Properties

Label 693.4.a.u.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.45684\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.45684 q^{2} +11.8634 q^{4} +12.1911 q^{5} +7.00000 q^{7} -17.2186 q^{8} +O(q^{10})\) \(q-4.45684 q^{2} +11.8634 q^{4} +12.1911 q^{5} +7.00000 q^{7} -17.2186 q^{8} -54.3338 q^{10} +11.0000 q^{11} -15.6475 q^{13} -31.1979 q^{14} -18.1668 q^{16} +43.3250 q^{17} +51.7758 q^{19} +144.628 q^{20} -49.0252 q^{22} +121.245 q^{23} +23.6233 q^{25} +69.7383 q^{26} +83.0439 q^{28} +187.274 q^{29} +91.9030 q^{31} +218.715 q^{32} -193.093 q^{34} +85.3378 q^{35} -226.675 q^{37} -230.756 q^{38} -209.914 q^{40} -11.2971 q^{41} -98.0582 q^{43} +130.497 q^{44} -540.371 q^{46} +186.239 q^{47} +49.0000 q^{49} -105.285 q^{50} -185.632 q^{52} +487.456 q^{53} +134.102 q^{55} -120.530 q^{56} -834.652 q^{58} -697.760 q^{59} +486.332 q^{61} -409.597 q^{62} -829.444 q^{64} -190.760 q^{65} -436.739 q^{67} +513.982 q^{68} -380.337 q^{70} -715.665 q^{71} -860.777 q^{73} +1010.25 q^{74} +614.237 q^{76} +77.0000 q^{77} +157.939 q^{79} -221.474 q^{80} +50.3492 q^{82} +397.064 q^{83} +528.180 q^{85} +437.030 q^{86} -189.404 q^{88} -237.813 q^{89} -109.532 q^{91} +1438.38 q^{92} -830.036 q^{94} +631.204 q^{95} +590.116 q^{97} -218.385 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 30 q^{4} + 10 q^{5} + 56 q^{7} + 81 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 6 q^{2} + 30 q^{4} + 10 q^{5} + 56 q^{7} + 81 q^{8} + 9 q^{10} + 88 q^{11} + 16 q^{13} + 42 q^{14} + 122 q^{16} + 90 q^{17} - 42 q^{19} + 291 q^{20} + 66 q^{22} + 338 q^{23} + 244 q^{25} + 209 q^{26} + 210 q^{28} + 496 q^{29} - 8 q^{31} + 524 q^{32} - 302 q^{34} + 70 q^{35} - 360 q^{37} + 45 q^{38} - 6 q^{40} + 242 q^{41} - 66 q^{43} + 330 q^{44} + 344 q^{46} + 540 q^{47} + 392 q^{49} + 1171 q^{50} + 465 q^{52} + 906 q^{53} + 110 q^{55} + 567 q^{56} + 977 q^{58} + 1242 q^{59} - 318 q^{61} - 110 q^{62} + 525 q^{64} + 1258 q^{65} + 522 q^{67} + 678 q^{68} + 63 q^{70} + 858 q^{71} - 78 q^{73} + 1651 q^{74} + 1775 q^{76} + 616 q^{77} + 516 q^{79} + 567 q^{80} - 1212 q^{82} + 3192 q^{83} + 720 q^{85} + 1322 q^{86} + 891 q^{88} + 2356 q^{89} + 112 q^{91} + 4504 q^{92} - 423 q^{94} + 3308 q^{95} - 1556 q^{97} + 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.45684 −1.57573 −0.787865 0.615848i \(-0.788814\pi\)
−0.787865 + 0.615848i \(0.788814\pi\)
\(3\) 0 0
\(4\) 11.8634 1.48293
\(5\) 12.1911 1.09041 0.545203 0.838304i \(-0.316452\pi\)
0.545203 + 0.838304i \(0.316452\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −17.2186 −0.760961
\(9\) 0 0
\(10\) −54.3338 −1.71819
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −15.6475 −0.333833 −0.166917 0.985971i \(-0.553381\pi\)
−0.166917 + 0.985971i \(0.553381\pi\)
\(14\) −31.1979 −0.595570
\(15\) 0 0
\(16\) −18.1668 −0.283857
\(17\) 43.3250 0.618109 0.309055 0.951044i \(-0.399987\pi\)
0.309055 + 0.951044i \(0.399987\pi\)
\(18\) 0 0
\(19\) 51.7758 0.625167 0.312584 0.949890i \(-0.398806\pi\)
0.312584 + 0.949890i \(0.398806\pi\)
\(20\) 144.628 1.61699
\(21\) 0 0
\(22\) −49.0252 −0.475101
\(23\) 121.245 1.09919 0.549595 0.835431i \(-0.314782\pi\)
0.549595 + 0.835431i \(0.314782\pi\)
\(24\) 0 0
\(25\) 23.6233 0.188986
\(26\) 69.7383 0.526031
\(27\) 0 0
\(28\) 83.0439 0.560493
\(29\) 187.274 1.19917 0.599586 0.800310i \(-0.295332\pi\)
0.599586 + 0.800310i \(0.295332\pi\)
\(30\) 0 0
\(31\) 91.9030 0.532460 0.266230 0.963910i \(-0.414222\pi\)
0.266230 + 0.963910i \(0.414222\pi\)
\(32\) 218.715 1.20824
\(33\) 0 0
\(34\) −193.093 −0.973974
\(35\) 85.3378 0.412135
\(36\) 0 0
\(37\) −226.675 −1.00717 −0.503583 0.863947i \(-0.667985\pi\)
−0.503583 + 0.863947i \(0.667985\pi\)
\(38\) −230.756 −0.985095
\(39\) 0 0
\(40\) −209.914 −0.829757
\(41\) −11.2971 −0.0430318 −0.0215159 0.999769i \(-0.506849\pi\)
−0.0215159 + 0.999769i \(0.506849\pi\)
\(42\) 0 0
\(43\) −98.0582 −0.347761 −0.173881 0.984767i \(-0.555631\pi\)
−0.173881 + 0.984767i \(0.555631\pi\)
\(44\) 130.497 0.447119
\(45\) 0 0
\(46\) −540.371 −1.73203
\(47\) 186.239 0.577994 0.288997 0.957330i \(-0.406678\pi\)
0.288997 + 0.957330i \(0.406678\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −105.285 −0.297791
\(51\) 0 0
\(52\) −185.632 −0.495050
\(53\) 487.456 1.26334 0.631671 0.775236i \(-0.282369\pi\)
0.631671 + 0.775236i \(0.282369\pi\)
\(54\) 0 0
\(55\) 134.102 0.328770
\(56\) −120.530 −0.287616
\(57\) 0 0
\(58\) −834.652 −1.88957
\(59\) −697.760 −1.53967 −0.769835 0.638243i \(-0.779662\pi\)
−0.769835 + 0.638243i \(0.779662\pi\)
