Properties

Label 693.4.a.t.1.6
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.21621\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.21621 q^{2} -3.08840 q^{4} +22.0394 q^{5} -7.00000 q^{7} -24.5743 q^{8} +48.8440 q^{10} -11.0000 q^{11} +2.76840 q^{13} -15.5135 q^{14} -29.7545 q^{16} +50.6354 q^{17} +56.5022 q^{19} -68.0666 q^{20} -24.3783 q^{22} +172.339 q^{23} +360.735 q^{25} +6.13535 q^{26} +21.6188 q^{28} -282.011 q^{29} +237.587 q^{31} +130.652 q^{32} +112.219 q^{34} -154.276 q^{35} +207.061 q^{37} +125.221 q^{38} -541.602 q^{40} -386.514 q^{41} -18.3909 q^{43} +33.9725 q^{44} +381.939 q^{46} +309.957 q^{47} +49.0000 q^{49} +799.465 q^{50} -8.54993 q^{52} +480.364 q^{53} -242.433 q^{55} +172.020 q^{56} -624.996 q^{58} -114.221 q^{59} +109.928 q^{61} +526.543 q^{62} +527.588 q^{64} +61.0138 q^{65} -567.534 q^{67} -156.383 q^{68} -341.908 q^{70} +780.713 q^{71} -605.836 q^{73} +458.891 q^{74} -174.502 q^{76} +77.0000 q^{77} +686.614 q^{79} -655.772 q^{80} -856.597 q^{82} -316.962 q^{83} +1115.97 q^{85} -40.7582 q^{86} +270.317 q^{88} +1611.41 q^{89} -19.3788 q^{91} -532.252 q^{92} +686.931 q^{94} +1245.27 q^{95} -1231.47 q^{97} +108.594 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8} - 13 q^{10} - 88 q^{11} - 148 q^{13} - 14 q^{14} + 266 q^{16} + 114 q^{17} + 58 q^{19} + 291 q^{20} - 22 q^{22} + 246 q^{23} + 244 q^{25} + 305 q^{26}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.21621 0.783549 0.391775 0.920061i \(-0.371861\pi\)
0.391775 + 0.920061i \(0.371861\pi\)
\(3\) 0 0
\(4\) −3.08840 −0.386051
\(5\) 22.0394 1.97126 0.985632 0.168908i \(-0.0540241\pi\)
0.985632 + 0.168908i \(0.0540241\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −24.5743 −1.08604
\(9\) 0 0
\(10\) 48.8440 1.54458
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 2.76840 0.0590627 0.0295313 0.999564i \(-0.490599\pi\)
0.0295313 + 0.999564i \(0.490599\pi\)
\(14\) −15.5135 −0.296154
\(15\) 0 0
\(16\) −29.7545 −0.464914
\(17\) 50.6354 0.722405 0.361203 0.932487i \(-0.382366\pi\)
0.361203 + 0.932487i \(0.382366\pi\)
\(18\) 0 0
\(19\) 56.5022 0.682236 0.341118 0.940020i \(-0.389194\pi\)
0.341118 + 0.940020i \(0.389194\pi\)
\(20\) −68.0666 −0.761007
\(21\) 0 0
\(22\) −24.3783 −0.236249
\(23\) 172.339 1.56240 0.781198 0.624283i \(-0.214609\pi\)
0.781198 + 0.624283i \(0.214609\pi\)
\(24\) 0 0
\(25\) 360.735 2.88588
\(26\) 6.13535 0.0462785
\(27\) 0 0
\(28\) 21.6188 0.145913
\(29\) −282.011 −1.80580 −0.902899 0.429853i \(-0.858566\pi\)
−0.902899 + 0.429853i \(0.858566\pi\)
\(30\) 0 0
