Properties

Label 693.4.a.u.1.3
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.94273\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.94273 q^{2} -4.22579 q^{4} -4.10121 q^{5} +7.00000 q^{7} +23.7514 q^{8} +O(q^{10})\) \(q-1.94273 q^{2} -4.22579 q^{4} -4.10121 q^{5} +7.00000 q^{7} +23.7514 q^{8} +7.96756 q^{10} +11.0000 q^{11} +71.7277 q^{13} -13.5991 q^{14} -12.3363 q^{16} +79.3194 q^{17} -159.920 q^{19} +17.3309 q^{20} -21.3701 q^{22} -137.959 q^{23} -108.180 q^{25} -139.348 q^{26} -29.5805 q^{28} +72.2721 q^{29} +235.611 q^{31} -166.045 q^{32} -154.096 q^{34} -28.7085 q^{35} -236.396 q^{37} +310.681 q^{38} -97.4097 q^{40} -147.737 q^{41} -147.130 q^{43} -46.4837 q^{44} +268.018 q^{46} +538.615 q^{47} +49.0000 q^{49} +210.165 q^{50} -303.106 q^{52} +571.743 q^{53} -45.1133 q^{55} +166.260 q^{56} -140.405 q^{58} +749.305 q^{59} -758.200 q^{61} -457.729 q^{62} +421.272 q^{64} -294.171 q^{65} -40.4747 q^{67} -335.187 q^{68} +55.7729 q^{70} -131.133 q^{71} +238.274 q^{73} +459.255 q^{74} +675.787 q^{76} +77.0000 q^{77} +588.655 q^{79} +50.5940 q^{80} +287.013 q^{82} +481.542 q^{83} -325.306 q^{85} +285.833 q^{86} +261.266 q^{88} +1368.29 q^{89} +502.094 q^{91} +582.988 q^{92} -1046.39 q^{94} +655.865 q^{95} -667.821 q^{97} -95.1939 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 30 q^{4} + 10 q^{5} + 56 q^{7} + 81 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 6 q^{2} + 30 q^{4} + 10 q^{5} + 56 q^{7} + 81 q^{8} + 9 q^{10} + 88 q^{11} + 16 q^{13} + 42 q^{14} + 122 q^{16} + 90 q^{17} - 42 q^{19} + 291 q^{20} + 66 q^{22} + 338 q^{23} + 244 q^{25} + 209 q^{26} + 210 q^{28} + 496 q^{29} - 8 q^{31} + 524 q^{32} - 302 q^{34} + 70 q^{35} - 360 q^{37} + 45 q^{38} - 6 q^{40} + 242 q^{41} - 66 q^{43} + 330 q^{44} + 344 q^{46} + 540 q^{47} + 392 q^{49} + 1171 q^{50} + 465 q^{52} + 906 q^{53} + 110 q^{55} + 567 q^{56} + 977 q^{58} + 1242 q^{59} - 318 q^{61} - 110 q^{62} + 525 q^{64} + 1258 q^{65} + 522 q^{67} + 678 q^{68} + 63 q^{70} + 858 q^{71} - 78 q^{73} + 1651 q^{74} + 1775 q^{76} + 616 q^{77} + 516 q^{79} + 567 q^{80} - 1212 q^{82} + 3192 q^{83} + 720 q^{85} + 1322 q^{86} + 891 q^{88} + 2356 q^{89} + 112 q^{91} + 4504 q^{92} - 423 q^{94} + 3308 q^{95} - 1556 q^{97} + 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.94273 −0.686860 −0.343430 0.939178i \(-0.611589\pi\)
−0.343430 + 0.939178i \(0.611589\pi\)
\(3\) 0 0
\(4\) −4.22579 −0.528224
\(5\) −4.10121 −0.366824 −0.183412 0.983036i \(-0.558714\pi\)
−0.183412 + 0.983036i \(0.558714\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 23.7514 1.04968
\(9\) 0 0
\(10\) 7.96756 0.251956
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 71.7277 1.53028 0.765142 0.643862i \(-0.222669\pi\)
0.765142 + 0.643862i \(0.222669\pi\)
\(14\) −13.5991 −0.259608
\(15\) 0 0
\(16\) −12.3363 −0.192755
\(17\) 79.3194 1.13163 0.565817 0.824531i \(-0.308561\pi\)
0.565817 + 0.824531i \(0.308561\pi\)
\(18\) 0 0
\(19\) −159.920 −1.93095 −0.965476 0.260492i \(-0.916115\pi\)
−0.965476 + 0.260492i \(0.916115\pi\)
\(20\) 17.3309 0.193765
\(21\) 0 0
\(22\) −21.3701 −0.207096
\(23\) −137.959 −1.25072 −0.625360 0.780337i \(-0.715048\pi\)
−0.625360 + 0.780337i \(0.715048\pi\)
\(24\) 0 0
\(25\) −108.180 −0.865440
\(26\) −139.348 −1.05109
\(27\) 0 0
\(28\) −29.5805 −0.199650
\(29\) 72.2721 0.462779 0.231389 0.972861i \(-0.425673\pi\)
0.231389 + 0.972861i \(0.425673\pi\)
\(30\) 0 0
\(31\) 235.611 1.36506 0.682532 0.730855i \(-0.260879\pi\)
0.682532 + 0.730855i \(0.260879\pi\)
\(32\) −166.045 −0.917279
\(33\) 0 0
\(34\) −154.096 −0.777273
\(35\) −28.7085 −0.138646
\(36\) 0 0
\(37\) −236.396 −1.05036 −0.525180 0.850991i \(-0.676002\pi\)
−0.525180 + 0.850991i \(0.676002\pi\)
\(38\) 310.681 1.32629
\(39\) 0 0
\(40\) −97.4097 −0.385046
\(41\) −147.737 −0.562747 −0.281373 0.959598i \(-0.590790\pi\)
−0.281373 + 0.959598i \(0.590790\pi\)
\(42\) 0 0
\(43\) −147.130 −0.521792 −0.260896 0.965367i \(-0.584018\pi\)
−0.260896 + 0.965367i \(0.584018\pi\)
\(44\) −46.4837 −0.159266
\(45\) 0 0
\(46\) 268.018 0.859068
\(47\) 538.615 1.67160 0.835799 0.549035i \(-0.185005\pi\)
0.835799 + 0.549035i \(0.185005\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 210.165 0.594436
\(51\) 0 0
\(52\) −303.106 −0.808333
\(53\) 571.743 1.48179 0.740896 0.671620i \(-0.234401\pi\)
0.740896 + 0.671620i \(0.234401\pi\)
\(54\) 0 0
\(55\) −45.1133 −0.110601
\(56\) 166.260 0.396740
\(57\) 0 0
\(58\) −140.405 −0.317864
\(59\) 749.305 1.65341 0.826705 0.562636i \(-0.190213\pi\)
0.826705 + 0.562636i \(0.190213\pi\)
