −1384.06 −0.214122 −0.107061 0.994252i \(-0.534144\pi\)
−0.107061 + 0.994252i \(0.534144\pi\)
\(348\) 0 0
\(349\) −3206.52 −0.491808 −0.245904 0.969294i \(-0.579085\pi\)
−0.245904 + 0.969294i \(0.579085\pi\)
\(350\) −2704.63 −0.413053
\(351\) 0 0
\(352\) −768.587 −0.116380
\(353\) 6954.77 1.04863 0.524313 0.851526i \(-0.324322\pi\)
0.524313 + 0.851526i \(0.324322\pi\)
\(354\) 0 0
\(355\) −218.162 −0.0326165
\(356\) −353.263 −0.0525924
\(357\) 0 0
\(358\) −1889.98 −0.279019
\(359\) −356.055 −0.0523450 −0.0261725 0.999657i \(-0.508332\pi\)
−0.0261725 + 0.999657i \(0.508332\pi\)
\(360\) 0 0
\(361\) −3865.46 −0.563561
\(362\) −12863.7 −1.86769
\(363\) 0 0
\(364\) 109.503 0.0157678
\(365\) 193.231 0.0277100
\(366\) 0 0
\(367\) −4952.27 −0.704377 −0.352188 0.935929i \(-0.614562\pi\)
−0.352188 + 0.935929i \(0.614562\pi\)
\(368\) 1971.88 0.279324
\(369\) 0 0
\(370\) −200.769 −0.0282095
\(371\) 2997.33 0.419444
\(372\) 0 0
\(373\) 9467.31 1.31421 0.657103 0.753801i \(-0.271782\pi\)
0.657103 + 0.753801i \(0.271782\pi\)
\(374\) 3527.39 0.487692
\(375\) 0 0
\(376\) −1485.72 −0.203777
\(377\) −172.572 −0.0235754
\(378\) 0 0
\(379\) 1000.34 0.135577 0.0677886 0.997700i \(-0.478406\pi\)
0.0677886 + 0.997700i \(0.478406\pi\)
\(380\) −22.7297 −0.00306845
\(381\) 0 0
\(382\) 11704.5 1.56768
\(383\) −4295.88 −0.573131 −0.286565 0.958061i \(-0.592514\pi\)
−0.286565 + 0.958061i \(0.592514\pi\)
\(384\) 0 0
\(385\) −20.4386 −0.00270557
\(386\) −10682.1 −1.40856
\(387\) 0 0
\(388\) −658.045 −0.0861009
\(389\) 5024.75 0.654923 0.327461 0.944865i \(-0.393807\pi\)
0.327461 + 0.944865i \(0.393807\pi\)
\(390\) 0 0
\(391\) −2760.24 −0.357011
\(392\) −975.175 −0.125647
\(393\) 0 0
\(394\) −897.976 −0.114821
\(395\) 108.939 0.0138768
\(396\) 0 0
\(397\) −666.267 −0.0842292 −0.0421146 0.999113i \(-0.513409\pi\)
−0.0421146 + 0.999113i \(0.513409\pi\)
\(398\) −9656.96 −1.21623
\(399\) 0 0
\(400\) 9253.69 1.15671
\(401\) 15735.7 1.95960 0.979802 0.199970i \(-0.0640845\pi\)
0.979802 + 0.199970i \(0.0640845\pi\)
\(402\) 0 0
\(403\) 2019.86 0.249668
\(404\) 1168.41 0.143887
\(405\) 0 0
\(406\) −373.792 −0.0456921
\(407\) 2690.21 0.327638
\(408\) 0 0
\(409\) −10478.5 −1.26682 −0.633411 0.773815i \(-0.718346\pi\)
−0.633411 + 0.773815i \(0.718346\pi\)
\(410\) −251.428 −0.0302858
\(411\) 0 0
\(412\) 779.324 0.0931907
\(413\) −2451.23 −0.292051
\(414\) 0 0
\(415\) 76.8538 0.00909061
\(416\) −698.369 −0.0823085
\(417\) 0 0
\(418\) 1861.36 0.217804
\(419\) −11046.8 −1.28800 −0.644002 0.765024i \(-0.722727\pi\)
−0.644002 + 0.765024i \(0.722727\pi\)
\(420\) 0 0
\(421\) −15046.5 −1.74186 −0.870930 0.491407i \(-0.836483\pi\)
−0.870930 + 0.491407i \(0.836483\pi\)
\(422\) 16805.9 1.93863
\(423\) 0 0