\(31\) 237.587 1.37651 0.688256 0.725468i \(-0.258377\pi\)
0.688256 + 0.725468i \(0.258377\pi\)
\(32\) 130.652 0.721756
\(33\) 0 0
\(34\) 112.219 0.566040
\(35\) −154.276 −0.745068
\(36\) 0 0
\(37\) 207.061 0.920017 0.460009 0.887914i \(-0.347846\pi\)
0.460009 + 0.887914i \(0.347846\pi\)
\(38\) 125.221 0.534566
\(39\) 0 0
\(40\) −541.602 −2.14087
\(41\) −386.514 −1.47228 −0.736138 0.676831i \(-0.763353\pi\)
−0.736138 + 0.676831i \(0.763353\pi\)
\(42\) 0 0
\(43\) −18.3909 −0.0652230 −0.0326115 0.999468i \(-0.510382\pi\)
−0.0326115 + 0.999468i \(0.510382\pi\)
\(44\) 33.9725 0.116399
\(45\) 0 0
\(46\) 381.939 1.22421
\(47\) 309.957 0.961955 0.480978 0.876733i \(-0.340282\pi\)
0.480978 + 0.876733i \(0.340282\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 799.465 2.26123
\(51\) 0 0
\(52\) −8.54993 −0.0228012
\(53\) 480.364 1.24496 0.622482 0.782634i \(-0.286124\pi\)
0.622482 + 0.782634i \(0.286124\pi\)
\(54\) 0 0
\(55\) −242.433 −0.594358
\(56\) 172.020 0.410484
\(57\) 0 0
\(58\) −624.996 −1.41493
\(59\) −114.221 −0.252039 −0.126020 0.992028i \(-0.540220\pi\)
−0.126020 + 0.992028i \(0.540220\pi\)
\(60\) 0 0
\(61\) 109.928 0.230734 0.115367 0.993323i \(-0.463196\pi\)
0.115367 + 0.993323i \(0.463196\pi\)
\(62\) 526.543 1.07856
\(63\) 0 0
\(64\) 527.588 1.03045
\(65\) 61.0138 0.116428
\(66\) 0 0
\(67\) −567.534 −1.03485 −0.517427 0.855727i \(-0.673110\pi\)
−0.517427 + 0.855727i \(0.673110\pi\)
\(68\) −156.383 −0.278885
\(69\) 0 0
\(70\) −341.908 −0.583797
\(71\) 780.713 1.30498 0.652490 0.757797i \(-0.273724\pi\)
0.652490 + 0.757797i \(0.273724\pi\)
\(72\) 0 0
\(73\) −605.836 −0.971340 −0.485670 0.874142i \(-0.661424\pi\)
−0.485670 + 0.874142i \(0.661424\pi\)
\(74\) 458.891 0.720879
\(75\) 0 0
\(76\) −174.502 −0.263378
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 686.614 0.977850 0.488925 0.872326i \(-0.337389\pi\)
0.488925 + 0.872326i \(0.337389\pi\)
\(80\) −655.772 −0.916469
\(81\) 0 0
\(82\) −856.597 −1.15360
\(83\) −316.962 −0.419170 −0.209585 0.977790i \(-0.567211\pi\)
−0.209585 + 0.977790i \(0.567211\pi\)
\(84\) 0 0
\(85\) 1115.97 1.42405
\(86\) −40.7582 −0.0511054
\(87\) 0 0
\(88\) 270.317 0.327453
\(89\) 1611.41 1.91920 0.959601 0.281365i \(-0.0907870\pi\)
0.959601 + 0.281365i \(0.0907870\pi\)
\(90\) 0 0
\(91\) −19.3788 −0.0223236
\(92\) −532.252 −0.603164
\(93\) 0 0
\(94\) 686.931 0.753739
\(95\) 1245.27 1.34487
\(96\) 0 0
\(97\) −1231.47 −1.28904 −0.644520 0.764587i \(-0.722943\pi\)
−0.644520 + 0.764587i \(0.722943\pi\)
\(98\) 108.594 0.111936
\(99\) 0 0
\(100\) −1114.10 −1.11410