\(60\) 0 0
\(61\) −758.200 −1.59144 −0.795718 0.605668i \(-0.792906\pi\)
−0.795718 + 0.605668i \(0.792906\pi\)
\(62\) −457.729 −0.937608
\(63\) 0 0
\(64\) 421.272 0.822797
\(65\) −294.171 −0.561344
\(66\) 0 0
\(67\) −40.4747 −0.0738026 −0.0369013 0.999319i \(-0.511749\pi\)
−0.0369013 + 0.999319i \(0.511749\pi\)
\(68\) −335.187 −0.597756
\(69\) 0 0
\(70\) 55.7729 0.0952305
\(71\) −131.133 −0.219192 −0.109596 0.993976i \(-0.534956\pi\)
−0.109596 + 0.993976i \(0.534956\pi\)
\(72\) 0 0
\(73\) 238.274 0.382026 0.191013 0.981588i \(-0.438823\pi\)
0.191013 + 0.981588i \(0.438823\pi\)
\(74\) 459.255 0.721450
\(75\) 0 0
\(76\) 675.787 1.01998
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 588.655 0.838339 0.419170 0.907908i \(-0.362321\pi\)
0.419170 + 0.907908i \(0.362321\pi\)
\(80\) 50.5940 0.0707072
\(81\) 0 0
\(82\) 287.013 0.386528
\(83\) 481.542 0.636820 0.318410 0.947953i \(-0.396851\pi\)
0.318410 + 0.947953i \(0.396851\pi\)
\(84\) 0 0
\(85\) −325.306 −0.415110
\(86\) 285.833 0.358398
\(87\) 0 0
\(88\) 261.266 0.316489
\(89\) 1368.29 1.62965 0.814823 0.579710i \(-0.196834\pi\)
0.814823 + 0.579710i \(0.196834\pi\)
\(90\) 0 0
\(91\) 502.094 0.578393
\(92\) 582.988 0.660660
\(93\) 0 0
\(94\) −1046.39 −1.14815
\(95\) 655.865 0.708319
\(96\) 0 0
\(97\) −667.821 −0.699040 −0.349520 0.936929i \(-0.613655\pi\)
−0.349520 + 0.936929i \(0.613655\pi\)
\(98\) −95.1939 −0.0981228
\(99\) 0 0
\(100\) 457.146 0.457146
\(101\) −801.092 −0.789224 −0.394612 0.918848i \(-0.629121\pi\)
−0.394612 + 0.918848i \(0.629121\pi\)
\(102\) 0 0
\(103\) −301.925 −0.288831 −0.144415 0.989517i \(-0.546130\pi\)
−0.144415 + 0.989517i \(0.546130\pi\)
\(104\) 1703.64 1.60630
\(105\) 0 0
\(106\) −1110.74 −1.01778
\(107\) 1637.95 1.47988 0.739938 0.672675i \(-0.234855\pi\)
0.739938 + 0.672675i \(0.234855\pi\)
\(108\) 0 0
\(109\) 459.430 0.403719 0.201860 0.979414i \(-0.435302\pi\)
0.201860 + 0.979414i \(0.435302\pi\)
\(110\) 87.6431 0.0759677
\(111\) 0 0
\(112\) −86.3544 −0.0728547
\(113\) −1598.23 −1.33052 −0.665262 0.746610i \(-0.731680\pi\)
−0.665262 + 0.746610i \(0.731680\pi\)
\(114\) 0 0
\(115\) 565.801 0.458793
\(116\) −305.407 −0.244451
\(117\) 0 0
\(118\) −1455.70 −1.13566
\(119\) 555.236 0.427717
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1472.98 1.09309
\(123\) 0 0
\(124\) −995.644 −0.721060
\(125\) 956.321 0.684288
\(126\) 0 0
\(127\) 39.2165 0.0274008 0.0137004 0.999906i \(-0.495639\pi\)
0.0137004 + 0.999906i \(0.495639\pi\)
\(128\) 509.943 0.352133
\(129\) 0 0
\(130\) 571.495 0.385565
\(131\) 822.089 0.548292 0.274146 0.961688i \(-0.411605\pi\)
0.274146 + 0.961688i \(0.411605\pi\)
\(132\) 0 0
\(133\) −1119.44 −0.729831
\(134\) 78.6315 0.0506920
\(135\) 0 0
\(136\) 1883.95 1.18785
\(137\) −2913.27 −1.81677 −0.908384 0.418137i \(-0.862683\pi\)
−0.908384 + 0.418137i \(0.862683\pi\)
\(138\) 0 0
\(139\) 772.680 0.471496 0.235748 0.971814i \(-0.424246\pi\)
0.235748 + 0.971814i \(0.424246\pi\)
\(140\) 121.316 0.0732363
\(141\) 0 0
\(142\) 254.756 0.150554
\(143\) 789.005 0.461398
\(144\) 0 0
\(145\) −296.403 −0.169758
\(146\) −462.903 −0.262398
\(147\) 0 0
\(148\) 998.961 0.554825
\(149\) 2396.19 1.31747 0.658736 0.752374i \(-0.271092\pi\)
0.658736 + 0.752374i \(0.271092\pi\)
\(150\) 0 0
\(151\) 1679.18 0.904968 0.452484 0.891773i \(-0.350538\pi\)
0.452484 + 0.891773i \(0.350538\pi\)
\(152\) −3798.32 −2.02687
\(153\) 0 0
\(154\) −149.590 −0.0782749
\(155\) −966.291 −0.500738
\(156\) 0 0
\(157\) 2960.94 1.50515 0.752576 0.658505i \(-0.228811\pi\)
0.752576 + 0.658505i \(0.228811\pi\)
\(158\) −1143.60 −0.575821
\(159\) 0 0
\(160\) 680.987 0.336480
\(161\) −965.716 −0.472727
\(162\) 0 0
\(163\) −731.153 −0.351339 −0.175670 0.984449i \(-0.556209\pi\)
−0.175670 + 0.984449i \(0.556209\pi\)
\(164\) 624.305 0.297256
\(165\) 0 0
\(166\) −935.507 −0.437406
\(167\) −425.782 −0.197293 −0.0986466 0.995123i \(-0.531451\pi\)
−0.0986466 + 0.995123i \(0.531451\pi\)
\(168\) 0 0
\(169\) 2947.87 1.34177
\(170\) 631.982 0.285122
\(171\) 0 0
\(172\) 621.739 0.275623
\(173\) −492.101 −0.216264 −0.108132 0.994137i \(-0.534487\pi\)
−0.108132 + 0.994137i \(0.534487\pi\)
\(174\) 0 0
\(175\) −757.260 −0.327106
\(176\) −135.700 −0.0581179
\(177\) 0 0
\(178\) −2658.22 −1.11934
\(179\) 4034.94 1.68483 0.842417 0.538826i \(-0.181132\pi\)
0.842417 + 0.538826i \(0.181132\pi\)
\(180\) 0 0
\(181\) 1468.55 0.603076 0.301538 0.953454i \(-0.402500\pi\)
0.301538 + 0.953454i \(0.402500\pi\)
\(182\) −975.434 −0.397275
\(183\) 0 0
\(184\) −3276.74 −1.31285