\(60\) 0 0
\(61\) 486.332 1.02079 0.510397 0.859939i \(-0.329498\pi\)
0.510397 + 0.859939i \(0.329498\pi\)
\(62\) −409.597 −0.839013
\(63\) 0 0
\(64\) −829.444 −1.62001
\(65\) −190.760 −0.364014
\(66\) 0 0
\(67\) −436.739 −0.796361 −0.398181 0.917307i \(-0.630358\pi\)
−0.398181 + 0.917307i \(0.630358\pi\)
\(68\) 513.982 0.916610
\(69\) 0 0
\(70\) −380.337 −0.649413
\(71\) −715.665 −1.19625 −0.598125 0.801403i \(-0.704087\pi\)
−0.598125 + 0.801403i \(0.704087\pi\)
\(72\) 0 0
\(73\) −860.777 −1.38009 −0.690043 0.723768i \(-0.742408\pi\)
−0.690043 + 0.723768i \(0.742408\pi\)
\(74\) 1010.25 1.58702
\(75\) 0 0
\(76\) 614.237 0.927076
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 157.939 0.224930 0.112465 0.993656i \(-0.464125\pi\)
0.112465 + 0.993656i \(0.464125\pi\)
\(80\) −221.474 −0.309519
\(81\) 0 0
\(82\) 50.3492 0.0678066
\(83\) 397.064 0.525102 0.262551 0.964918i \(-0.415436\pi\)
0.262551 + 0.964918i \(0.415436\pi\)
\(84\) 0 0
\(85\) 528.180 0.673990
\(86\) 437.030 0.547978
\(87\) 0 0
\(88\) −189.404 −0.229438
\(89\) −237.813 −0.283238 −0.141619 0.989921i \(-0.545231\pi\)
−0.141619 + 0.989921i \(0.545231\pi\)
\(90\) 0 0
\(91\) −109.532 −0.126177
\(92\) 1438.38 1.63002
\(93\) 0 0
\(94\) −830.036 −0.910763
\(95\) 631.204 0.681686
\(96\) 0 0
\(97\) 590.116 0.617703 0.308851 0.951110i \(-0.400055\pi\)
0.308851 + 0.951110i \(0.400055\pi\)
\(98\) −218.385 −0.225104
\(99\) 0 0
\(100\) 280.252 0.280252
\(101\) 858.491 0.845773 0.422886 0.906183i \(-0.361017\pi\)
0.422886 + 0.906183i \(0.361017\pi\)
\(102\) 0 0
\(103\) 18.6313 0.0178233 0.00891164 0.999960i \(-0.497163\pi\)
0.00891164 + 0.999960i \(0.497163\pi\)
\(104\) 269.427 0.254034
\(105\) 0 0
\(106\) −2172.51 −1.99069
\(107\) −202.961 −0.183373 −0.0916866 0.995788i \(-0.529226\pi\)
−0.0916866 + 0.995788i \(0.529226\pi\)
\(108\) 0 0
\(109\) 1023.62 0.899495 0.449748 0.893156i \(-0.351514\pi\)
0.449748 + 0.893156i \(0.351514\pi\)
\(110\) −597.672 −0.518053
\(111\) 0 0
\(112\) −127.168 −0.107288
\(113\) 1011.17 0.841792 0.420896 0.907109i \(-0.361716\pi\)
0.420896 + 0.907109i \(0.361716\pi\)
\(114\) 0 0
\(115\) 1478.11 1.19856
\(116\) 2221.71 1.77828
\(117\) 0 0
\(118\) 3109.80 2.42611
\(119\) 303.275 0.233623
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −2167.50 −1.60850
\(123\) 0 0
\(124\) 1090.28 0.789599
\(125\) −1235.90 −0.884335
\(126\) 0 0
\(127\) 2232.29 1.55971 0.779855 0.625960i \(-0.215293\pi\)
0.779855 + 0.625960i \(0.215293\pi\)
\(128\) 1946.98 1.34445
\(129\) 0 0
\(130\) 850.188 0.573588
\(131\) −553.340 −0.369050 −0.184525 0.982828i \(-0.559075\pi\)
−0.184525 + 0.982828i \(0.559075\pi\)
\(132\) 0 0
\(133\) 362.430 0.236291
\(134\) 1946.48 1.25485
\(135\) 0 0
\(136\) −745.995 −0.470357
\(137\) 778.408 0.485430 0.242715 0.970098i \(-0.421962\pi\)
0.242715 + 0.970098i \(0.421962\pi\)
\(138\) 0 0
\(139\) 890.735 0.543533 0.271767 0.962363i \(-0.412392\pi\)
0.271767 + 0.962363i \(0.412392\pi\)
\(140\) 1012.40 0.611166
\(141\) 0 0
\(142\) 3189.60 1.88497
\(143\) −172.122 −0.100654
\(144\) 0 0
\(145\) 2283.08 1.30759
\(146\) 3836.34 2.17464
\(147\) 0 0
\(148\) −2689.14 −1.49355
\(149\) −1810.56 −0.995481 −0.497740 0.867326i \(-0.665837\pi\)
−0.497740 + 0.867326i \(0.665837\pi\)
\(150\) 0 0
\(151\) 3043.06 1.64001 0.820003 0.572359i \(-0.193972\pi\)
0.820003 + 0.572359i \(0.193972\pi\)
\(152\) −891.505 −0.475728
\(153\) 0 0
\(154\) −343.177 −0.179571
\(155\) 1120.40 0.580598
\(156\) 0 0
\(157\) −1299.44 −0.660551 −0.330276 0.943885i \(-0.607142\pi\)
−0.330276 + 0.943885i \(0.607142\pi\)
\(158\) −703.908 −0.354430
\(159\) 0 0
\(160\) 2666.38 1.31748
\(161\) 848.717 0.415455
\(162\) 0 0
\(163\) −1550.80 −0.745202 −0.372601 0.927992i \(-0.621534\pi\)
−0.372601 + 0.927992i \(0.621534\pi\)
\(164\) −134.022 −0.0638130
\(165\) 0 0
\(166\) −1769.65 −0.827420
\(167\) 1346.23 0.623799 0.311900 0.950115i \(-0.399035\pi\)
0.311900 + 0.950115i \(0.399035\pi\)
\(168\) 0 0
\(169\) −1952.16 −0.888555
\(170\) −2354.01 −1.06203
\(171\) 0 0
\(172\) −1163.30 −0.515704
\(173\) 3058.10 1.34395 0.671975 0.740574i \(-0.265446\pi\)
0.671975 + 0.740574i \(0.265446\pi\)
\(174\) 0 0
\(175\) 165.363 0.0714301
\(176\) −199.835 −0.0855860
\(177\) 0 0
\(178\) 1059.90 0.446307
\(179\) 1139.10 0.475645 0.237822 0.971309i \(-0.423566\pi\)
0.237822 + 0.971309i \(0.423566\pi\)
\(180\) 0 0
\(181\) 3156.25 1.29615 0.648073 0.761578i \(-0.275575\pi\)
0.648073 + 0.761578i \(0.275575\pi\)
\(182\) 488.168 0.198821
\(183\) 0 0
\(184\) −2087.67 −0.836441