\(101\) −1184.54 −1.16699 −0.583494 0.812117i \(-0.698315\pi\)
−0.583494 + 0.812117i \(0.698315\pi\)
\(102\) 0 0
\(103\) −654.836 −0.626436 −0.313218 0.949681i \(-0.601407\pi\)
−0.313218 + 0.949681i \(0.601407\pi\)
\(104\) −68.0313 −0.0641444
\(105\) 0 0
\(106\) 1064.59 0.975490
\(107\) 654.327 0.591179 0.295589 0.955315i \(-0.404484\pi\)
0.295589 + 0.955315i \(0.404484\pi\)
\(108\) 0 0
\(109\) 1787.78 1.57099 0.785497 0.618866i \(-0.212408\pi\)
0.785497 + 0.618866i \(0.212408\pi\)
\(110\) −537.284 −0.465709
\(111\) 0 0
\(112\) 208.282 0.175721
\(113\) −824.970 −0.686784 −0.343392 0.939192i \(-0.611576\pi\)
−0.343392 + 0.939192i \(0.611576\pi\)
\(114\) 0 0
\(115\) 3798.24 3.07989
\(116\) 870.964 0.697129
\(117\) 0 0
\(118\) −253.138 −0.197485
\(119\) −354.448 −0.273043
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 243.623 0.180792
\(123\) 0 0
\(124\) −733.764 −0.531403
\(125\) 5195.46 3.71757
\(126\) 0 0
\(127\) 1754.34 1.22577 0.612885 0.790172i \(-0.290009\pi\)
0.612885 + 0.790172i \(0.290009\pi\)
\(128\) 124.033 0.0856491
\(129\) 0 0
\(130\) 135.219 0.0912272
\(131\) 2065.18 1.37737 0.688687 0.725059i \(-0.258188\pi\)
0.688687 + 0.725059i \(0.258188\pi\)
\(132\) 0 0
\(133\) −395.515 −0.257861
\(134\) −1257.77 −0.810859
\(135\) 0 0
\(136\) −1244.33 −0.784560
\(137\) −658.269 −0.410509 −0.205255 0.978709i \(-0.565802\pi\)
−0.205255 + 0.978709i \(0.565802\pi\)
\(138\) 0 0
\(139\) −704.321 −0.429782 −0.214891 0.976638i \(-0.568940\pi\)
−0.214891 + 0.976638i \(0.568940\pi\)
\(140\) 476.466 0.287634
\(141\) 0 0
\(142\) 1730.22 1.02252
\(143\) −30.4524 −0.0178081
\(144\) 0 0
\(145\) −6215.35 −3.55970
\(146\) −1342.66 −0.761092
\(147\) 0 0
\(148\) −639.489 −0.355173
\(149\) −1246.54 −0.685375 −0.342687 0.939450i \(-0.611337\pi\)
−0.342687 + 0.939450i \(0.611337\pi\)
\(150\) 0 0
\(151\) 1137.10 0.612818 0.306409 0.951900i \(-0.400872\pi\)
0.306409 + 0.951900i \(0.400872\pi\)
\(152\) −1388.50 −0.740935
\(153\) 0 0
\(154\) 170.648 0.0892937
\(155\) 5236.27 2.71347
\(156\) 0 0
\(157\) −130.308 −0.0662400 −0.0331200 0.999451i \(-0.510544\pi\)
−0.0331200 + 0.999451i \(0.510544\pi\)
\(158\) 1521.68 0.766193
\(159\) 0 0
\(160\) 2879.49 1.42277
\(161\) −1206.37 −0.590530
\(162\) 0 0
\(163\) −907.833 −0.436239 −0.218120 0.975922i \(-0.569992\pi\)
−0.218120 + 0.975922i \(0.569992\pi\)
\(164\) 1193.71 0.568373
\(165\) 0 0
\(166\) −702.456 −0.328441
\(167\) −3709.74 −1.71897 −0.859486 0.511159i \(-0.829216\pi\)
−0.859486 + 0.511159i \(0.829216\pi\)
\(168\) 0 0
\(169\) −2189.34 −0.996512
\(170\) 2473.23 1.11581
\(171\) 0 0