\(185\) 969.511 0.385297
\(186\) 0 0
\(187\) 872.513 0.341200
\(188\) −2276.08 −0.882979
\(189\) 0 0
\(190\) −1274.17 −0.486515
\(191\) 4914.52 1.86179 0.930895 0.365286i \(-0.119029\pi\)
0.930895 + 0.365286i \(0.119029\pi\)
\(192\) 0 0
\(193\) 4625.39 1.72509 0.862547 0.505977i \(-0.168868\pi\)
0.862547 + 0.505977i \(0.168868\pi\)
\(194\) 1297.40 0.480143
\(195\) 0 0
\(196\) −207.064 −0.0754606
\(197\) 2997.37 1.08403 0.542015 0.840369i \(-0.317662\pi\)
0.542015 + 0.840369i \(0.317662\pi\)
\(198\) 0 0
\(199\) 1324.74 0.471902 0.235951 0.971765i \(-0.424179\pi\)
0.235951 + 0.971765i \(0.424179\pi\)
\(200\) −2569.43 −0.908431
\(201\) 0 0
\(202\) 1556.31 0.542086
\(203\) 505.904 0.174914
\(204\) 0 0
\(205\) 605.900 0.206429
\(206\) 586.560 0.198386
\(207\) 0 0
\(208\) −884.858 −0.294970
\(209\) −1759.12 −0.582204
\(210\) 0 0
\(211\) −4781.25 −1.55998 −0.779988 0.625795i \(-0.784775\pi\)
−0.779988 + 0.625795i \(0.784775\pi\)
\(212\) −2416.07 −0.782718
\(213\) 0 0
\(214\) −3182.10 −1.01647
\(215\) 603.409 0.191405
\(216\) 0 0
\(217\) 1649.28 0.515946
\(218\) −892.549 −0.277298
\(219\) 0 0
\(220\) 190.640 0.0584224
\(221\) 5689.40 1.73172
\(222\) 0 0
\(223\) 4897.49 1.47067 0.735337 0.677702i \(-0.237024\pi\)
0.735337 + 0.677702i \(0.237024\pi\)
\(224\) −1162.32 −0.346699
\(225\) 0 0
\(226\) 3104.94 0.913883
\(227\) −4710.24 −1.37722 −0.688611 0.725131i \(-0.741779\pi\)
−0.688611 + 0.725131i \(0.741779\pi\)
\(228\) 0 0
\(229\) 4740.56 1.36797 0.683985 0.729496i \(-0.260245\pi\)
0.683985 + 0.729496i \(0.260245\pi\)
\(230\) −1099.20 −0.315127
\(231\) 0 0
\(232\) 1716.57 0.485767
\(233\) −2907.39 −0.817465 −0.408733 0.912654i \(-0.634029\pi\)
−0.408733 + 0.912654i \(0.634029\pi\)
\(234\) 0 0
\(235\) −2208.98 −0.613182
\(236\) −3166.41 −0.873371
\(237\) 0 0
\(238\) −1078.67 −0.293782
\(239\) −2771.48 −0.750092 −0.375046 0.927006i \(-0.622373\pi\)
−0.375046 + 0.927006i \(0.622373\pi\)
\(240\) 0 0
\(241\) −2109.36 −0.563801 −0.281901 0.959444i \(-0.590965\pi\)
−0.281901 + 0.959444i \(0.590965\pi\)
\(242\) −235.071 −0.0624418
\(243\) 0 0
\(244\) 3204.00 0.840634
\(245\) −200.959 −0.0524034
\(246\) 0 0
\(247\) −11470.7 −2.95490
\(248\) 5596.10 1.43287
\(249\) 0 0
\(250\) −1857.88 −0.470009
\(251\) −2244.35 −0.564391 −0.282195 0.959357i \(-0.591063\pi\)
−0.282195 + 0.959357i \(0.591063\pi\)
\(252\) 0 0
\(253\) −1517.55 −0.377106
\(254\) −76.1872 −0.0188205
\(255\) 0 0
\(256\) −4360.86 −1.06466
\(257\) −3583.91 −0.869877 −0.434938 0.900460i \(-0.643230\pi\)
−0.434938 + 0.900460i \(0.643230\pi\)
\(258\) 0 0
\(259\) −1654.77 −0.396999
\(260\) 1243.10 0.296515
\(261\) 0 0
\(262\) −1597.10 −0.376600
\(263\) −1865.86 −0.437467 −0.218734 0.975785i \(-0.570193\pi\)
−0.218734 + 0.975785i \(0.570193\pi\)
\(264\) 0 0
\(265\) −2344.84 −0.543556
\(266\) 2174.77 0.501292
\(267\) 0 0
\(268\) 171.038 0.0389843
\(269\) 1277.50 0.289555 0.144778 0.989464i \(-0.453753\pi\)
0.144778 + 0.989464i \(0.453753\pi\)
\(270\) 0 0
\(271\) 1314.40 0.294628 0.147314 0.989090i \(-0.452937\pi\)
0.147314 + 0.989090i \(0.452937\pi\)
\(272\) −978.511 −0.218129
\(273\) 0 0
\(274\) 5659.70 1.24786
\(275\) −1189.98 −0.260940
\(276\) 0 0
\(277\) −5015.84 −1.08799 −0.543994 0.839089i \(-0.683089\pi\)
−0.543994 + 0.839089i \(0.683089\pi\)
\(278\) −1501.11 −0.323851
\(279\) 0 0
\(280\) −681.868 −0.145534
\(281\) −318.428 −0.0676009 −0.0338004 0.999429i \(-0.510761\pi\)
−0.0338004 + 0.999429i \(0.510761\pi\)
\(282\) 0 0
\(283\) 4911.16 1.03158 0.515792 0.856714i \(-0.327498\pi\)
0.515792 + 0.856714i \(0.327498\pi\)
\(284\) 554.140 0.115782
\(285\) 0 0
\(286\) −1532.83 −0.316916
\(287\) −1034.16 −0.212698
\(288\) 0 0
\(289\) 1378.56 0.280595
\(290\) 575.832 0.116600
\(291\) 0 0
\(292\) −1006.90 −0.201795
\(293\) 3488.46 0.695557 0.347778 0.937577i \(-0.386936\pi\)
0.347778 + 0.937577i \(0.386936\pi\)
\(294\) 0 0
\(295\) −3073.06 −0.606510
\(296\) −5614.75 −1.10254
\(297\) 0 0
\(298\) −4655.15 −0.904918
\(299\) −9895.52 −1.91396
\(300\) 0 0
\(301\) −1029.91 −0.197219
\(302\) −3262.21 −0.621586
\(303\) 0 0
\(304\) 1972.82 0.372201
\(305\) 3109.54 0.583776
\(306\) 0 0
\(307\) 4511.48 0.838710 0.419355 0.907822i \(-0.362256\pi\)
0.419355 + 0.907822i \(0.362256\pi\)
\(308\) −325.386 −0.0601967
\(309\) 0 0
\(310\) 1877.25 0.343937
\(311\) 562.319 0.102528 0.0512640 0.998685i \(-0.483675\pi\)
0.0512640 + 0.998685i \(0.483675\pi\)
\(312\) 0 0
\(313\) −3380.05 −0.610388 −0.305194 0.952290i \(-0.598721\pi\)
−0.305194 + 0.952290i \(0.598721\pi\)
\(314\) −5752.32 −1.03383