\(185\) −2763.42 −1.09822
\(186\) 0 0
\(187\) 476.575 0.186367
\(188\) 2209.43 0.857122
\(189\) 0 0
\(190\) −2813.18 −1.07415
\(191\) −2195.74 −0.831822 −0.415911 0.909405i \(-0.636537\pi\)
−0.415911 + 0.909405i \(0.636537\pi\)
\(192\) 0 0
\(193\) −1224.61 −0.456733 −0.228366 0.973575i \(-0.573338\pi\)
−0.228366 + 0.973575i \(0.573338\pi\)
\(194\) −2630.05 −0.973333
\(195\) 0 0
\(196\) 581.307 0.211847
\(197\) 4502.49 1.62837 0.814186 0.580605i \(-0.197184\pi\)
0.814186 + 0.580605i \(0.197184\pi\)
\(198\) 0 0
\(199\) 5332.05 1.89939 0.949696 0.313174i \(-0.101392\pi\)
0.949696 + 0.313174i \(0.101392\pi\)
\(200\) −406.759 −0.143811
\(201\) 0 0
\(202\) −3826.15 −1.33271
\(203\) 1310.92 0.453245
\(204\) 0 0
\(205\) −137.724 −0.0469222
\(206\) −83.0367 −0.0280847
\(207\) 0 0
\(208\) 284.265 0.0947607
\(209\) 569.533 0.188495
\(210\) 0 0
\(211\) −1925.26 −0.628152 −0.314076 0.949398i \(-0.601695\pi\)
−0.314076 + 0.949398i \(0.601695\pi\)
\(212\) 5782.88 1.87344
\(213\) 0 0
\(214\) 904.562 0.288947
\(215\) −1195.44 −0.379201
\(216\) 0 0
\(217\) 643.321 0.201251
\(218\) −4562.11 −1.41736
\(219\) 0 0
\(220\) 1590.91 0.487541
\(221\) −677.927 −0.206345
\(222\) 0 0
\(223\) 1794.01 0.538724 0.269362 0.963039i \(-0.413187\pi\)
0.269362 + 0.963039i \(0.413187\pi\)
\(224\) 1531.01 0.456673
\(225\) 0 0
\(226\) −4506.60 −1.32644
\(227\) 2809.22 0.821385 0.410692 0.911774i \(-0.365287\pi\)
0.410692 + 0.911774i \(0.365287\pi\)
\(228\) 0 0
\(229\) −2445.83 −0.705785 −0.352893 0.935664i \(-0.614802\pi\)
−0.352893 + 0.935664i \(0.614802\pi\)
\(230\) −6587.72 −1.88861
\(231\) 0 0
\(232\) −3224.60 −0.912524
\(233\) −3143.08 −0.883735 −0.441868 0.897080i \(-0.645684\pi\)
−0.441868 + 0.897080i \(0.645684\pi\)
\(234\) 0 0
\(235\) 2270.46 0.630248
\(236\) −8277.81 −2.28322
\(237\) 0 0
\(238\) −1351.65 −0.368127
\(239\) −1011.71 −0.273817 −0.136909 0.990584i \(-0.543717\pi\)
−0.136909 + 0.990584i \(0.543717\pi\)
\(240\) 0 0
\(241\) −2449.72 −0.654773 −0.327387 0.944890i \(-0.606168\pi\)
−0.327387 + 0.944890i \(0.606168\pi\)
\(242\) −539.277 −0.143248
\(243\) 0 0
\(244\) 5769.56 1.51376
\(245\) 597.365 0.155772
\(246\) 0 0
\(247\) −810.160 −0.208701
\(248\) −1582.44 −0.405181
\(249\) 0 0
\(250\) 5508.19 1.39347
\(251\) 2605.03 0.655092 0.327546 0.944835i \(-0.393778\pi\)
0.327546 + 0.944835i \(0.393778\pi\)
\(252\) 0 0
\(253\) 1333.70 0.331418
\(254\) −9948.93 −2.45768
\(255\) 0 0
\(256\) −2041.80 −0.498487
\(257\) −2323.64 −0.563987 −0.281994 0.959416i \(-0.590996\pi\)
−0.281994 + 0.959416i \(0.590996\pi\)
\(258\) 0 0
\(259\) −1586.73 −0.380673
\(260\) −2263.07 −0.539805
\(261\) 0 0
\(262\) 2466.15 0.581523
\(263\) −2382.09 −0.558502 −0.279251 0.960218i \(-0.590086\pi\)
−0.279251 + 0.960218i \(0.590086\pi\)
\(264\) 0 0
\(265\) 5942.63 1.37756
\(266\) −1615.29 −0.372331
\(267\) 0 0
\(268\) −5181.22 −1.18095
\(269\) −4768.03 −1.08071 −0.540357 0.841436i \(-0.681711\pi\)
−0.540357 + 0.841436i \(0.681711\pi\)
\(270\) 0 0
\(271\) −6275.87 −1.40676 −0.703380 0.710814i \(-0.748327\pi\)
−0.703380 + 0.710814i \(0.748327\pi\)
\(272\) −787.078 −0.175454
\(273\) 0 0
\(274\) −3469.24 −0.764906
\(275\) 259.856 0.0569815
\(276\) 0 0
\(277\) 1833.05 0.397607 0.198803 0.980039i \(-0.436295\pi\)
0.198803 + 0.980039i \(0.436295\pi\)
\(278\) −3969.86 −0.856462
\(279\) 0 0
\(280\) −1469.40 −0.313619
\(281\) 7948.23 1.68737 0.843686 0.536837i \(-0.180381\pi\)
0.843686 + 0.536837i \(0.180381\pi\)
\(282\) 0 0
\(283\) 3141.50 0.659869 0.329935 0.944004i \(-0.392973\pi\)
0.329935 + 0.944004i \(0.392973\pi\)
\(284\) −8490.22 −1.77395
\(285\) 0 0
\(286\) 767.121 0.158604
\(287\) −79.0795 −0.0162645
\(288\) 0 0
\(289\) −3035.94 −0.617941
\(290\) −10175.3 −2.06040
\(291\) 0 0
\(292\) −10211.7 −2.04657
\(293\) 3083.66 0.614845 0.307422 0.951573i \(-0.400534\pi\)
0.307422 + 0.951573i \(0.400534\pi\)
\(294\) 0 0
\(295\) −8506.47 −1.67887
\(296\) 3903.02 0.766414
\(297\) 0 0
\(298\) 8069.36 1.56861
\(299\) −1897.18 −0.366946
\(300\) 0 0
\(301\) −686.408 −0.131441
\(302\) −13562.4 −2.58421
\(303\) 0 0
\(304\) −940.601 −0.177458
\(305\) 5928.93 1.11308
\(306\) 0 0
\(307\) 8216.45 1.52748 0.763742 0.645521i \(-0.223360\pi\)
0.763742 + 0.645521i \(0.223360\pi\)
\(308\) 913.482 0.168995
\(309\) 0 0
\(310\) −4993.44 −0.914866
\(311\) 3241.70 0.591062 0.295531 0.955333i \(-0.404503\pi\)
0.295531 + 0.955333i \(0.404503\pi\)
\(312\) 0 0
\(313\) −10645.0 −1.92233 −0.961167 0.275969i \(-0.911001\pi\)
−0.961167 + 0.275969i \(0.911001\pi\)
\(314\) 5791.39 1.04085