\(172\) 56.7986 0.0251794
\(173\) 2172.32 0.954673 0.477336 0.878721i \(-0.341602\pi\)
0.477336 + 0.878721i \(0.341602\pi\)
\(174\) 0 0
\(175\) −2525.15 −1.09076
\(176\) 327.300 0.140177
\(177\) 0 0
\(178\) 3571.22 1.50379
\(179\) −2149.14 −0.897398 −0.448699 0.893683i \(-0.648112\pi\)
−0.448699 + 0.893683i \(0.648112\pi\)
\(180\) 0 0
\(181\) −1083.16 −0.444810 −0.222405 0.974954i \(-0.571391\pi\)
−0.222405 + 0.974954i \(0.571391\pi\)
\(182\) −42.9475 −0.0174916
\(183\) 0 0
\(184\) −4235.10 −1.69682
\(185\) 4563.50 1.81360
\(186\) 0 0
\(187\) −556.989 −0.217813
\(188\) −957.273 −0.371363
\(189\) 0 0
\(190\) 2759.79 1.05377
\(191\) −2847.74 −1.07882 −0.539412 0.842042i \(-0.681353\pi\)
−0.539412 + 0.842042i \(0.681353\pi\)
\(192\) 0 0
\(193\) −4265.96 −1.59104 −0.795519 0.605929i \(-0.792802\pi\)
−0.795519 + 0.605929i \(0.792802\pi\)
\(194\) −2729.20 −1.01003
\(195\) 0 0
\(196\) −151.332 −0.0551501
\(197\) −3081.31 −1.11439 −0.557194 0.830382i \(-0.688122\pi\)
−0.557194 + 0.830382i \(0.688122\pi\)
\(198\) 0 0
\(199\) −1880.41 −0.669843 −0.334921 0.942246i \(-0.608710\pi\)
−0.334921 + 0.942246i \(0.608710\pi\)
\(200\) −8864.79 −3.13418
\(201\) 0 0
\(202\) −2625.18 −0.914392
\(203\) 1974.08 0.682528
\(204\) 0 0
\(205\) −8518.54 −2.90225
\(206\) −1451.26 −0.490844
\(207\) 0 0
\(208\) −82.3723 −0.0274591
\(209\) −621.524 −0.205702
\(210\) 0 0
\(211\) −1383.75 −0.451475 −0.225738 0.974188i \(-0.572479\pi\)
−0.225738 + 0.974188i \(0.572479\pi\)
\(212\) −1483.56 −0.480619
\(213\) 0 0
\(214\) 1450.13 0.463218
\(215\) −405.325 −0.128572
\(216\) 0 0
\(217\) −1663.11 −0.520272
\(218\) 3962.10 1.23095
\(219\) 0 0
\(220\) 748.732 0.229452
\(221\) 140.179 0.0426672
\(222\) 0 0
\(223\) 1565.56 0.470123 0.235062 0.971980i \(-0.424471\pi\)
0.235062 + 0.971980i \(0.424471\pi\)
\(224\) −914.562 −0.272798
\(225\) 0 0
\(226\) −1828.31 −0.538129
\(227\) 2467.42 0.721448 0.360724 0.932673i \(-0.382530\pi\)
0.360724 + 0.932673i \(0.382530\pi\)
\(228\) 0 0
\(229\) −1294.61 −0.373581 −0.186791 0.982400i \(-0.559809\pi\)
−0.186791 + 0.982400i \(0.559809\pi\)
\(230\) 8417.71 2.41325
\(231\) 0 0
\(232\) 6930.21 1.96117
\(233\) −5470.03 −1.53800 −0.768999 0.639249i \(-0.779245\pi\)
−0.768999 + 0.639249i \(0.779245\pi\)
\(234\) 0 0
\(235\) 6831.27 1.89627
\(236\) 352.761 0.0972999
\(237\) 0 0
\(238\) −785.531 −0.213943
\(239\) 370.090 0.100164 0.0500819 0.998745i \(-0.484052\pi\)
0.0500819 + 0.998745i \(0.484052\pi\)
\(240\) 0 0
\(241\) −1364.30 −0.364658 −0.182329 0.983238i \(-0.558364\pi\)
−0.182329 + 0.983238i \(0.558364\pi\)