\(424\) −8521.64 −0.976055
\(425\) −12953.3 −1.47842
\(426\) 0 0
\(427\) 1073.93 0.121713
\(428\) −1675.23 −0.189195
\(429\) 0 0
\(430\) −271.370 −0.0304340
\(431\) 8035.40 0.898032 0.449016 0.893524i \(-0.351775\pi\)
0.449016 + 0.893524i \(0.351775\pi\)
\(432\) 0 0
\(433\) −6726.63 −0.746561 −0.373281 0.927718i \(-0.621767\pi\)
−0.373281 + 0.927718i \(0.621767\pi\)
\(434\) 4375.01 0.483887
\(435\) 0 0
\(436\) −1336.76 −0.146833
\(437\) −1456.54 −0.159441
\(438\) 0 0
\(439\) 12589.0 1.36866 0.684330 0.729172i \(-0.260095\pi\)
0.684330 + 0.729172i \(0.260095\pi\)
\(440\) 58.1084 0.00629593
\(441\) 0 0
\(442\) 3205.12 0.344914
\(443\) 4517.14 0.484460 0.242230 0.970219i \(-0.422121\pi\)
0.242230 + 0.970219i \(0.422121\pi\)
\(444\) 0 0
\(445\) 59.9123 0.00638228
\(446\) −13485.5 −1.43175
\(447\) 0 0
\(448\) 2635.32 0.277918
\(449\) 1555.92 0.163538 0.0817691 0.996651i \(-0.473943\pi\)
0.0817691 + 0.996651i \(0.473943\pi\)
\(450\) 0 0
\(451\) 3369.01 0.351753
\(452\) 2759.17 0.287125
\(453\) 0 0
\(454\) −13110.7 −1.35532
\(455\) −18.5713 −0.00191348
\(456\) 0 0
\(457\) −3321.47 −0.339982 −0.169991 0.985446i \(-0.554374\pi\)
−0.169991 + 0.985446i \(0.554374\pi\)
\(458\) 1516.37 0.154706
\(459\) 0 0
\(460\) 11.0594 0.00112097
\(461\) −6592.03 −0.665990 −0.332995 0.942929i \(-0.608059\pi\)
−0.332995 + 0.942929i \(0.608059\pi\)
\(462\) 0 0
\(463\) 1732.49 0.173900 0.0869498 0.996213i \(-0.472288\pi\)
0.0869498 + 0.996213i \(0.472288\pi\)
\(464\) 1278.90 0.127956
\(465\) 0 0
\(466\) 1876.65 0.186554
\(467\) 13099.9 1.29805 0.649025 0.760767i \(-0.275177\pi\)
0.649025 + 0.760767i \(0.275177\pi\)
\(468\) 0 0
\(469\) 1348.71 0.132788
\(470\) −61.2849 −0.00601460
\(471\) 0 0
\(472\) 6969.03 0.679609
\(473\) 3636.22 0.353475
\(474\) 0 0
\(475\) −6835.30 −0.660263
\(476\) 1135.94 0.109382
\(477\) 0 0
\(478\) −11683.5 −1.11797
\(479\) 9740.59 0.929142 0.464571 0.885536i \(-0.346209\pi\)
0.464571 + 0.885536i \(0.346209\pi\)
\(480\) 0 0
\(481\) 2444.43 0.231718
\(482\) 13083.9 1.23642
\(483\) 0 0
\(484\) 189.377 0.0177852
\(485\) 111.602 0.0104486
\(486\) 0 0
\(487\) −15036.8 −1.39914 −0.699569 0.714565i \(-0.746625\pi\)
−0.699569 + 0.714565i \(0.746625\pi\)
\(488\) −3053.27 −0.283228
\(489\) 0 0
\(490\) −40.2254 −0.00370857
\(491\) −8665.05 −0.796432 −0.398216 0.917292i \(-0.630371\pi\)
−0.398216 + 0.917292i \(0.630371\pi\)
\(492\) 0 0
\(493\) −1790.20 −0.163543
\(494\) 1691.30 0.154039
\(495\) 0 0
\(496\) −14968.8 −1.35508
\(497\) 5753.31 0.519258
\(498\) 0 0
\(499\) 8628.90 0.774113 0.387057 0.922056i \(-0.373492\pi\)
0.387057 + 0.922056i \(0.373492\pi\)
\(500\) 103.829 0.00928676
\(501\) 0 0
\(502\) 4610.54 0.409917
\(503\) −18284.6 −1.62081 −0.810407 0.585867i \(-0.800754\pi\)