\(315\) 0 0
\(316\) 1873.69 0.333555
\(317\) 741.966 0.131460 0.0657302 0.997837i \(-0.479062\pi\)
0.0657302 + 0.997837i \(0.479062\pi\)
\(318\) 0 0
\(319\) 2060.02 0.361564
\(320\) −10111.8 −1.76647
\(321\) 0 0
\(322\) −3782.59 −0.654645
\(323\) 2243.19 0.386422
\(324\) 0 0
\(325\) −369.645 −0.0630898
\(326\) 6911.66 1.17424
\(327\) 0 0
\(328\) 194.519 0.0327455
\(329\) 1303.67 0.218461
\(330\) 0 0
\(331\) 3842.77 0.638120 0.319060 0.947735i \(-0.396633\pi\)
0.319060 + 0.947735i \(0.396633\pi\)
\(332\) 4710.54 0.778688
\(333\) 0 0
\(334\) −5999.93 −0.982939
\(335\) −5324.34 −0.868358
\(336\) 0 0
\(337\) −1251.97 −0.202371 −0.101186 0.994868i \(-0.532264\pi\)
−0.101186 + 0.994868i \(0.532264\pi\)
\(338\) 8700.44 1.40012
\(339\) 0 0
\(340\) 6266.02 0.999478
\(341\) 1010.93 0.160543
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 1688.42 0.264633
\(345\) 0 0
\(346\) −13629.5 −2.11770
\(347\) 12167.3 1.88234 0.941172 0.337927i \(-0.109726\pi\)
0.941172 + 0.337927i \(0.109726\pi\)
\(348\) 0 0
\(349\) −2862.41 −0.439029 −0.219514 0.975609i \(-0.570447\pi\)
−0.219514 + 0.975609i \(0.570447\pi\)
\(350\) −736.996 −0.112555
\(351\) 0 0
\(352\) 2405.87 0.364299
\(353\) 8633.06 1.30167 0.650837 0.759217i \(-0.274418\pi\)
0.650837 + 0.759217i \(0.274418\pi\)
\(354\) 0 0
\(355\) −8724.75 −1.30440
\(356\) −2821.28 −0.420021
\(357\) 0 0
\(358\) −5076.79 −0.749488
\(359\) −1013.23 −0.148958 −0.0744791 0.997223i \(-0.523729\pi\)
−0.0744791 + 0.997223i \(0.523729\pi\)
\(360\) 0 0
\(361\) −4178.27 −0.609166
\(362\) −14066.9 −2.04238
\(363\) 0 0
\(364\) −1299.43 −0.187111
\(365\) −10493.8 −1.50486
\(366\) 0 0
\(367\) 5282.35 0.751325 0.375662 0.926757i \(-0.377415\pi\)
0.375662 + 0.926757i \(0.377415\pi\)
\(368\) −2202.64 −0.312013
\(369\) 0 0
\(370\) 12316.1 1.73050
\(371\) 3412.19 0.477499
\(372\) 0 0
\(373\) −8770.95 −1.21754 −0.608770 0.793347i \(-0.708337\pi\)
−0.608770 + 0.793347i \(0.708337\pi\)
\(374\) −2124.02 −0.293664
\(375\) 0 0
\(376\) −3206.77 −0.439831
\(377\) −2930.37 −0.400323
\(378\) 0 0
\(379\) 8431.99 1.14280 0.571401 0.820671i \(-0.306400\pi\)
0.571401 + 0.820671i \(0.306400\pi\)
\(380\) 7488.23 1.01089
\(381\) 0 0
\(382\) 9786.04 1.31073
\(383\) 11598.9 1.54745 0.773727 0.633519i \(-0.218390\pi\)
0.773727 + 0.633519i \(0.218390\pi\)
\(384\) 0 0
\(385\) 938.716 0.124263
\(386\) 5457.89 0.719688
\(387\) 0 0
\(388\) 7000.79 0.916008
\(389\) 1396.44 0.182011 0.0910053 0.995850i \(-0.470992\pi\)
0.0910053 + 0.995850i \(0.470992\pi\)
\(390\) 0 0
\(391\) 5252.95 0.679420
\(392\) −843.711 −0.108709
\(393\) 0 0
\(394\) −20066.9 −2.56587
\(395\) 1925.45 0.245266
\(396\) 0 0
\(397\) 5773.49 0.729882 0.364941 0.931031i \(-0.381089\pi\)
0.364941 + 0.931031i \(0.381089\pi\)
\(398\) −23764.1 −2.99293
\(399\) 0 0
\(400\) −429.160 −0.0536450
\(401\) −505.794 −0.0629880 −0.0314940 0.999504i \(-0.510027\pi\)
−0.0314940 + 0.999504i \(0.510027\pi\)
\(402\) 0 0
\(403\) −1438.05 −0.177753
\(404\) 10184.6 1.25422
\(405\) 0 0
\(406\) −5842.57 −0.714191
\(407\) −2493.43 −0.303672
\(408\) 0 0
\(409\) 1865.46 0.225528 0.112764 0.993622i \(-0.464030\pi\)
0.112764 + 0.993622i \(0.464030\pi\)
\(410\) 613.813 0.0739367
\(411\) 0 0
\(412\) 221.031 0.0264306
\(413\) −4884.32 −0.581941
\(414\) 0 0
\(415\) 4840.66 0.572575
\(416\) −3422.34 −0.403351
\(417\) 0 0
\(418\) −2538.32 −0.297017
\(419\) −7706.74 −0.898566 −0.449283 0.893390i \(-0.648320\pi\)
−0.449283 + 0.893390i \(0.648320\pi\)
\(420\) 0 0
\(421\) −4534.79 −0.524969 −0.262485 0.964936i \(-0.584542\pi\)
−0.262485 + 0.964936i \(0.584542\pi\)
\(422\) 8580.56 0.989798
\(423\) 0 0
\(424\) −8393.29 −0.961355
\(425\) 1023.48 0.116814
\(426\) 0 0
\(427\) 3404.33 0.385824
\(428\) −2407.80 −0.271929
\(429\) 0 0
\(430\) 5327.88 0.597519
\(431\) 700.548 0.0782928 0.0391464 0.999233i \(-0.487536\pi\)
0.0391464 + 0.999233i \(0.487536\pi\)
\(432\) 0 0
\(433\) 13305.9 1.47676 0.738382 0.674382i \(-0.235590\pi\)
0.738382 + 0.674382i \(0.235590\pi\)
\(434\) −2867.18 −0.317117
\(435\) 0 0
\(436\) 12143.6 1.33389
\(437\) 6277.57 0.687178
\(438\) 0 0
\(439\) 992.131 0.107863 0.0539315 0.998545i \(-0.482825\pi\)
0.0539315 + 0.998545i \(0.482825\pi\)
\(440\) −2309.05 −0.250181
\(441\) 0 0
\(442\) 3021.41 0.325145
\(443\) 7180.05 0.770055 0.385027 0.922905i \(-0.374192\pi\)
0.385027 + 0.922905i \(0.374192\pi\)
\(444\) 0 0
\(445\) −2899.21 −0.308844
\(446\) −7995.59 −0.848884
\(447\) 0 0
\(448\) −5806.11 −0.612305
\(449\) −17736.0 −1.86417 −0.932087 0.362236i \(-0.882014\pi\)