\(242\) 268.162 0.0712317
\(243\) 0 0
\(244\) −339.501 −0.0890751
\(245\) 1079.93 0.281609
\(246\) 0 0
\(247\) 156.420 0.0402947
\(248\) −5838.52 −1.49495
\(249\) 0 0
\(250\) 11514.2 2.91290
\(251\) 3715.37 0.934311 0.467155 0.884175i \(-0.345279\pi\)
0.467155 + 0.884175i \(0.345279\pi\)
\(252\) 0 0
\(253\) −1895.73 −0.471080
\(254\) 3888.00 0.960451
\(255\) 0 0
\(256\) −3945.82 −0.963335
\(257\) −450.250 −0.109283 −0.0546417 0.998506i \(-0.517402\pi\)
−0.0546417 + 0.998506i \(0.517402\pi\)
\(258\) 0 0
\(259\) −1449.43 −0.347734
\(260\) −188.435 −0.0449471
\(261\) 0 0
\(262\) 4576.88 1.07924
\(263\) −1842.16 −0.431910 −0.215955 0.976403i \(-0.569286\pi\)
−0.215955 + 0.976403i \(0.569286\pi\)
\(264\) 0 0
\(265\) 10586.9 2.45415
\(266\) −876.546 −0.202047
\(267\) 0 0
\(268\) 1752.77 0.399506
\(269\) −2039.63 −0.462298 −0.231149 0.972918i \(-0.574249\pi\)
−0.231149 + 0.972918i \(0.574249\pi\)
\(270\) 0 0
\(271\) 7810.34 1.75072 0.875359 0.483473i \(-0.160625\pi\)
0.875359 + 0.483473i \(0.160625\pi\)
\(272\) −1506.63 −0.335857
\(273\) 0 0
\(274\) −1458.86 −0.321654
\(275\) −3968.09 −0.870126
\(276\) 0 0
\(277\) 6066.15 1.31581 0.657905 0.753101i \(-0.271443\pi\)
0.657905 + 0.753101i \(0.271443\pi\)
\(278\) −1560.93 −0.336756
\(279\) 0 0
\(280\) 3791.21 0.809172
\(281\) 4527.28 0.961121 0.480560 0.876962i \(-0.340433\pi\)
0.480560 + 0.876962i \(0.340433\pi\)
\(282\) 0 0
\(283\) −3694.07 −0.775935 −0.387968 0.921673i \(-0.626823\pi\)
−0.387968 + 0.921673i \(0.626823\pi\)
\(284\) −2411.16 −0.503788
\(285\) 0 0
\(286\) −67.4889 −0.0139535
\(287\) 2705.60 0.556468
\(288\) 0 0
\(289\) −2349.06 −0.478131
\(290\) −13774.5 −2.78920
\(291\) 0 0
\(292\) 1871.07 0.374986
\(293\) 902.927 0.180033 0.0900163 0.995940i \(-0.471308\pi\)
0.0900163 + 0.995940i \(0.471308\pi\)
\(294\) 0 0
\(295\) −2517.36 −0.496836
\(296\) −5088.37 −0.999175
\(297\) 0 0
\(298\) −2762.60 −0.537025
\(299\) 477.102 0.0922793
\(300\) 0 0
\(301\) 128.736 0.0246520
\(302\) 2520.05 0.480173
\(303\) 0 0
\(304\) −1681.20 −0.317181
\(305\) 2422.74 0.454838
\(306\) 0 0
\(307\) −3119.31 −0.579898 −0.289949 0.957042i \(-0.593638\pi\)
−0.289949 + 0.957042i \(0.593638\pi\)
\(308\) −237.807 −0.0439945
\(309\) 0 0
\(310\) 11604.7 2.12614
\(311\) −3520.52 −0.641898 −0.320949 0.947097i \(-0.604002\pi\)
−0.320949 + 0.947097i \(0.604002\pi\)
\(312\) 0 0
\(313\) −10174.8 −1.83742 −0.918709 0.394935i \(-0.870767\pi\)
−0.918709 + 0.394935i \(0.870767\pi\)
\(314\) −288.789 −0.0519023
\(315\) 0 0
\(316\) −2120.54 −0.377499
\(317\) −3907.40 −0.692307 −0.346153 0.938178i \(-0.612512\pi\)