−0.810407 + 0.585867i \(0.800754\pi\)
\(504\) 0 0
\(505\) −198.158 −0.0174612
\(506\) −905.667 −0.0795688
\(507\) 0 0
\(508\) −2357.80 −0.205926
\(509\) −8392.39 −0.730818 −0.365409 0.930847i \(-0.619071\pi\)
−0.365409 + 0.930847i \(0.619071\pi\)
\(510\) 0 0
\(511\) −5095.83 −0.441147
\(512\) −6617.58 −0.571208
\(513\) 0 0
\(514\) −16400.9 −1.40742
\(515\) −132.171 −0.0113090
\(516\) 0 0
\(517\) 821.187 0.0698564
\(518\) 5294.63 0.449098
\(519\) 0 0
\(520\) 52.7996 0.00445272
\(521\) 4104.33 0.345132 0.172566 0.984998i \(-0.444794\pi\)
0.172566 + 0.984998i \(0.444794\pi\)
\(522\) 0 0
\(523\) −8847.78 −0.739744 −0.369872 0.929083i \(-0.620598\pi\)
−0.369872 + 0.929083i \(0.620598\pi\)
\(524\) 3467.06 0.289045
\(525\) 0 0
\(526\) 9418.28 0.780716
\(527\) 20953.3 1.73195
\(528\) 0 0
\(529\) −11458.3 −0.941752
\(530\) −351.513 −0.0288089
\(531\) 0 0
\(532\) 599.422 0.0488501
\(533\) 3061.22 0.248773
\(534\) 0 0
\(535\) 284.114 0.0229595
\(536\) −3834.49 −0.309002
\(537\) 0 0
\(538\) 11811.1 0.946490
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 2737.43 0.217544 0.108772 0.994067i \(-0.465308\pi\)
0.108772 + 0.994067i \(0.465308\pi\)
\(542\) −18243.3 −1.44579
\(543\) 0 0
\(544\) −7244.63 −0.570976
\(545\) 226.710 0.0178187
\(546\) 0 0
\(547\) 13191.4 1.03112 0.515562 0.856852i \(-0.327583\pi\)
0.515562 + 0.856852i \(0.327583\pi\)
\(548\) 1657.78 0.129228
\(549\) 0 0
\(550\) −4250.13 −0.329502
\(551\) −944.669 −0.0730385
\(552\) 0 0
\(553\) −2872.92 −0.220920
\(554\) −6216.09 −0.476708
\(555\) 0 0
\(556\) −3269.28 −0.249368
\(557\) 15305.5 1.16430 0.582148 0.813083i \(-0.302212\pi\)
0.582148 + 0.813083i \(0.302212\pi\)
\(558\) 0 0
\(559\) 3304.01 0.249991
\(560\) 137.628 0.0103854
\(561\) 0 0
\(562\) −16798.2 −1.26084
\(563\) 22448.9 1.68048 0.840240 0.542215i \(-0.182414\pi\)
0.840240 + 0.542215i \(0.182414\pi\)
\(564\) 0 0
\(565\) −467.947 −0.0348436
\(566\) 9727.12 0.722370
\(567\) 0 0
\(568\) −16357.1 −1.20833
\(569\) −17400.5 −1.28202 −0.641010 0.767533i \(-0.721484\pi\)
−0.641010 + 0.767533i \(0.721484\pi\)
\(570\) 0 0
\(571\) −7577.54 −0.555359 −0.277680 0.960674i \(-0.589565\pi\)
−0.277680 + 0.960674i \(0.589565\pi\)
\(572\) 172.075 0.0125784
\(573\) 0 0
\(574\) 6630.60 0.482153
\(575\) 3325.80 0.241209
\(576\) 0 0
\(577\) −10215.9 −0.737076 −0.368538 0.929613i \(-0.620141\pi\)
−0.368538 + 0.929613i \(0.620141\pi\)
\(578\) 18054.1 1.29922
\(579\) 0 0
\(580\) 7.17280 0.000513507 0
\(581\) −2026.77 −0.144724
\(582\) 0 0
\(583\) 4710.09 0.334600
\(584\) 14487.8 1.02656
\(585\) 0 0
\(586\) −914.010 −0.0644324
\(587\) 20124.8 1.41506 0.707529 0.706684i \(-0.249810\pi\)
0.707529 + 0.706684i \(0.249810\pi\)
\(588\) 0 0
\(589\) 11056.8 0.773492