−0.932087 + 0.362236i \(0.882014\pi\)
\(450\) 0 0
\(451\) −124.268 −0.0129746
\(452\) 11995.9 1.24832
\(453\) 0 0
\(454\) −12520.2 −1.29428
\(455\) −1335.32 −0.137584
\(456\) 0 0
\(457\) −5926.25 −0.606604 −0.303302 0.952894i \(-0.598089\pi\)
−0.303302 + 0.952894i \(0.598089\pi\)
\(458\) 10900.7 1.11213
\(459\) 0 0
\(460\) 17535.5 1.77738
\(461\) −11831.2 −1.19531 −0.597653 0.801755i \(-0.703900\pi\)
−0.597653 + 0.801755i \(0.703900\pi\)
\(462\) 0 0
\(463\) 2756.08 0.276643 0.138322 0.990387i \(-0.455829\pi\)
0.138322 + 0.990387i \(0.455829\pi\)
\(464\) −3402.18 −0.340393
\(465\) 0 0
\(466\) 14008.2 1.39253
\(467\) −7795.11 −0.772408 −0.386204 0.922413i \(-0.626214\pi\)
−0.386204 + 0.922413i \(0.626214\pi\)
\(468\) 0 0
\(469\) −3057.18 −0.300996
\(470\) −10119.1 −0.993101
\(471\) 0 0
\(472\) 12014.4 1.17163
\(473\) −1078.64 −0.104854
\(474\) 0 0
\(475\) 1223.11 0.118148
\(476\) 3597.88 0.346446
\(477\) 0 0
\(478\) 4509.04 0.431462
\(479\) 13277.4 1.26651 0.633257 0.773942i \(-0.281718\pi\)
0.633257 + 0.773942i \(0.281718\pi\)
\(480\) 0 0
\(481\) 3546.89 0.336226
\(482\) 10918.0 1.03175
\(483\) 0 0
\(484\) 1435.47 0.134811
\(485\) 7194.17 0.673547
\(486\) 0 0
\(487\) 10601.3 0.986429 0.493214 0.869908i \(-0.335822\pi\)
0.493214 + 0.869908i \(0.335822\pi\)
\(488\) −8373.95 −0.776785
\(489\) 0 0
\(490\) −2662.36 −0.245455
\(491\) −6095.15 −0.560225 −0.280112 0.959967i \(-0.590372\pi\)
−0.280112 + 0.959967i \(0.590372\pi\)
\(492\) 0 0
\(493\) 8113.67 0.741220
\(494\) 3610.75 0.328857
\(495\) 0 0
\(496\) −1669.58 −0.151142
\(497\) −5009.65 −0.452140
\(498\) 0 0
\(499\) −18897.8 −1.69535 −0.847676 0.530515i \(-0.821999\pi\)
−0.847676 + 0.530515i \(0.821999\pi\)
\(500\) −14661.9 −1.31140
\(501\) 0 0
\(502\) −11610.2 −1.03225
\(503\) 12952.6 1.14817 0.574085 0.818796i \(-0.305358\pi\)
0.574085 + 0.818796i \(0.305358\pi\)
\(504\) 0 0
\(505\) 10466.0 0.922236
\(506\) −5944.08 −0.522226
\(507\) 0 0
\(508\) 26482.5 2.31294
\(509\) 13187.2 1.14835 0.574176 0.818732i \(-0.305323\pi\)
0.574176 + 0.818732i \(0.305323\pi\)
\(510\) 0 0
\(511\) −6025.44 −0.521624
\(512\) −6475.82 −0.558971
\(513\) 0 0
\(514\) 10356.1 0.888691
\(515\) 227.136 0.0194346
\(516\) 0 0
\(517\) 2048.63 0.174272
\(518\) 7071.78 0.599838
\(519\) 0 0
\(520\) 3284.62 0.277000
\(521\) 2254.72 0.189599 0.0947995 0.995496i \(-0.469779\pi\)
0.0947995 + 0.995496i \(0.469779\pi\)
\(522\) 0 0
\(523\) 10786.8 0.901859 0.450929 0.892560i \(-0.351093\pi\)
0.450929 + 0.892560i \(0.351093\pi\)
\(524\) −6564.50 −0.547274
\(525\) 0 0
\(526\) 10616.6 0.880049
\(527\) 3981.70 0.329119
\(528\) 0 0
\(529\) 2533.42 0.208220
\(530\) −26485.3 −2.17066
\(531\) 0 0
\(532\) 4299.66 0.350402
\(533\) 176.771 0.0143655
\(534\) 0 0
\(535\) −2474.32 −0.199951
\(536\) 7520.03 0.606000
\(537\) 0 0
\(538\) 21250.3 1.70291
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −19113.2 −1.51893 −0.759464 0.650549i \(-0.774539\pi\)
−0.759464 + 0.650549i \(0.774539\pi\)
\(542\) 27970.5 2.21668
\(543\) 0 0
\(544\) 9475.84 0.746826
\(545\) 12479.1 0.980816
\(546\) 0 0
\(547\) 2707.11 0.211604 0.105802 0.994387i \(-0.466259\pi\)
0.105802 + 0.994387i \(0.466259\pi\)
\(548\) 9234.57 0.719856
\(549\) 0 0
\(550\) −1158.14 −0.0897874
\(551\) 9696.28 0.749683
\(552\) 0 0
\(553\) 1105.57 0.0850157
\(554\) −8169.59 −0.626521
\(555\) 0 0
\(556\) 10567.1 0.806019
\(557\) −1527.87 −0.116226 −0.0581131 0.998310i \(-0.518508\pi\)
−0.0581131 + 0.998310i \(0.518508\pi\)
\(558\) 0 0
\(559\) 1534.36 0.116094
\(560\) −1550.32 −0.116987
\(561\) 0 0
\(562\) −35424.0 −2.65884
\(563\) 5678.01 0.425043 0.212522 0.977156i \(-0.431832\pi\)
0.212522 + 0.977156i \(0.431832\pi\)
\(564\) 0 0
\(565\) 12327.2 0.917896
\(566\) −14001.2 −1.03978
\(567\) 0 0
\(568\) 12322.7 0.910300
\(569\) 19704.3 1.45175 0.725877 0.687824i \(-0.241434\pi\)
0.725877 + 0.687824i \(0.241434\pi\)
\(570\) 0 0
\(571\) −19744.0 −1.44704 −0.723519 0.690304i \(-0.757477\pi\)
−0.723519 + 0.690304i \(0.757477\pi\)
\(572\) −2041.96 −0.149263
\(573\) 0 0
\(574\) 352.444 0.0256285
\(575\) 2864.21 0.207732
\(576\) 0 0
\(577\) −16525.4 −1.19231 −0.596153 0.802871i \(-0.703305\pi\)
−0.596153 + 0.802871i \(0.703305\pi\)
\(578\) 13530.7 0.973708
\(579\) 0 0
\(580\) 27085.2 1.93905
\(581\) 2779.45 0.198470
\(582\) 0 0
\(583\) 5362.01 0.380912
\(584\) 14821.4 1.05019
\(585\) 0 0
\(586\) −13743.4 −0.968830
\(587\) −15341.2 −1.07870 −0.539351 0.842081i \(-0.681330\pi\)
−0.539351 + 0.842081i \(0.681330\pi\)
\(588\) 0 0
\(589\) 4758.35 0.332876