\(315\) 0 0
\(316\) −2487.53 −0.442831
\(317\) 4074.85 0.721975 0.360988 0.932571i \(-0.382440\pi\)
0.360988 + 0.932571i \(0.382440\pi\)
\(318\) 0 0
\(319\) 794.993 0.139533
\(320\) −1727.73 −0.301822
\(321\) 0 0
\(322\) 1876.13 0.324697
\(323\) −12684.7 −2.18513
\(324\) 0 0
\(325\) −7759.51 −1.32437
\(326\) 1420.43 0.241321
\(327\) 0 0
\(328\) −3508.96 −0.590701
\(329\) 3770.31 0.631805
\(330\) 0 0
\(331\) −5539.37 −0.919853 −0.459926 0.887957i \(-0.652124\pi\)
−0.459926 + 0.887957i \(0.652124\pi\)
\(332\) −2034.90 −0.336384
\(333\) 0 0
\(334\) 827.180 0.135513
\(335\) 165.995 0.0270725
\(336\) 0 0
\(337\) −749.792 −0.121198 −0.0605990 0.998162i \(-0.519301\pi\)
−0.0605990 + 0.998162i \(0.519301\pi\)
\(338\) −5726.91 −0.921607
\(339\) 0 0
\(340\) 1374.67 0.219271
\(341\) 2591.72 0.411583
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −3494.54 −0.547712
\(345\) 0 0
\(346\) 956.020 0.148543
\(347\) −6660.32 −1.03039 −0.515194 0.857074i \(-0.672280\pi\)
−0.515194 + 0.857074i \(0.672280\pi\)
\(348\) 0 0
\(349\) 12085.7 1.85368 0.926841 0.375455i \(-0.122513\pi\)
0.926841 + 0.375455i \(0.122513\pi\)
\(350\) 1471.15 0.224676
\(351\) 0 0
\(352\) −1826.50 −0.276570
\(353\) 3173.90 0.478554 0.239277 0.970951i \(-0.423090\pi\)
0.239277 + 0.970951i \(0.423090\pi\)
\(354\) 0 0
\(355\) 537.804 0.0804047
\(356\) −5782.11 −0.860818
\(357\) 0 0
\(358\) −7838.80 −1.15724
\(359\) 10519.4 1.54649 0.773246 0.634107i \(-0.218632\pi\)
0.773246 + 0.634107i \(0.218632\pi\)
\(360\) 0 0
\(361\) 18715.3 2.72858
\(362\) −2853.01 −0.414228
\(363\) 0 0
\(364\) −2121.74 −0.305521
\(365\) −977.213 −0.140136
\(366\) 0 0
\(367\) −1117.72 −0.158977 −0.0794884 0.996836i \(-0.525329\pi\)
−0.0794884 + 0.996836i \(0.525329\pi\)
\(368\) 1701.92 0.241083
\(369\) 0 0
\(370\) −1883.50 −0.264645
\(371\) 4002.20 0.560064
\(372\) 0 0
\(373\) 5063.48 0.702887 0.351444 0.936209i \(-0.385691\pi\)
0.351444 + 0.936209i \(0.385691\pi\)
\(374\) −1695.06 −0.234357
\(375\) 0 0
\(376\) 12792.9 1.75464
\(377\) 5183.91 0.708183
\(378\) 0 0
\(379\) 7008.77 0.949912 0.474956 0.880010i \(-0.342464\pi\)
0.474956 + 0.880010i \(0.342464\pi\)
\(380\) −2771.55 −0.374151
\(381\) 0 0
\(382\) −9547.59 −1.27879
\(383\) 3726.73 0.497199 0.248599 0.968606i \(-0.420030\pi\)
0.248599 + 0.968606i \(0.420030\pi\)
\(384\) 0 0
\(385\) −315.793 −0.0418034
\(386\) −8985.90 −1.18490
\(387\) 0 0
\(388\) 2822.07 0.369250
\(389\) −5041.12 −0.657056 −0.328528 0.944494i \(-0.606553\pi\)
−0.328528 + 0.944494i \(0.606553\pi\)
\(390\) 0 0
\(391\) −10942.9 −1.41536
\(392\) 1163.82 0.149954
\(393\) 0 0
\(394\) −5823.09 −0.744576
\(395\) −2414.20 −0.307523
\(396\) 0 0
\(397\) −12535.1 −1.58469 −0.792343 0.610076i \(-0.791139\pi\)
−0.792343 + 0.610076i \(0.791139\pi\)
\(398\) −2573.62 −0.324131
\(399\) 0 0
\(400\) 1334.55 0.166818
\(401\) −14848.8 −1.84916 −0.924582 0.380984i \(-0.875585\pi\)
−0.924582 + 0.380984i \(0.875585\pi\)
\(402\) 0 0
\(403\) 16899.8 2.08894
\(404\) 3385.25 0.416887
\(405\) 0 0
\(406\) −982.837 −0.120141
\(407\) −2600.36 −0.316695
\(408\) 0 0
\(409\) −10835.0 −1.30991 −0.654957 0.755666i \(-0.727313\pi\)
−0.654957 + 0.755666i \(0.727313\pi\)
\(410\) −1177.10 −0.141788
\(411\) 0 0
\(412\) 1275.87 0.152567
\(413\) 5245.13 0.624930
\(414\) 0 0
\(415\) −1974.91 −0.233601
\(416\) −11910.0 −1.40370
\(417\) 0 0
\(418\) 3417.49 0.399892
\(419\) −9072.77 −1.05784 −0.528918 0.848673i \(-0.677402\pi\)
−0.528918 + 0.848673i \(0.677402\pi\)
\(420\) 0 0
\(421\) −15709.6 −1.81862 −0.909311 0.416117i \(-0.863391\pi\)
−0.909311 + 0.416117i \(0.863391\pi\)
\(422\) 9288.69 1.07148
\(423\) 0 0
\(424\) 13579.7 1.55540
\(425\) −8580.77 −0.979362
\(426\) 0 0
\(427\) −5307.40 −0.601506
\(428\) −6921.64 −0.781706
\(429\) 0 0
\(430\) −1172.26 −0.131469
\(431\) 15198.4 1.69856 0.849282 0.527940i \(-0.177035\pi\)
0.849282 + 0.527940i \(0.177035\pi\)
\(432\) 0 0
\(433\) 14668.5 1.62800 0.813999 0.580867i \(-0.197286\pi\)
0.813999 + 0.580867i \(0.197286\pi\)
\(434\) −3204.11 −0.354382
\(435\) 0 0
\(436\) −1941.45 −0.213254
\(437\) 22062.4 2.41508
\(438\) 0 0
\(439\) −5452.78 −0.592817 −0.296409 0.955061i \(-0.595789\pi\)
−0.296409 + 0.955061i \(0.595789\pi\)
\(440\) −1071.51 −0.116096
\(441\) 0 0
\(442\) −11053.0 −1.18945
\(443\) 17927.7 1.92273 0.961365 0.275278i \(-0.0887700\pi\)
0.961365 + 0.275278i \(0.0887700\pi\)
\(444\) 0 0
\(445\) −5611.65 −0.597793
\(446\) −9514.52 −1.01015
\(447\) 0 0
\(448\) 2948.91 0.310988
\(449\) 9146.60 0.961369 0.480685 0.876893i \(-0.340388\pi\)