\(590\) 287.468 0.0200591
\(591\) 0 0
\(592\) −18115.2 −1.25765
\(593\) 7989.14 0.553246 0.276623 0.960979i \(-0.410785\pi\)
0.276623 + 0.960979i \(0.410785\pi\)
\(594\) 0 0
\(595\) −192.652 −0.0132739
\(596\) −508.870 −0.0349734
\(597\) 0 0
\(598\) −822.924 −0.0562740
\(599\) 19039.3 1.29871 0.649354 0.760486i \(-0.275039\pi\)
0.649354 + 0.760486i \(0.275039\pi\)
\(600\) 0 0
\(601\) 18083.0 1.22732 0.613660 0.789570i \(-0.289697\pi\)
0.613660 + 0.789570i \(0.289697\pi\)
\(602\) 7156.49 0.484513
\(603\) 0 0
\(604\) 933.122 0.0628612
\(605\) −32.1177 −0.00215830
\(606\) 0 0
\(607\) 23374.5 1.56300 0.781501 0.623904i \(-0.214454\pi\)
0.781501 + 0.623904i \(0.214454\pi\)
\(608\) −3822.90 −0.254999
\(609\) 0 0
\(610\) −125.946 −0.00835966
\(611\) 746.163 0.0494051
\(612\) 0 0
\(613\) −4642.72 −0.305902 −0.152951 0.988234i \(-0.548878\pi\)
−0.152951 + 0.988234i \(0.548878\pi\)
\(614\) −24115.0 −1.58502
\(615\) 0 0
\(616\) −1532.42 −0.100232
\(617\) 8757.63 0.571425 0.285712 0.958315i \(-0.407770\pi\)
0.285712 + 0.958315i \(0.407770\pi\)
\(618\) 0 0
\(619\) 25564.1 1.65995 0.829973 0.557804i \(-0.188356\pi\)
0.829973 + 0.557804i \(0.188356\pi\)
\(620\) −83.9533 −0.00543814
\(621\) 0 0
\(622\) −6451.95 −0.415916
\(623\) −1579.99 −0.101607
\(624\) 0 0
\(625\) 15598.6 0.998309
\(626\) 18144.4 1.15846
\(627\) 0 0
\(628\) 1176.64 0.0747662
\(629\) 25357.6 1.60743
\(630\) 0 0
\(631\) 22670.2 1.43025 0.715125 0.698997i \(-0.246370\pi\)
0.715125 + 0.698997i \(0.246370\pi\)
\(632\) 8167.92 0.514086
\(633\) 0 0
\(634\) 7471.27 0.468016
\(635\) 399.875 0.0249899
\(636\) 0 0
\(637\) 489.757 0.0304629
\(638\) −587.387 −0.0364497
\(639\) 0 0
\(640\) −457.430 −0.0282523
\(641\) −22315.5 −1.37505 −0.687527 0.726159i \(-0.741304\pi\)
−0.687527 + 0.726159i \(0.741304\pi\)
\(642\) 0 0
\(643\) −13574.4 −0.832537 −0.416269 0.909242i \(-0.636662\pi\)
−0.416269 + 0.909242i \(0.636662\pi\)
\(644\) −291.656 −0.0178461
\(645\) 0 0
\(646\) 17545.0 1.06857
\(647\) 3251.82 0.197593 0.0987963 0.995108i \(-0.468501\pi\)
0.0987963 + 0.995108i \(0.468501\pi\)
\(648\) 0 0
\(649\) −3851.93 −0.232976
\(650\) −3861.84 −0.233037
\(651\) 0 0
\(652\) −3403.38 −0.204427
\(653\) 15807.3 0.947301 0.473650 0.880713i \(-0.342936\pi\)
0.473650 + 0.880713i \(0.342936\pi\)
\(654\) 0 0
\(655\) −588.002 −0.0350766
\(656\) −22686.1 −1.35022
\(657\) 0 0
\(658\) 1616.19 0.0957532
\(659\) −9703.84 −0.573608 −0.286804 0.957989i \(-0.592593\pi\)
−0.286804 + 0.957989i \(0.592593\pi\)
\(660\) 0 0
\(661\) 15703.5 0.924045 0.462023 0.886868i \(-0.347124\pi\)
0.462023 + 0.886868i \(0.347124\pi\)
\(662\) 26298.1 1.54396
\(663\) 0 0
\(664\) 5762.25 0.336775
\(665\) −101.660 −0.00592813
\(666\) 0 0
\(667\) 459.640 0.0266827