\(590\) 37911.9 2.64544
\(591\) 0 0
\(592\) 4117.97 0.285891
\(593\) −3742.99 −0.259201 −0.129600 0.991566i \(-0.541369\pi\)
−0.129600 + 0.991566i \(0.541369\pi\)
\(594\) 0 0
\(595\) 3697.26 0.254744
\(596\) −21479.4 −1.47622
\(597\) 0 0
\(598\) 8455.44 0.578208
\(599\) −11362.5 −0.775057 −0.387529 0.921858i \(-0.626671\pi\)
−0.387529 + 0.921858i \(0.626671\pi\)
\(600\) 0 0
\(601\) 6080.27 0.412678 0.206339 0.978481i \(-0.433845\pi\)
0.206339 + 0.978481i \(0.433845\pi\)
\(602\) 3059.21 0.207116
\(603\) 0 0
\(604\) 36101.1 2.43201
\(605\) 1475.12 0.0991279
\(606\) 0 0
\(607\) −21318.7 −1.42553 −0.712766 0.701402i \(-0.752558\pi\)
−0.712766 + 0.701402i \(0.752558\pi\)
\(608\) 11324.1 0.755353
\(609\) 0 0
\(610\) −26424.3 −1.75391
\(611\) −2914.17 −0.192954
\(612\) 0 0
\(613\) −7505.66 −0.494536 −0.247268 0.968947i \(-0.579533\pi\)
−0.247268 + 0.968947i \(0.579533\pi\)
\(614\) −36619.4 −2.40690
\(615\) 0 0
\(616\) −1325.83 −0.0867196
\(617\) 4837.21 0.315622 0.157811 0.987469i \(-0.449556\pi\)
0.157811 + 0.987469i \(0.449556\pi\)
\(618\) 0 0
\(619\) −11483.4 −0.745649 −0.372824 0.927902i \(-0.621611\pi\)
−0.372824 + 0.927902i \(0.621611\pi\)
\(620\) 13291.8 0.860984
\(621\) 0 0
\(622\) −14447.8 −0.931354
\(623\) −1664.69 −0.107054
\(624\) 0 0
\(625\) −18019.8 −1.15327
\(626\) 47443.0 3.02908
\(627\) 0 0
\(628\) −15415.8 −0.979548
\(629\) −9820.70 −0.622539
\(630\) 0 0
\(631\) 6720.61 0.423999 0.211999 0.977270i \(-0.432003\pi\)
0.211999 + 0.977270i \(0.432003\pi\)
\(632\) −2719.48 −0.171163
\(633\) 0 0
\(634\) −3306.82 −0.207146
\(635\) 27214.0 1.70072
\(636\) 0 0
\(637\) −766.727 −0.0476904
\(638\) −9181.17 −0.569728
\(639\) 0 0
\(640\) 23735.8 1.46600
\(641\) −24827.3 −1.52983 −0.764915 0.644131i \(-0.777219\pi\)
−0.764915 + 0.644131i \(0.777219\pi\)
\(642\) 0 0
\(643\) 15682.9 0.961859 0.480929 0.876759i \(-0.340299\pi\)
0.480929 + 0.876759i \(0.340299\pi\)
\(644\) 10068.7 0.616089
\(645\) 0 0
\(646\) −9997.52 −0.608896
\(647\) 22025.9 1.33838 0.669188 0.743093i \(-0.266642\pi\)
0.669188 + 0.743093i \(0.266642\pi\)
\(648\) 0 0
\(649\) −7675.36 −0.464228
\(650\) 1647.45 0.0994126
\(651\) 0 0
\(652\) −18397.8 −1.10508
\(653\) 14258.3 0.854469 0.427235 0.904141i \(-0.359488\pi\)
0.427235 + 0.904141i \(0.359488\pi\)
\(654\) 0 0
\(655\) −6745.83 −0.402414
\(656\) 205.232 0.0122149
\(657\) 0 0
\(658\) −5810.25 −0.344236
\(659\) 11822.2 0.698829 0.349414 0.936968i \(-0.386381\pi\)
0.349414 + 0.936968i \(0.386381\pi\)
\(660\) 0 0
\(661\) −27196.3 −1.60033 −0.800163 0.599783i \(-0.795254\pi\)
−0.800163 + 0.599783i \(0.795254\pi\)
\(662\) −17126.6 −1.00550
\(663\) 0 0
\(664\) −6836.89 −0.399582
\(665\) 4418.43 0.257653
\(666\) 0 0
\(667\) 22706.1 1.31812
\(668\) 15970.9 0.925048
\(669\) 0 0
\(670\) 23729.7 1.36830
\(671\) 5349.65 0.307781
\(672\) 0 0
\(673\) −2020.00 −0.115699 −0.0578495 0.998325i \(-0.518424\pi\)
−0.0578495 + 0.998325i \(0.518424\pi\)
\(674\) 5579.82 0.318882
\(675\) 0 0
\(676\) −23159.2 −1.31766
\(677\) −16276.1 −0.923989 −0.461994 0.886883i \(-0.652866\pi\)
−0.461994 + 0.886883i \(0.652866\pi\)
\(678\) 0 0
\(679\) 4130.81 0.233470
\(680\) −9094.52 −0.512880
\(681\) 0 0
\(682\) −4505.56 −0.252972
\(683\) 9926.97 0.556142 0.278071 0.960561i \(-0.410305\pi\)
0.278071 + 0.960561i \(0.410305\pi\)
\(684\) 0 0
\(685\) 9489.66 0.529316
\(686\) −1528.70 −0.0850814
\(687\) 0 0
\(688\) 1781.41 0.0987144
\(689\) −7627.45 −0.421746
\(690\) 0 0
\(691\) −13631.7 −0.750471 −0.375236 0.926930i \(-0.622438\pi\)
−0.375236 + 0.926930i \(0.622438\pi\)
\(692\) 36279.5 1.99298
\(693\) 0 0
\(694\) −54227.6 −2.96607
\(695\) 10859.0 0.592672
\(696\) 0 0
\(697\) −489.446 −0.0265984
\(698\) 12757.3 0.691791
\(699\) 0 0
\(700\) 1961.77 0.105925
\(701\) 27909.6 1.50375 0.751875 0.659305i \(-0.229149\pi\)
0.751875 + 0.659305i \(0.229149\pi\)
\(702\) 0 0
\(703\) −11736.3 −0.629647
\(704\) −9123.88 −0.488451
\(705\) 0 0
\(706\) −38476.1 −2.05109
\(707\) 6009.44 0.319672
\(708\) 0 0
\(709\) 12864.8 0.681452 0.340726 0.940163i \(-0.389327\pi\)
0.340726 + 0.940163i \(0.389327\pi\)
\(710\) 38884.8 2.05538
\(711\) 0 0
\(712\) 4094.81 0.215533
\(713\) 11142.8 0.585275
\(714\) 0 0
\(715\) −2098.36 −0.109754
\(716\) 13513.6 0.705346
\(717\) 0 0
\(718\) 4515.78 0.234718
\(719\) −27741.1 −1.43890 −0.719451 0.694544i \(-0.755606\pi\)
−0.719451 + 0.694544i \(0.755606\pi\)
\(720\) 0 0
\(721\) 130.419 0.00673656
\(722\) 18621.9 0.959882
\(723\) 0 0
\(724\) 37443.9 1.92209
\(725\) 4424.04 0.226627
\(726\) 0 0