0.480685 + 0.876893i \(0.340388\pi\)
\(450\) 0 0
\(451\) −1625.10 −0.169674
\(452\) 6753.80 0.702814
\(453\) 0 0
\(454\) 9150.73 0.945958
\(455\) −2059.19 −0.212168
\(456\) 0 0
\(457\) −401.495 −0.0410966 −0.0205483 0.999789i \(-0.506541\pi\)
−0.0205483 + 0.999789i \(0.506541\pi\)
\(458\) −9209.64 −0.939603
\(459\) 0 0
\(460\) −2390.96 −0.242346
\(461\) 1090.23 0.110146 0.0550729 0.998482i \(-0.482461\pi\)
0.0550729 + 0.998482i \(0.482461\pi\)
\(462\) 0 0
\(463\) 7462.97 0.749101 0.374550 0.927207i \(-0.377797\pi\)
0.374550 + 0.927207i \(0.377797\pi\)
\(464\) −891.573 −0.0892031
\(465\) 0 0
\(466\) 5648.28 0.561484
\(467\) −5634.38 −0.558304 −0.279152 0.960247i \(-0.590053\pi\)
−0.279152 + 0.960247i \(0.590053\pi\)
\(468\) 0 0
\(469\) −283.323 −0.0278947
\(470\) 4291.45 0.421170
\(471\) 0 0
\(472\) 17797.1 1.73554
\(473\) −1618.42 −0.157326
\(474\) 0 0
\(475\) 17300.1 1.67112
\(476\) −2346.31 −0.225931
\(477\) 0 0
\(478\) 5384.24 0.515208
\(479\) 8134.97 0.775984 0.387992 0.921663i \(-0.373169\pi\)
0.387992 + 0.921663i \(0.373169\pi\)
\(480\) 0 0
\(481\) −16956.2 −1.60735
\(482\) 4097.93 0.387252
\(483\) 0 0
\(484\) −511.321 −0.0480204
\(485\) 2738.87 0.256425
\(486\) 0 0
\(487\) −18635.3 −1.73397 −0.866986 0.498333i \(-0.833946\pi\)
−0.866986 + 0.498333i \(0.833946\pi\)
\(488\) −18008.3 −1.67049
\(489\) 0 0
\(490\) 390.410 0.0359938
\(491\) 17849.3 1.64058 0.820291 0.571946i \(-0.193811\pi\)
0.820291 + 0.571946i \(0.193811\pi\)
\(492\) 0 0
\(493\) 5732.57 0.523696
\(494\) 22284.4 2.02960
\(495\) 0 0
\(496\) −2906.58 −0.263124
\(497\) −917.930 −0.0828467
\(498\) 0 0
\(499\) 5667.26 0.508419 0.254210 0.967149i \(-0.418185\pi\)
0.254210 + 0.967149i \(0.418185\pi\)
\(500\) −4041.21 −0.361457
\(501\) 0 0
\(502\) 4360.17 0.387657
\(503\) 16813.6 1.49042 0.745209 0.666831i \(-0.232350\pi\)
0.745209 + 0.666831i \(0.232350\pi\)
\(504\) 0 0
\(505\) 3285.45 0.289506
\(506\) 2948.20 0.259019
\(507\) 0 0
\(508\) −165.721 −0.0144738
\(509\) −16268.7 −1.41670 −0.708348 0.705864i \(-0.750559\pi\)
−0.708348 + 0.705864i \(0.750559\pi\)
\(510\) 0 0
\(511\) 1667.92 0.144392
\(512\) 4392.44 0.379141
\(513\) 0 0
\(514\) 6962.58 0.597483
\(515\) 1238.26 0.105950
\(516\) 0 0
\(517\) 5924.77 0.504006
\(518\) 3214.78 0.272682
\(519\) 0 0
\(520\) −6986.98 −0.589229
\(521\) 3638.19 0.305935 0.152967 0.988231i \(-0.451117\pi\)
0.152967 + 0.988231i \(0.451117\pi\)
\(522\) 0 0
\(523\) 16134.9 1.34901 0.674504 0.738271i \(-0.264357\pi\)
0.674504 + 0.738271i \(0.264357\pi\)
\(524\) −3473.98 −0.289621
\(525\) 0 0
\(526\) 3624.87 0.300479
\(527\) 18688.5 1.54475
\(528\) 0 0
\(529\) 6865.82 0.564299
\(530\) 4555.39 0.373347
\(531\) 0 0
\(532\) 4730.51 0.385514
\(533\) −10596.8 −0.861162
\(534\) 0 0
\(535\) −6717.58 −0.542853
\(536\) −961.332 −0.0774687
\(537\) 0 0
\(538\) −2481.84 −0.198884
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 3076.95 0.244525 0.122263 0.992498i \(-0.460985\pi\)
0.122263 + 0.992498i \(0.460985\pi\)
\(542\) −2553.53 −0.202368
\(543\) 0 0
\(544\) −13170.6 −1.03802
\(545\) −1884.22 −0.148094
\(546\) 0 0
\(547\) 3248.03 0.253886 0.126943 0.991910i \(-0.459483\pi\)
0.126943 + 0.991910i \(0.459483\pi\)
\(548\) 12310.9 0.959660
\(549\) 0 0
\(550\) 2311.81 0.179229
\(551\) −11557.7 −0.893603
\(552\) 0 0
\(553\) 4120.58 0.316863
\(554\) 9744.44 0.747295
\(555\) 0 0
\(556\) −3265.19 −0.249055
\(557\) 8464.19 0.643877 0.321938 0.946761i \(-0.395666\pi\)
0.321938 + 0.946761i \(0.395666\pi\)
\(558\) 0 0
\(559\) −10553.3 −0.798489
\(560\) 354.158 0.0267248
\(561\) 0 0
\(562\) 618.621 0.0464323
\(563\) −2750.50 −0.205897 −0.102948 0.994687i \(-0.532828\pi\)
−0.102948 + 0.994687i \(0.532828\pi\)
\(564\) 0 0
\(565\) 6554.70 0.488067
\(566\) −9541.07 −0.708553
\(567\) 0 0
\(568\) −3114.60 −0.230080
\(569\) −20832.3 −1.53486 −0.767429 0.641134i \(-0.778464\pi\)
−0.767429 + 0.641134i \(0.778464\pi\)
\(570\) 0 0
\(571\) 5708.91 0.418407 0.209204 0.977872i \(-0.432913\pi\)
0.209204 + 0.977872i \(0.432913\pi\)
\(572\) −3334.17 −0.243721
\(573\) 0 0
\(574\) 2009.09 0.146094
\(575\) 14924.5 1.08242
\(576\) 0 0
\(577\) 11087.7 0.799974 0.399987 0.916521i \(-0.369015\pi\)
0.399987 + 0.916521i \(0.369015\pi\)
\(578\) −2678.18 −0.192729
\(579\) 0 0
\(580\) 1252.54 0.0896703
\(581\) 3370.79 0.240695
\(582\) 0 0
\(583\) 6289.17 0.446777
\(584\) 5659.35 0.401003
\(585\) 0 0
\(586\) −6777.15 −0.477750
\(587\) 8468.55 0.595459 0.297730 0.954650i \(-0.403771\pi\)
0.297730 + 0.954650i \(0.403771\pi\)
\(588\) 0 0
\(589\) −37678.9 −2.63587