\(668\) 4226.98 0.244830
\(669\) 0 0
\(670\) −158.171 −0.00912039
\(671\) 1687.61 0.0970930
\(672\) 0 0
\(673\) −18844.7 −1.07936 −0.539679 0.841871i \(-0.681455\pi\)
−0.539679 + 0.841871i \(0.681455\pi\)
\(674\) 33485.8 1.91368
\(675\) 0 0
\(676\) −3282.17 −0.186742
\(677\) −34702.5 −1.97005 −0.985027 0.172398i \(-0.944849\pi\)
−0.985027 + 0.172398i \(0.944849\pi\)
\(678\) 0 0
\(679\) −2943.14 −0.166344
\(680\) 547.724 0.0308886
\(681\) 0 0
\(682\) 6875.01 0.386009
\(683\) 10862.7 0.608566 0.304283 0.952582i \(-0.401583\pi\)
0.304283 + 0.952582i \(0.401583\pi\)
\(684\) 0 0
\(685\) −281.154 −0.0156822
\(686\) 1060.81 0.0590409
\(687\) 0 0
\(688\) −24485.4 −1.35683
\(689\) 4279.77 0.236642
\(690\) 0 0
\(691\) 9219.04 0.507538 0.253769 0.967265i \(-0.418330\pi\)
0.253769 + 0.967265i \(0.418330\pi\)
\(692\) −3033.09 −0.166619
\(693\) 0 0
\(694\) −4280.55 −0.234132
\(695\) 554.460 0.0302617
\(696\) 0 0
\(697\) 31756.0 1.72574
\(698\) −9916.95 −0.537768
\(699\) 0 0
\(700\) −1368.69 −0.0739023
\(701\) −29310.7 −1.57925 −0.789623 0.613593i \(-0.789724\pi\)
−0.789623 + 0.613593i \(0.789724\pi\)
\(702\) 0 0
\(703\) 13380.9 0.717881
\(704\) 4141.22 0.221702
\(705\) 0 0
\(706\) 21509.4 1.14662
\(707\) 5225.76 0.277984
\(708\) 0 0
\(709\) −5343.74 −0.283058 −0.141529 0.989934i \(-0.545202\pi\)
−0.141529 + 0.989934i \(0.545202\pi\)
\(710\) −674.721 −0.0356646
\(711\) 0 0
\(712\) 4492.03 0.236441
\(713\) −5379.81 −0.282574
\(714\) 0 0
\(715\) −29.1834 −0.00152643
\(716\) −956.434 −0.0499212
\(717\) 0 0
\(718\) −1101.19 −0.0572367
\(719\) 5699.03 0.295602 0.147801 0.989017i \(-0.452780\pi\)
0.147801 + 0.989017i \(0.452780\pi\)
\(720\) 0 0
\(721\) 3485.57 0.180041
\(722\) −11954.9 −0.616227
\(723\) 0 0
\(724\) −6509.74 −0.334161
\(725\) 2157.01 0.110496
\(726\) 0 0
\(727\) −24538.7 −1.25184 −0.625922 0.779886i \(-0.715277\pi\)
−0.625922 + 0.779886i \(0.715277\pi\)
\(728\) −1392.42 −0.0708878
\(729\) 0 0
\(730\) 597.615 0.0302996
\(731\) 34274.6 1.73419
\(732\) 0 0
\(733\) −941.949 −0.0474648 −0.0237324 0.999718i \(-0.507555\pi\)
−0.0237324 + 0.999718i \(0.507555\pi\)
\(734\) −15316.1 −0.770202
\(735\) 0 0
\(736\) 1860.08 0.0931569
\(737\) 2119.40 0.105928
\(738\) 0 0
\(739\) 7607.30 0.378673 0.189336 0.981912i \(-0.439366\pi\)
0.189336 + 0.981912i \(0.439366\pi\)
\(740\) −101.600 −0.00504716
\(741\) 0 0
\(742\) 9269.99 0.458642
\(743\) 2511.79 0.124023 0.0620113 0.998075i \(-0.480249\pi\)
0.0620113 + 0.998075i \(0.480249\pi\)
\(744\) 0 0
\(745\) 86.3028 0.00424415
\(746\) 29280.0 1.43702
\(747\) 0 0
\(748\) 1785.05 0.0872565
\(749\) −7492.58 −0.365518
\(750\) 0 0
\(751\) 9224.66 0.448219 0.224110 0.974564i \(-0.428053\pi\)
0.224110 + 0.974564i \(0.428053\pi\)