−0.346153 + 0.938178i \(0.612512\pi\)
\(318\) 0 0
\(319\) 3102.12 0.544469
\(320\) 11627.7 2.03128
\(321\) 0 0
\(322\) −2673.57 −0.462710
\(323\) 2861.01 0.492851
\(324\) 0 0
\(325\) 998.657 0.170448
\(326\) −2011.95 −0.341815
\(327\) 0 0
\(328\) 9498.29 1.59895
\(329\) −2169.70 −0.363585
\(330\) 0 0
\(331\) 9015.12 1.49703 0.748513 0.663120i \(-0.230768\pi\)
0.748513 + 0.663120i \(0.230768\pi\)
\(332\) 978.908 0.161821
\(333\) 0 0
\(334\) −8221.57 −1.34690
\(335\) −12508.1 −2.03997
\(336\) 0 0
\(337\) 2727.61 0.440898 0.220449 0.975399i \(-0.429248\pi\)
0.220449 + 0.975399i \(0.429248\pi\)
\(338\) −4852.03 −0.780816
\(339\) 0 0
\(340\) −3446.58 −0.549756
\(341\) −2613.46 −0.415034
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 451.943 0.0708347
\(345\) 0 0
\(346\) 4814.32 0.748033
\(347\) 919.041 0.142181 0.0710903 0.997470i \(-0.477352\pi\)
0.0710903 + 0.997470i \(0.477352\pi\)
\(348\) 0 0
\(349\) 1634.89 0.250755 0.125378 0.992109i \(-0.459986\pi\)
0.125378 + 0.992109i \(0.459986\pi\)
\(350\) −5596.26 −0.854664
\(351\) 0 0
\(352\) −1437.17 −0.217618
\(353\) −4994.77 −0.753101 −0.376551 0.926396i \(-0.622890\pi\)
−0.376551 + 0.926396i \(0.622890\pi\)
\(354\) 0 0
\(355\) 17206.4 2.57246
\(356\) −4976.68 −0.740909
\(357\) 0 0
\(358\) −4762.95 −0.703156
\(359\) 9765.04 1.43560 0.717798 0.696251i \(-0.245150\pi\)
0.717798 + 0.696251i \(0.245150\pi\)
\(360\) 0 0
\(361\) −3666.50 −0.534554
\(362\) −2400.51 −0.348531
\(363\) 0 0
\(364\) 59.8495 0.00861804
\(365\) −13352.3 −1.91477
\(366\) 0 0
\(367\) −9537.33 −1.35652 −0.678262 0.734820i \(-0.737267\pi\)
−0.678262 + 0.734820i \(0.737267\pi\)
\(368\) −5127.86 −0.726380
\(369\) 0 0
\(370\) 10113.7 1.42104
\(371\) −3362.55 −0.470552
\(372\) 0 0
\(373\) −8576.29 −1.19052 −0.595259 0.803534i \(-0.702951\pi\)
−0.595259 + 0.803534i \(0.702951\pi\)
\(374\) −1234.41 −0.170667
\(375\) 0 0
\(376\) −7616.97 −1.04472
\(377\) −780.718 −0.106655
\(378\) 0 0
\(379\) −13710.9 −1.85826 −0.929131 0.369752i \(-0.879443\pi\)
−0.929131 + 0.369752i \(0.879443\pi\)
\(380\) −3845.91 −0.519187
\(381\) 0 0
\(382\) −6311.20 −0.845311
\(383\) 8428.82 1.12452 0.562262 0.826959i \(-0.309931\pi\)
0.562262 + 0.826959i \(0.309931\pi\)
\(384\) 0 0
\(385\) 1697.03 0.224646
\(386\) −9454.26 −1.24666
\(387\) 0 0
\(388\) 3803.28 0.497635
\(389\) 1757.23 0.229036 0.114518 0.993421i \(-0.463468\pi\)
0.114518 + 0.993421i \(0.463468\pi\)
\(390\) 0 0
\(391\) 8726.44 1.12868
\(392\) −1204.14 −0.155148
\(393\) 0 0
\(394\) −6828.84 −0.873178
\(395\) 15132.6 1.92760
\(396\) 0 0