\(590\) 5970.13 0.416587
\(591\) 0 0
\(592\) 2916.27 0.202463
\(593\) −22765.6 −1.57651 −0.788256 0.615347i \(-0.789016\pi\)
−0.788256 + 0.615347i \(0.789016\pi\)
\(594\) 0 0
\(595\) −2277.14 −0.156897
\(596\) −10125.8 −0.695920
\(597\) 0 0
\(598\) 19224.3 1.31462
\(599\) 14725.7 1.00447 0.502233 0.864733i \(-0.332512\pi\)
0.502233 + 0.864733i \(0.332512\pi\)
\(600\) 0 0
\(601\) −9283.77 −0.630105 −0.315052 0.949074i \(-0.602022\pi\)
−0.315052 + 0.949074i \(0.602022\pi\)
\(602\) 2000.83 0.135462
\(603\) 0 0
\(604\) −7095.88 −0.478026
\(605\) −496.247 −0.0333476
\(606\) 0 0
\(607\) −445.560 −0.0297936 −0.0148968 0.999889i \(-0.504742\pi\)
−0.0148968 + 0.999889i \(0.504742\pi\)
\(608\) 26553.9 1.77122
\(609\) 0 0
\(610\) −6041.00 −0.400972
\(611\) 38633.7 2.55802
\(612\) 0 0
\(613\) 1623.92 0.106997 0.0534987 0.998568i \(-0.482963\pi\)
0.0534987 + 0.998568i \(0.482963\pi\)
\(614\) −8764.61 −0.576076
\(615\) 0 0
\(616\) 1828.86 0.119622
\(617\) 9598.21 0.626271 0.313135 0.949708i \(-0.398621\pi\)
0.313135 + 0.949708i \(0.398621\pi\)
\(618\) 0 0
\(619\) −27233.7 −1.76836 −0.884179 0.467149i \(-0.845281\pi\)
−0.884179 + 0.467149i \(0.845281\pi\)
\(620\) 4083.35 0.264502
\(621\) 0 0
\(622\) −1092.44 −0.0704223
\(623\) 9578.03 0.615948
\(624\) 0 0
\(625\) 9600.43 0.614428
\(626\) 6566.52 0.419251
\(627\) 0 0
\(628\) −12512.3 −0.795057
\(629\) −18750.8 −1.18862
\(630\) 0 0
\(631\) 18470.5 1.16529 0.582647 0.812725i \(-0.302017\pi\)
0.582647 + 0.812725i \(0.302017\pi\)
\(632\) 13981.4 0.879984
\(633\) 0 0
\(634\) −7916.34 −0.495896
\(635\) −160.835 −0.0100513
\(636\) 0 0
\(637\) 3514.66 0.218612
\(638\) −1544.46 −0.0958396
\(639\) 0 0
\(640\) −2091.39 −0.129171
\(641\) 24286.3 1.49649 0.748247 0.663420i \(-0.230896\pi\)
0.748247 + 0.663420i \(0.230896\pi\)
\(642\) 0 0
\(643\) −16390.9 −1.00528 −0.502640 0.864496i \(-0.667638\pi\)
−0.502640 + 0.864496i \(0.667638\pi\)
\(644\) 4080.92 0.249706
\(645\) 0 0
\(646\) 24643.0 1.50088
\(647\) −12590.9 −0.765067 −0.382534 0.923942i \(-0.624948\pi\)
−0.382534 + 0.923942i \(0.624948\pi\)
\(648\) 0 0
\(649\) 8242.35 0.498522
\(650\) 15074.6 0.909656
\(651\) 0 0
\(652\) 3089.70 0.185586
\(653\) −9552.86 −0.572484 −0.286242 0.958157i \(-0.592406\pi\)
−0.286242 + 0.958157i \(0.592406\pi\)
\(654\) 0 0
\(655\) −3371.56 −0.201126
\(656\) 1822.53 0.108472
\(657\) 0 0
\(658\) −7324.70 −0.433961
\(659\) 546.125 0.0322823 0.0161411 0.999870i \(-0.494862\pi\)
0.0161411 + 0.999870i \(0.494862\pi\)
\(660\) 0 0
\(661\) 1618.43 0.0952338 0.0476169 0.998866i \(-0.484837\pi\)
0.0476169 + 0.998866i \(0.484837\pi\)
\(662\) 10761.5 0.631809
\(663\) 0 0
\(664\) 11437.3 0.668454
\(665\) 4591.05 0.267719
\(666\) 0 0
\(667\) −9970.62 −0.578806
\(668\) 1799.26 0.104215
\(669\) 0 0
\(670\) −322.484 −0.0185950
\(671\) −8340.20 −0.479836
\(672\) 0 0
\(673\) −10901.5 −0.624403 −0.312202 0.950016i \(-0.601066\pi\)
−0.312202 + 0.950016i \(0.601066\pi\)
\(674\) 1456.64 0.0832461
\(675\) 0 0
\(676\) −12457.1 −0.708754
\(677\) 9491.82 0.538848 0.269424 0.963022i \(-0.413167\pi\)
0.269424 + 0.963022i \(0.413167\pi\)
\(678\) 0 0
\(679\) −4674.74 −0.264212
\(680\) −7726.48 −0.435731
\(681\) 0 0
\(682\) −5035.02 −0.282699
\(683\) −1485.73 −0.0832355 −0.0416178 0.999134i \(-0.513251\pi\)
−0.0416178 + 0.999134i \(0.513251\pi\)
\(684\) 0 0
\(685\) 11947.9 0.666433
\(686\) −666.357 −0.0370869
\(687\) 0 0
\(688\) 1815.04 0.100578
\(689\) 41009.8 2.26756
\(690\) 0 0
\(691\) −31472.9 −1.73268 −0.866341 0.499452i \(-0.833535\pi\)
−0.866341 + 0.499452i \(0.833535\pi\)
\(692\) 2079.51 0.114236
\(693\) 0 0
\(694\) 12939.2 0.707732
\(695\) −3168.93 −0.172956
\(696\) 0 0
\(697\) −11718.4 −0.636823
\(698\) −23479.4 −1.27322
\(699\) 0 0
\(700\) 3200.02 0.172785
\(701\) −18134.1 −0.977057 −0.488528 0.872548i \(-0.662466\pi\)
−0.488528 + 0.872548i \(0.662466\pi\)
\(702\) 0 0
\(703\) 37804.4 2.02819
\(704\) 4634.00 0.248083
\(705\) 0 0
\(706\) −6166.04 −0.328699
\(707\) −5607.64 −0.298299
\(708\) 0 0
\(709\) −18224.7 −0.965363 −0.482682 0.875796i \(-0.660337\pi\)
−0.482682 + 0.875796i \(0.660337\pi\)
\(710\) −1044.81 −0.0552267
\(711\) 0 0
\(712\) 32498.9 1.71060
\(713\) −32504.8 −1.70731
\(714\) 0 0
\(715\) −3235.88 −0.169252
\(716\) −17050.8 −0.889970
\(717\) 0 0
\(718\) −20436.3 −1.06222
\(719\) 4787.72 0.248333 0.124167 0.992261i \(-0.460374\pi\)
0.124167 + 0.992261i \(0.460374\pi\)
\(720\) 0 0
\(721\) −2113.48 −0.109168
\(722\) −36358.8 −1.87415
\(723\) 0 0
\(724\) −6205.80 −0.318559
\(725\) −7818.39 −0.400507
\(726\) 0 0