\(752\) −5529.67 −0.268147
\(753\) 0 0
\(754\) −533.723 −0.0257786
\(755\) −158.254 −0.00762843
\(756\) 0 0
\(757\) −20688.3 −0.993301 −0.496650 0.867951i \(-0.665437\pi\)
−0.496650 + 0.867951i \(0.665437\pi\)
\(758\) 3093.79 0.148247
\(759\) 0 0
\(760\) 289.027 0.0137949
\(761\) 3288.15 0.156630 0.0783149 0.996929i \(-0.475046\pi\)
0.0783149 + 0.996929i \(0.475046\pi\)
\(762\) 0 0
\(763\) −5978.74 −0.283676
\(764\) 5923.11 0.280485
\(765\) 0 0
\(766\) −13286.1 −0.626691
\(767\) −3500.01 −0.164769
\(768\) 0 0
\(769\) 26102.9 1.22405 0.612025 0.790838i \(-0.290355\pi\)
0.612025 + 0.790838i \(0.290355\pi\)
\(770\) −63.2113 −0.00295841
\(771\) 0 0
\(772\) −5405.72 −0.252016
\(773\) −9887.03 −0.460041 −0.230020 0.973186i \(-0.573879\pi\)
−0.230020 + 0.973186i \(0.573879\pi\)
\(774\) 0 0
\(775\) −25246.5 −1.17017
\(776\) 8367.58 0.387086
\(777\) 0 0
\(778\) 15540.3 0.716127
\(779\) 16757.2 0.770719
\(780\) 0 0
\(781\) 9040.92 0.414225
\(782\) −8536.72 −0.390374
\(783\) 0 0
\(784\) −3629.49 −0.165338
\(785\) −199.555 −0.00907314
\(786\) 0 0
\(787\) 466.839 0.0211449 0.0105724 0.999944i \(-0.496635\pi\)
0.0105724 + 0.999944i \(0.496635\pi\)
\(788\) −454.425 −0.0205434
\(789\) 0 0
\(790\) 336.922 0.0151736
\(791\) 12340.6 0.554715
\(792\) 0 0
\(793\) 1533.43 0.0686679
\(794\) −2060.60 −0.0921006
\(795\) 0 0
\(796\) −4886.95 −0.217605
\(797\) −26616.2 −1.18293 −0.591463 0.806332i \(-0.701450\pi\)
−0.591463 + 0.806332i \(0.701450\pi\)
\(798\) 0 0
\(799\) 7740.43 0.342724
\(800\) 8729.03 0.385772
\(801\) 0 0
\(802\) 48666.4 2.14273
\(803\) −8007.73 −0.351914
\(804\) 0 0
\(805\) 49.4639 0.00216568
\(806\) 6246.91 0.273000
\(807\) 0 0
\(808\) −14857.2 −0.646876
\(809\) −1509.75 −0.0656118 −0.0328059 0.999462i \(-0.510444\pi\)
−0.0328059 + 0.999462i \(0.510444\pi\)
\(810\) 0 0
\(811\) 34346.1 1.48712 0.743560 0.668669i \(-0.233136\pi\)
0.743560 + 0.668669i \(0.233136\pi\)
\(812\) −189.159 −0.00817510
\(813\) 0 0
\(814\) 8320.14 0.358256
\(815\) 577.202 0.0248080
\(816\) 0 0
\(817\) 18086.3 0.774491
\(818\) −32407.5 −1.38521
\(819\) 0 0
\(820\) −127.236 −0.00541865
\(821\) 8329.63 0.354088 0.177044 0.984203i \(-0.443347\pi\)
0.177044 + 0.984203i \(0.443347\pi\)
\(822\) 0 0
\(823\) 4980.53 0.210948 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(824\) −9909.75 −0.418959
\(825\) 0 0
\(826\) −7581.03 −0.319344
\(827\) 28946.4 1.21713 0.608564 0.793505i \(-0.291746\pi\)
0.608564 + 0.793505i \(0.291746\pi\)
\(828\) 0 0
\(829\) 42927.9 1.79849 0.899244 0.437448i \(-0.144118\pi\)
0.899244 + 0.437448i \(0.144118\pi\)
\(830\) 237.690 0.00994015
\(831\) 0 0
\(832\) 3762.88 0.156796
\(833\) 5080.56 0.211322
\(834\) 0 0
\(835\) −716.881 −0.0297110
\(836\) 941.948 0.0389689
\(837\) 0 0