\(727\) −33694.0 −1.71890 −0.859450 0.511220i \(-0.829194\pi\)
−0.859450 + 0.511220i \(0.829194\pi\)
\(728\) 1885.99 0.0960158
\(729\) 0 0
\(730\) 46769.3 2.37125
\(731\) −4248.37 −0.214955
\(732\) 0 0
\(733\) −38697.7 −1.94998 −0.974988 0.222256i \(-0.928658\pi\)
−0.974988 + 0.222256i \(0.928658\pi\)
\(734\) −23542.6 −1.18389
\(735\) 0 0
\(736\) 26518.2 1.32809
\(737\) −4804.13 −0.240112
\(738\) 0 0
\(739\) −22086.4 −1.09941 −0.549704 0.835359i \(-0.685260\pi\)
−0.549704 + 0.835359i \(0.685260\pi\)
\(740\) −32783.6 −1.62858
\(741\) 0 0
\(742\) −15207.6 −0.752409
\(743\) −181.397 −0.00895666 −0.00447833 0.999990i \(-0.501426\pi\)
−0.00447833 + 0.999990i \(0.501426\pi\)
\(744\) 0 0
\(745\) −22072.7 −1.08548
\(746\) 39090.7 1.91852
\(747\) 0 0
\(748\) 5653.81 0.276368
\(749\) −1420.72 −0.0693086
\(750\) 0 0
\(751\) −7735.78 −0.375876 −0.187938 0.982181i \(-0.560180\pi\)
−0.187938 + 0.982181i \(0.560180\pi\)
\(752\) −3383.37 −0.164067
\(753\) 0 0
\(754\) 13060.2 0.630802
\(755\) 37098.3 1.78827
\(756\) 0 0
\(757\) −17569.4 −0.843552 −0.421776 0.906700i \(-0.638593\pi\)
−0.421776 + 0.906700i \(0.638593\pi\)
\(758\) −37580.0 −1.80075
\(759\) 0 0
\(760\) −10868.4 −0.518737
\(761\) −20086.4 −0.956807 −0.478404 0.878140i \(-0.658784\pi\)
−0.478404 + 0.878140i \(0.658784\pi\)
\(762\) 0 0
\(763\) 7165.34 0.339977
\(764\) −26048.9 −1.23353
\(765\) 0 0
\(766\) −51694.3 −2.43837
\(767\) 10918.2 0.513993
\(768\) 0 0
\(769\) −7772.56 −0.364481 −0.182240 0.983254i \(-0.558335\pi\)
−0.182240 + 0.983254i \(0.558335\pi\)
\(770\) −4183.70 −0.195806
\(771\) 0 0
\(772\) −14528.1 −0.677301
\(773\) −1055.68 −0.0491204 −0.0245602 0.999698i \(-0.507819\pi\)
−0.0245602 + 0.999698i \(0.507819\pi\)
\(774\) 0 0
\(775\) 2171.05 0.100628
\(776\) −10161.0 −0.470048
\(777\) 0 0
\(778\) −6223.69 −0.286800
\(779\) −584.914 −0.0269021
\(780\) 0 0
\(781\) −7872.31 −0.360683
\(782\) −23411.6 −1.07058
\(783\) 0 0
\(784\) −890.174 −0.0405509
\(785\) −15841.6 −0.720269
\(786\) 0 0
\(787\) −34605.2 −1.56740 −0.783700 0.621140i \(-0.786670\pi\)
−0.783700 + 0.621140i \(0.786670\pi\)
\(788\) 53414.9 2.41475
\(789\) 0 0
\(790\) −8581.42 −0.386472
\(791\) 7078.16 0.318168
\(792\) 0 0
\(793\) −7609.87 −0.340775
\(794\) −25731.5 −1.15010
\(795\) 0 0
\(796\) 63256.3 2.81666
\(797\) −34013.8 −1.51171 −0.755853 0.654741i \(-0.772778\pi\)
−0.755853 + 0.654741i \(0.772778\pi\)
\(798\) 0 0
\(799\) 8068.80 0.357264
\(800\) 5166.77 0.228341
\(801\) 0 0
\(802\) 2254.24 0.0992520
\(803\) −9468.55 −0.416112
\(804\) 0 0
\(805\) 10346.8 0.453015
\(806\) 6409.16 0.280090
\(807\) 0 0
\(808\) −14782.0 −0.643600
\(809\) −19962.0 −0.867525 −0.433763 0.901027i \(-0.642814\pi\)
−0.433763 + 0.901027i \(0.642814\pi\)
\(810\) 0 0
\(811\) −31886.3 −1.38061 −0.690307 0.723517i \(-0.742525\pi\)
−0.690307 + 0.723517i \(0.742525\pi\)
\(812\) 15552.0 0.672128
\(813\) 0 0
\(814\) 11112.8 0.478505
\(815\) −18906.0 −0.812573
\(816\) 0 0
\(817\) −5077.04 −0.217409
\(818\) −8314.04 −0.355371
\(819\) 0 0
\(820\) −1633.87 −0.0695821
\(821\) −6951.19 −0.295491 −0.147745 0.989025i \(-0.547202\pi\)
−0.147745 + 0.989025i \(0.547202\pi\)
\(822\) 0 0
\(823\) 36694.6 1.55418 0.777091 0.629388i \(-0.216694\pi\)
0.777091 + 0.629388i \(0.216694\pi\)
\(824\) −320.805 −0.0135628
\(825\) 0 0
\(826\) 21768.6 0.916982
\(827\) −22074.4 −0.928176 −0.464088 0.885789i \(-0.653618\pi\)
−0.464088 + 0.885789i \(0.653618\pi\)
\(828\) 0 0
\(829\) 23458.4 0.982802 0.491401 0.870933i \(-0.336485\pi\)
0.491401 + 0.870933i \(0.336485\pi\)
\(830\) −21574.0 −0.902224
\(831\) 0 0
\(832\) 12978.7 0.540812
\(833\) 2122.93 0.0883013
\(834\) 0 0
\(835\) 16412.1 0.680195
\(836\) 6756.61 0.279524
\(837\) 0 0
\(838\) 34347.7 1.41590
\(839\) −37736.8 −1.55282 −0.776412 0.630225i \(-0.782963\pi\)
−0.776412 + 0.630225i \(0.782963\pi\)
\(840\) 0 0
\(841\) 10682.7 0.438015
\(842\) 20210.8 0.827210
\(843\) 0 0
\(844\) −22840.1 −0.931503
\(845\) −23799.0 −0.968887
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −8855.52 −0.358608
\(849\) 0 0
\(850\) −4561.48 −0.184068
\(851\) −27483.3 −1.10707
\(852\) 0 0
\(853\) 26345.9 1.05752 0.528762 0.848770i \(-0.322656\pi\)
0.528762 + 0.848770i \(0.322656\pi\)
\(854\) −15172.5 −0.607955
\(855\) 0 0
\(856\) 3494.69 0.139540
\(857\) −47972.7 −1.91215 −0.956077 0.293116i \(-0.905308\pi\)
−0.956077 + 0.293116i \(0.905308\pi\)
\(858\) 0 0
\(859\) −30428.2 −1.20861 −0.604306 0.796752i \(-0.706549\pi\)
−0.604306 + 0.796752i \(0.706549\pi\)
\(860\) −14182.0 −0.562327
\(861\) 0 0
\(862\) −3122.23 −0.123368