\(727\) −18469.6 −0.942228 −0.471114 0.882072i \(-0.656148\pi\)
−0.471114 + 0.882072i \(0.656148\pi\)
\(728\) 11925.5 0.607125
\(729\) 0 0
\(730\) 1898.46 0.0962538
\(731\) −11670.2 −0.590477
\(732\) 0 0
\(733\) 3108.79 0.156652 0.0783260 0.996928i \(-0.475043\pi\)
0.0783260 + 0.996928i \(0.475043\pi\)
\(734\) 2171.43 0.109195
\(735\) 0 0
\(736\) 22907.5 1.14726
\(737\) −445.222 −0.0222523
\(738\) 0 0
\(739\) 11836.0 0.589165 0.294583 0.955626i \(-0.404819\pi\)
0.294583 + 0.955626i \(0.404819\pi\)
\(740\) −4096.95 −0.203523
\(741\) 0 0
\(742\) −7775.20 −0.384686
\(743\) −426.050 −0.0210367 −0.0105183 0.999945i \(-0.503348\pi\)
−0.0105183 + 0.999945i \(0.503348\pi\)
\(744\) 0 0
\(745\) −9827.27 −0.483280
\(746\) −9836.98 −0.482785
\(747\) 0 0
\(748\) −3687.06 −0.180230
\(749\) 11465.7 0.559340
\(750\) 0 0
\(751\) 5776.10 0.280656 0.140328 0.990105i \(-0.455184\pi\)
0.140328 + 0.990105i \(0.455184\pi\)
\(752\) −6644.55 −0.322210
\(753\) 0 0
\(754\) −10070.9 −0.486422
\(755\) −6886.69 −0.331963
\(756\) 0 0
\(757\) 21009.3 1.00871 0.504356 0.863496i \(-0.331730\pi\)
0.504356 + 0.863496i \(0.331730\pi\)
\(758\) −13616.2 −0.652456
\(759\) 0 0
\(760\) 15577.7 0.743505
\(761\) 2037.17 0.0970401 0.0485201 0.998822i \(-0.484550\pi\)
0.0485201 + 0.998822i \(0.484550\pi\)
\(762\) 0 0
\(763\) 3216.01 0.152591
\(764\) −20767.7 −0.983443
\(765\) 0 0
\(766\) −7240.04 −0.341506
\(767\) 53745.9 2.53019
\(768\) 0 0
\(769\) −7297.29 −0.342194 −0.171097 0.985254i \(-0.554731\pi\)
−0.171097 + 0.985254i \(0.554731\pi\)
\(770\) 613.502 0.0287131
\(771\) 0 0
\(772\) −19546.0 −0.911236
\(773\) 21086.9 0.981166 0.490583 0.871394i \(-0.336784\pi\)
0.490583 + 0.871394i \(0.336784\pi\)
\(774\) 0 0
\(775\) −25488.4 −1.18138
\(776\) −15861.7 −0.733765
\(777\) 0 0
\(778\) 9793.54 0.451305
\(779\) 23626.0 1.08664
\(780\) 0 0
\(781\) −1442.46 −0.0660888
\(782\) 21259.0 0.972151
\(783\) 0 0
\(784\) −604.481 −0.0275365
\(785\) −12143.4 −0.552125
\(786\) 0 0
\(787\) −16997.6 −0.769886 −0.384943 0.922940i \(-0.625779\pi\)
−0.384943 + 0.922940i \(0.625779\pi\)
\(788\) −12666.3 −0.572611
\(789\) 0 0
\(790\) 4690.14 0.211225
\(791\) −11187.6 −0.502891
\(792\) 0 0
\(793\) −54384.0 −2.43535
\(794\) 24352.4 1.08846
\(795\) 0 0
\(796\) −5598.09 −0.249270
\(797\) 6632.97 0.294796 0.147398 0.989077i \(-0.452910\pi\)
0.147398 + 0.989077i \(0.452910\pi\)
\(798\) 0 0
\(799\) 42722.6 1.89164
\(800\) 17962.8 0.793851
\(801\) 0 0
\(802\) 28847.3 1.27012
\(803\) 2621.02 0.115185
\(804\) 0 0
\(805\) 3960.61 0.173408
\(806\) −32831.9 −1.43481
\(807\) 0 0
\(808\) −19027.1 −0.828429
\(809\) 31469.8 1.36764 0.683818 0.729653i \(-0.260318\pi\)
0.683818 + 0.729653i \(0.260318\pi\)
\(810\) 0 0
\(811\) 10571.5 0.457727 0.228864 0.973458i \(-0.426499\pi\)
0.228864 + 0.973458i \(0.426499\pi\)
\(812\) −2137.85 −0.0923937
\(813\) 0 0
\(814\) 5051.80 0.217525
\(815\) 2998.61 0.128880
\(816\) 0 0
\(817\) 23528.9 1.00755
\(818\) 21049.4 0.899727
\(819\) 0 0
\(820\) −2560.41 −0.109041
\(821\) 1867.28 0.0793770 0.0396885 0.999212i \(-0.487363\pi\)
0.0396885 + 0.999212i \(0.487363\pi\)
\(822\) 0 0
\(823\) −24030.7 −1.01781 −0.508904 0.860823i \(-0.669949\pi\)
−0.508904 + 0.860823i \(0.669949\pi\)
\(824\) −7171.16 −0.303179
\(825\) 0 0
\(826\) −10189.9 −0.429239
\(827\) −7606.03 −0.319816 −0.159908 0.987132i \(-0.551120\pi\)
−0.159908 + 0.987132i \(0.551120\pi\)
\(828\) 0 0
\(829\) −17718.4 −0.742321 −0.371161 0.928569i \(-0.621040\pi\)
−0.371161 + 0.928569i \(0.621040\pi\)
\(830\) 3836.71 0.160451
\(831\) 0 0
\(832\) 30216.9 1.25911
\(833\) 3886.65 0.161662
\(834\) 0 0
\(835\) 1746.22 0.0723718
\(836\) 7433.66 0.307534
\(837\) 0 0
\(838\) 17626.0 0.726585
\(839\) −8104.23 −0.333479 −0.166740 0.986001i \(-0.553324\pi\)
−0.166740 + 0.986001i \(0.553324\pi\)
\(840\) 0 0
\(841\) −19165.8 −0.785836
\(842\) 30519.6 1.24914
\(843\) 0 0
\(844\) 20204.6 0.824017
\(845\) −12089.8 −0.492192
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −7053.22 −0.285623
\(849\) 0 0
\(850\) 16670.1 0.672684
\(851\) 32613.1 1.31371
\(852\) 0 0
\(853\) −11568.1 −0.464341 −0.232171 0.972675i \(-0.574583\pi\)
−0.232171 + 0.972675i \(0.574583\pi\)
\(854\) 10310.9 0.413150
\(855\) 0 0
\(856\) 38903.7 1.55339
\(857\) −26485.6 −1.05570 −0.527848 0.849339i \(-0.677001\pi\)
−0.527848 + 0.849339i \(0.677001\pi\)
\(858\) 0 0
\(859\) 32310.6 1.28338 0.641689 0.766965i \(-0.278234\pi\)
0.641689 + 0.766965i \(0.278234\pi\)
\(860\) −2549.88 −0.101105
\(861\) 0 0
\(862\) −29526.4 −1.16667