\(838\) −34165.1 −1.40837
\(839\) −46163.6 −1.89958 −0.949789 0.312892i \(-0.898702\pi\)
−0.949789 + 0.312892i \(0.898702\pi\)
\(840\) 0 0
\(841\) −24090.9 −0.987777
\(842\) −46535.1 −1.90464
\(843\) 0 0
\(844\) 8504.72 0.346854
\(845\) 556.645 0.0226618
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −31716.6 −1.28438
\(849\) 0 0
\(850\) −40061.3 −1.61658
\(851\) −6510.64 −0.262259
\(852\) 0 0
\(853\) −8920.57 −0.358071 −0.179036 0.983843i \(-0.557298\pi\)
−0.179036 + 0.983843i \(0.557298\pi\)
\(854\) 3321.41 0.133087
\(855\) 0 0
\(856\) 21302.0 0.850568
\(857\) −27058.0 −1.07851 −0.539255 0.842143i \(-0.681294\pi\)
−0.539255 + 0.842143i \(0.681294\pi\)
\(858\) 0 0
\(859\) −35857.3 −1.42425 −0.712127 0.702051i \(-0.752268\pi\)
−0.712127 + 0.702051i \(0.752268\pi\)
\(860\) −137.328 −0.00544517
\(861\) 0 0
\(862\) 24851.5 0.981955
\(863\) 14970.4 0.590496 0.295248 0.955421i \(-0.404598\pi\)
0.295248 + 0.955421i \(0.404598\pi\)
\(864\) 0 0
\(865\) 514.401 0.0202199
\(866\) −20803.8 −0.816329
\(867\) 0 0
\(868\) 2213.99 0.0865758
\(869\) −4514.58 −0.176233
\(870\) 0 0
\(871\) 1925.77 0.0749166
\(872\) 16998.0 0.660121
\(873\) 0 0
\(874\) −4504.72 −0.174342
\(875\) 464.382 0.0179417
\(876\) 0 0
\(877\) −19944.6 −0.767939 −0.383970 0.923346i \(-0.625443\pi\)
−0.383970 + 0.923346i \(0.625443\pi\)
\(878\) 38934.8 1.49657
\(879\) 0 0
\(880\) 216.273 0.00828472
\(881\) −7898.52 −0.302052 −0.151026 0.988530i \(-0.548258\pi\)
−0.151026 + 0.988530i \(0.548258\pi\)
\(882\) 0 0
\(883\) −33545.0 −1.27846 −0.639230 0.769015i \(-0.720747\pi\)
−0.639230 + 0.769015i \(0.720747\pi\)
\(884\) 1621.97 0.0617111
\(885\) 0 0
\(886\) 13970.4 0.529734
\(887\) −8631.55 −0.326741 −0.163370 0.986565i \(-0.552237\pi\)
−0.163370 + 0.986565i \(0.552237\pi\)
\(888\) 0 0
\(889\) −10545.4 −0.397842
\(890\) 185.294 0.00697872
\(891\) 0 0
\(892\) −6824.41 −0.256164
\(893\) 4084.53 0.153061
\(894\) 0 0
\(895\) 162.208 0.00605812
\(896\) 12063.2 0.449781
\(897\) 0 0
\(898\) 4812.09 0.178821
\(899\) −3489.18 −0.129445
\(900\) 0 0
\(901\) 44396.8 1.64159
\(902\) 10419.5 0.384625
\(903\) 0 0
\(904\) −35085.1 −1.29083
\(905\) 1104.03 0.0405516
\(906\) 0 0
\(907\) −2906.82 −0.106416 −0.0532081 0.998583i \(-0.516945\pi\)
−0.0532081 + 0.998583i \(0.516945\pi\)
\(908\) −6634.74 −0.242491
\(909\) 0 0
\(910\) −57.4363 −0.00209230
\(911\) −38038.4 −1.38339 −0.691695 0.722190i \(-0.743136\pi\)
−0.691695 + 0.722190i \(0.743136\pi\)
\(912\) 0 0
\(913\) −3184.92 −0.115450
\(914\) −10272.5 −0.371754
\(915\) 0 0
\(916\) 767.365 0.0276795
\(917\) 15506.6 0.558423
\(918\) 0 0
\(919\) −23128.8 −0.830194 −0.415097 0.909777i \(-0.636252\pi\)
−0.415097 + 0.909777i \(0.636252\pi\)
\(920\) −140.630 −0.00503959