\(863\) 8351.59 0.329422 0.164711 0.986342i \(-0.447331\pi\)
0.164711 + 0.986342i \(0.447331\pi\)
\(864\) 0 0
\(865\) 37281.7 1.46545
\(866\) −59302.1 −2.32698
\(867\) 0 0
\(868\) 7631.98 0.298440
\(869\) 1737.33 0.0678191
\(870\) 0 0
\(871\) 6833.87 0.265852
\(872\) −17625.3 −0.684481
\(873\) 0 0
\(874\) −27978.1 −1.08281
\(875\) −8651.27 −0.334247
\(876\) 0 0
\(877\) −24609.5 −0.947552 −0.473776 0.880645i \(-0.657109\pi\)
−0.473776 + 0.880645i \(0.657109\pi\)
\(878\) −4421.77 −0.169963
\(879\) 0 0
\(880\) −2436.21 −0.0933235
\(881\) 17386.9 0.664901 0.332451 0.943121i \(-0.392125\pi\)
0.332451 + 0.943121i \(0.392125\pi\)
\(882\) 0 0
\(883\) 35566.6 1.35551 0.677753 0.735290i \(-0.262954\pi\)
0.677753 + 0.735290i \(0.262954\pi\)
\(884\) −8042.53 −0.305995
\(885\) 0 0
\(886\) −32000.3 −1.21340
\(887\) 21087.4 0.798248 0.399124 0.916897i \(-0.369314\pi\)
0.399124 + 0.916897i \(0.369314\pi\)
\(888\) 0 0
\(889\) 15626.0 0.589515
\(890\) 12921.3 0.486655
\(891\) 0 0
\(892\) 21283.0 0.798888
\(893\) 9642.65 0.361343
\(894\) 0 0
\(895\) 13886.9 0.518646
\(896\) 13628.8 0.508155
\(897\) 0 0
\(898\) 79046.5 2.93743
\(899\) 17211.1 0.638511
\(900\) 0 0
\(901\) 21119.0 0.780884
\(902\) 553.841 0.0204444
\(903\) 0 0
\(904\) −17410.8 −0.640571
\(905\) 38478.2 1.41333
\(906\) 0 0
\(907\) −46282.0 −1.69434 −0.847171 0.531321i \(-0.821696\pi\)
−0.847171 + 0.531321i \(0.821696\pi\)
\(908\) 33326.9 1.21805
\(909\) 0 0
\(910\) 5951.31 0.216796
\(911\) 14001.3 0.509203 0.254601 0.967046i \(-0.418056\pi\)
0.254601 + 0.967046i \(0.418056\pi\)
\(912\) 0 0
\(913\) 4367.71 0.158324
\(914\) 26412.3 0.955845
\(915\) 0 0
\(916\) −29015.8 −1.04663
\(917\) −3873.38 −0.139488
\(918\) 0 0
\(919\) −7587.94 −0.272364 −0.136182 0.990684i \(-0.543483\pi\)
−0.136182 + 0.990684i \(0.543483\pi\)
\(920\) −25451.0 −0.912061
\(921\) 0 0
\(922\) 52730.0 1.88348
\(923\) 11198.4 0.399348
\(924\) 0 0
\(925\) −5354.81 −0.190341
\(926\) −12283.4 −0.435915
\(927\) 0 0
\(928\) 40959.8 1.44889
\(929\) −33002.7 −1.16554 −0.582768 0.812638i \(-0.698030\pi\)
−0.582768 + 0.812638i \(0.698030\pi\)
\(930\) 0 0
\(931\) 2537.01 0.0893096
\(932\) −37287.7 −1.31051
\(933\) 0 0
\(934\) 34741.5 1.21711
\(935\) 5809.98 0.203216
\(936\) 0 0
\(937\) −15187.7 −0.529519 −0.264760 0.964314i \(-0.585293\pi\)
−0.264760 + 0.964314i \(0.585293\pi\)
\(938\) 13625.3 0.474289
\(939\) 0 0
\(940\) 26935.4 0.934612
\(941\) −32513.8 −1.12638 −0.563188 0.826328i \(-0.690425\pi\)
−0.563188 + 0.826328i \(0.690425\pi\)
\(942\) 0 0
\(943\) −1369.72 −0.0473002
\(944\) 12676.1 0.437046
\(945\) 0 0
\(946\) 4807.33 0.165222
\(947\) 14865.8 0.510108 0.255054 0.966927i \(-0.417907\pi\)
0.255054 + 0.966927i \(0.417907\pi\)
\(948\) 0 0
\(949\) 13469.0 0.460719
\(950\) −5451.22 −0.186169
\(951\) 0 0
\(952\) −5221.97 −0.177778
\(953\) −19708.9 −0.669920 −0.334960 0.942232i \(-0.608723\pi\)
−0.334960 + 0.942232i \(0.608723\pi\)
\(954\) 0 0
\(955\) −26768.5 −0.907024
\(956\) −12002.4 −0.406050
\(957\) 0 0
\(958\) −59175.2 −1.99568
\(959\) 5448.85 0.183475
\(960\) 0 0
\(961\) −21344.8 −0.716486
\(962\) −15807.9 −0.529801
\(963\) 0 0
\(964\) −29062.0 −0.970981
\(965\) −14929.4 −0.498024
\(966\) 0 0
\(967\) 3670.99 0.122080 0.0610398 0.998135i \(-0.480558\pi\)
0.0610398 + 0.998135i \(0.480558\pi\)
\(968\) −2083.45 −0.0691783
\(969\) 0 0
\(970\) −32063.3 −1.06133
\(971\) 12572.5 0.415521 0.207761 0.978180i \(-0.433383\pi\)
0.207761 + 0.978180i \(0.433383\pi\)
\(972\) 0 0
\(973\) 6235.14 0.205436
\(974\) −47248.3 −1.55435
\(975\) 0 0
\(976\) −8835.11 −0.289759
\(977\) 14573.7 0.477232 0.238616 0.971114i \(-0.423306\pi\)
0.238616 + 0.971114i \(0.423306\pi\)
\(978\) 0 0
\(979\) −2615.95 −0.0853994
\(980\) 7086.78 0.230999
\(981\) 0 0
\(982\) 27165.1 0.882763
\(983\) −26717.6 −0.866896 −0.433448 0.901179i \(-0.642703\pi\)
−0.433448 + 0.901179i \(0.642703\pi\)
\(984\) 0 0
\(985\) 54890.4 1.77559
\(986\) −36161.3 −1.16796
\(987\) 0 0
\(988\) −9611.26 −0.309489
\(989\) −11889.1 −0.382256
\(990\) 0 0
\(991\) 22048.7 0.706761 0.353380 0.935480i \(-0.385032\pi\)
0.353380 + 0.935480i \(0.385032\pi\)
\(992\) 20100.6 0.643341
\(993\) 0 0
\(994\) 22327.2 0.712451
\(995\) 65003.6 2.07111
\(996\) 0 0
\(997\) 29571.1 0.939345 0.469673 0.882841i \(-0.344372\pi\)
0.469673 + 0.882841i \(0.344372\pi\)
\(998\) 84224.3 2.67142
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.u.1.1 yes 8
3.2 odd 2 693.4.a.r.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.r.1.8 8 3.2 odd 2
693.4.a.u.1.1 yes 8 1.1 even 1 trivial