\(863\) −874.086 −0.0344777 −0.0172388 0.999851i \(-0.505488\pi\)
−0.0172388 + 0.999851i \(0.505488\pi\)
\(864\) 0 0
\(865\) 2018.21 0.0793308
\(866\) −28497.0 −1.11821
\(867\) 0 0
\(868\) −6969.51 −0.272535
\(869\) 6475.20 0.252769
\(870\) 0 0
\(871\) −2903.16 −0.112939
\(872\) 10912.1 0.423774
\(873\) 0 0
\(874\) −42861.4 −1.65882
\(875\) 6694.25 0.258636
\(876\) 0 0
\(877\) 12152.6 0.467919 0.233959 0.972246i \(-0.424832\pi\)
0.233959 + 0.972246i \(0.424832\pi\)
\(878\) 10593.3 0.407182
\(879\) 0 0
\(880\) 556.534 0.0213190
\(881\) −21220.4 −0.811500 −0.405750 0.913984i \(-0.632990\pi\)
−0.405750 + 0.913984i \(0.632990\pi\)
\(882\) 0 0
\(883\) −32328.9 −1.23211 −0.616055 0.787703i \(-0.711270\pi\)
−0.616055 + 0.787703i \(0.711270\pi\)
\(884\) −24042.2 −0.914737
\(885\) 0 0
\(886\) −34828.6 −1.32064
\(887\) −46075.5 −1.74415 −0.872076 0.489370i \(-0.837227\pi\)
−0.872076 + 0.489370i \(0.837227\pi\)
\(888\) 0 0
\(889\) 274.516 0.0103565
\(890\) 10901.9 0.410600
\(891\) 0 0
\(892\) −20695.8 −0.776845
\(893\) −86135.2 −3.22778
\(894\) 0 0
\(895\) −16548.1 −0.618037
\(896\) 3569.60 0.133094
\(897\) 0 0
\(898\) −17769.4 −0.660326
\(899\) 17028.1 0.631723
\(900\) 0 0
\(901\) 45350.3 1.67684
\(902\) 3157.14 0.116543
\(903\) 0 0
\(904\) −37960.3 −1.39662
\(905\) −6022.85 −0.221222
\(906\) 0 0
\(907\) 2154.27 0.0788658 0.0394329 0.999222i \(-0.487445\pi\)
0.0394329 + 0.999222i \(0.487445\pi\)
\(908\) 19904.5 0.727482
\(909\) 0 0
\(910\) 4000.46 0.145730
\(911\) 6282.73 0.228492 0.114246 0.993452i \(-0.463555\pi\)
0.114246 + 0.993452i \(0.463555\pi\)
\(912\) 0 0
\(913\) 5296.96 0.192009
\(914\) 779.997 0.0282276
\(915\) 0 0
\(916\) −20032.6 −0.722595
\(917\) 5754.62 0.207235
\(918\) 0 0
\(919\) −2441.49 −0.0876358 −0.0438179 0.999040i \(-0.513952\pi\)
−0.0438179 + 0.999040i \(0.513952\pi\)
\(920\) 13438.6 0.481584
\(921\) 0 0
\(922\) −2118.03 −0.0756546
\(923\) −9405.86 −0.335426
\(924\) 0 0
\(925\) 25573.4 0.909024
\(926\) −14498.6 −0.514527
\(927\) 0 0
\(928\) −12000.4 −0.424497
\(929\) −43741.5 −1.54479 −0.772396 0.635141i \(-0.780942\pi\)
−0.772396 + 0.635141i \(0.780942\pi\)
\(930\) 0 0
\(931\) −7836.06 −0.275850
\(932\) 12286.0 0.431805
\(933\) 0 0
\(934\) 10946.1 0.383476
\(935\) −3578.36 −0.125160
\(936\) 0 0
\(937\) −5530.26 −0.192813 −0.0964064 0.995342i \(-0.530735\pi\)
−0.0964064 + 0.995342i \(0.530735\pi\)
\(938\) 550.420 0.0191598
\(939\) 0 0
\(940\) 9334.67 0.323897
\(941\) −53251.1 −1.84478 −0.922389 0.386262i \(-0.873766\pi\)
−0.922389 + 0.386262i \(0.873766\pi\)
\(942\) 0 0
\(943\) 20381.7 0.703838
\(944\) −9243.68 −0.318704
\(945\) 0 0
\(946\) 3144.17 0.108061
\(947\) −14734.1 −0.505590 −0.252795 0.967520i \(-0.581350\pi\)
−0.252795 + 0.967520i \(0.581350\pi\)
\(948\) 0 0
\(949\) 17090.9 0.584608
\(950\) −33609.5 −1.14783
\(951\) 0 0
\(952\) 13187.6 0.448964
\(953\) 14754.5 0.501517 0.250758 0.968050i \(-0.419320\pi\)
0.250758 + 0.968050i \(0.419320\pi\)
\(954\) 0 0
\(955\) −20155.5 −0.682949
\(956\) 11711.7 0.396216
\(957\) 0 0
\(958\) −15804.1 −0.532992
\(959\) −20392.9 −0.686674
\(960\) 0 0
\(961\) 25721.6 0.863402
\(962\) 32941.3 1.10402
\(963\) 0 0
\(964\) 8913.73 0.297813
\(965\) −18969.7 −0.632805
\(966\) 0 0
\(967\) 45826.3 1.52397 0.761983 0.647597i \(-0.224226\pi\)
0.761983 + 0.647597i \(0.224226\pi\)
\(968\) 2873.92 0.0954250
\(969\) 0 0
\(970\) −5320.90 −0.176128
\(971\) −13645.4 −0.450980 −0.225490 0.974245i \(-0.572398\pi\)
−0.225490 + 0.974245i \(0.572398\pi\)
\(972\) 0 0
\(973\) 5408.76 0.178209
\(974\) 36203.3 1.19099
\(975\) 0 0
\(976\) 9353.42 0.306758
\(977\) −7591.69 −0.248597 −0.124299 0.992245i \(-0.539668\pi\)
−0.124299 + 0.992245i \(0.539668\pi\)
\(978\) 0 0
\(979\) 15051.2 0.491357
\(980\) 849.213 0.0276807
\(981\) 0 0
\(982\) −34676.3 −1.12685
\(983\) 9428.03 0.305908 0.152954 0.988233i \(-0.451121\pi\)
0.152954 + 0.988233i \(0.451121\pi\)
\(984\) 0 0
\(985\) −12292.9 −0.397648
\(986\) −11136.9 −0.359706
\(987\) 0 0
\(988\) 48472.7 1.56085
\(989\) 20297.9 0.652615
\(990\) 0 0
\(991\) −47149.3 −1.51135 −0.755675 0.654947i \(-0.772691\pi\)
−0.755675 + 0.654947i \(0.772691\pi\)
\(992\) −39122.1 −1.25215
\(993\) 0 0
\(994\) 1783.29 0.0569040
\(995\) −5433.05 −0.173105
\(996\) 0 0
\(997\) 28331.5 0.899968 0.449984 0.893037i \(-0.351430\pi\)
0.449984 + 0.893037i \(0.351430\pi\)
\(998\) −11010.0 −0.349213
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.u.1.3 yes 8
3.2 odd 2 693.4.a.r.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.r.1.6 8 3.2 odd 2
693.4.a.u.1.3 yes 8 1.1 even 1 trivial