\(921\) 0 0
\(922\) −20387.5 −0.728228
\(923\) 8214.94 0.292956
\(924\) 0 0
\(925\) −30553.3 −1.08604
\(926\) 5358.15 0.190151
\(927\) 0 0
\(928\) 1206.39 0.0426742
\(929\) −16204.2 −0.572272 −0.286136 0.958189i \(-0.592371\pi\)
−0.286136 + 0.958189i \(0.592371\pi\)
\(930\) 0 0
\(931\) 2680.95 0.0943765
\(932\) 949.689 0.0333778
\(933\) 0 0
\(934\) 40514.6 1.41936
\(935\) −302.739 −0.0105889
\(936\) 0 0
\(937\) −12976.0 −0.452411 −0.226205 0.974080i \(-0.572632\pi\)
−0.226205 + 0.974080i \(0.572632\pi\)
\(938\) 4171.23 0.145198
\(939\) 0 0
\(940\) −31.0135 −0.00107612
\(941\) −16607.5 −0.575332 −0.287666 0.957731i \(-0.592879\pi\)
−0.287666 + 0.957731i \(0.592879\pi\)
\(942\) 0 0
\(943\) −8153.44 −0.281561
\(944\) 25937.9 0.894288
\(945\) 0 0
\(946\) 11245.9 0.386508
\(947\) −89.1281 −0.00305837 −0.00152918 0.999999i \(-0.500487\pi\)
−0.00152918 + 0.999999i \(0.500487\pi\)
\(948\) 0 0
\(949\) −7276.14 −0.248887
\(950\) −21139.9 −0.721966
\(951\) 0 0
\(952\) −14444.4 −0.491750
\(953\) −7262.60 −0.246861 −0.123431 0.992353i \(-0.539390\pi\)
−0.123431 + 0.992353i \(0.539390\pi\)
\(954\) 0 0
\(955\) −1004.54 −0.0340379
\(956\) −5912.49 −0.200025
\(957\) 0 0
\(958\) 30125.2 1.01597
\(959\) 7414.50 0.249663
\(960\) 0 0
\(961\) 11047.7 0.370841
\(962\) 7560.00 0.253372
\(963\) 0 0
\(964\) 6621.18 0.221218
\(965\) 916.793 0.0305830
\(966\) 0 0
\(967\) 3728.05 0.123977 0.0619887 0.998077i \(-0.480256\pi\)
0.0619887 + 0.998077i \(0.480256\pi\)
\(968\) −2408.09 −0.0799574
\(969\) 0 0
\(970\) 345.158 0.0114251
\(971\) −49516.3 −1.63651 −0.818257 0.574853i \(-0.805059\pi\)
−0.818257 + 0.574853i \(0.805059\pi\)
\(972\) 0 0
\(973\) −14622.1 −0.481769
\(974\) −46504.9 −1.52989
\(975\) 0 0
\(976\) −11363.9 −0.372696
\(977\) −12131.7 −0.397263 −0.198632 0.980074i \(-0.563650\pi\)
−0.198632 + 0.980074i \(0.563650\pi\)
\(978\) 0 0
\(979\) −2482.84 −0.0810541
\(980\) −20.3562 −0.000663527 0
\(981\) 0 0
\(982\) −26798.8 −0.870861
\(983\) −29373.7 −0.953078 −0.476539 0.879153i \(-0.658109\pi\)
−0.476539 + 0.879153i \(0.658109\pi\)
\(984\) 0 0
\(985\) 77.0689 0.00249302
\(986\) −5536.65 −0.178827
\(987\) 0 0
\(988\) 855.892 0.0275603
\(989\) −8800.11 −0.282940
\(990\) 0 0
\(991\) 6116.66 0.196067 0.0980334 0.995183i \(-0.468745\pi\)
0.0980334 + 0.995183i \(0.468745\pi\)
\(992\) −14120.1 −0.451928
\(993\) 0 0
\(994\) 17793.6 0.567784
\(995\) 828.811 0.0264071
\(996\) 0 0
\(997\) 27054.2 0.859392 0.429696 0.902974i \(-0.358621\pi\)
0.429696 + 0.902974i \(0.358621\pi\)
\(998\) 26687.0 0.846456
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.u.1.6 yes 8
3.2 odd 2 693.4.a.r.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.r.1.3 8 3.2 odd 2
693.4.a.u.1.6 yes 8 1.1 even 1 trivial