\(397\) 4018.53 0.508021 0.254010 0.967201i \(-0.418250\pi\)
0.254010 + 0.967201i \(0.418250\pi\)
\(398\) −4167.39 −0.524855
\(399\) 0 0
\(400\) −10733.5 −1.34169
\(401\) −3344.16 −0.416458 −0.208229 0.978080i \(-0.566770\pi\)
−0.208229 + 0.978080i \(0.566770\pi\)
\(402\) 0 0
\(403\) 657.734 0.0813005
\(404\) 3658.33 0.450516
\(405\) 0 0
\(406\) 4374.97 0.534794
\(407\) −2277.67 −0.277396
\(408\) 0 0
\(409\) −13540.8 −1.63704 −0.818521 0.574477i \(-0.805206\pi\)
−0.818521 + 0.574477i \(0.805206\pi\)
\(410\) −18878.9 −2.27405
\(411\) 0 0
\(412\) 2022.40 0.241836
\(413\) 799.547 0.0952619
\(414\) 0 0
\(415\) −6985.66 −0.826295
\(416\) 361.696 0.0426288
\(417\) 0 0
\(418\) −1377.43 −0.161178
\(419\) 7286.55 0.849573 0.424786 0.905294i \(-0.360349\pi\)
0.424786 + 0.905294i \(0.360349\pi\)
\(420\) 0 0
\(421\) −10778.5 −1.24777 −0.623886 0.781515i \(-0.714447\pi\)
−0.623886 + 0.781515i \(0.714447\pi\)
\(422\) −3066.68 −0.353753
\(423\) 0 0
\(424\) −11804.6 −1.35208
\(425\) 18266.0 2.08477
\(426\) 0 0
\(427\) −769.494 −0.0872094
\(428\) −2020.83 −0.228225
\(429\) 0 0
\(430\) −898.285 −0.100742
\(431\) 8547.58 0.955272 0.477636 0.878558i \(-0.341494\pi\)
0.477636 + 0.878558i \(0.341494\pi\)
\(432\) 0 0
\(433\) 7140.86 0.792535 0.396267 0.918135i \(-0.370305\pi\)
0.396267 + 0.918135i \(0.370305\pi\)
\(434\) −3685.80 −0.407659
\(435\) 0 0
\(436\) −5521.39 −0.606483
\(437\) 9737.52 1.06592
\(438\) 0 0
\(439\) −2411.65 −0.262191 −0.131095 0.991370i \(-0.541849\pi\)
−0.131095 + 0.991370i \(0.541849\pi\)
\(440\) 5957.62 0.645496
\(441\) 0 0
\(442\) 310.666 0.0334318
\(443\) 12210.1 1.30953 0.654764 0.755834i \(-0.272768\pi\)
0.654764 + 0.755834i \(0.272768\pi\)
\(444\) 0 0
\(445\) 35514.5 3.78325
\(446\) 3469.61 0.368365
\(447\) 0 0
\(448\) −3693.12 −0.389472
\(449\) 4214.35 0.442956 0.221478 0.975165i \(-0.428912\pi\)
0.221478 + 0.975165i \(0.428912\pi\)
\(450\) 0 0
\(451\) 4251.65 0.443908
\(452\) 2547.84 0.265134
\(453\) 0 0
\(454\) 5468.33 0.565290
\(455\) −427.096 −0.0440057
\(456\) 0 0
\(457\) 169.614 0.0173615 0.00868075 0.999962i \(-0.497237\pi\)
0.00868075 + 0.999962i \(0.497237\pi\)
\(458\) −2869.13 −0.292719
\(459\) 0 0
\(460\) −11730.5 −1.18900
\(461\) 813.238 0.0821611 0.0410805 0.999156i \(-0.486920\pi\)
0.0410805 + 0.999156i \(0.486920\pi\)
\(462\) 0 0
\(463\) −12681.2 −1.27289 −0.636443 0.771324i \(-0.719595\pi\)
−0.636443 + 0.771324i \(0.719595\pi\)
\(464\) 8391.10 0.839541
\(465\) 0 0
\(466\) −12122.8 −1.20510
\(467\) 7297.16 0.723067 0.361534 0.932359i \(-0.382253\pi\)
0.361534 + 0.932359i \(0.382253\pi\)
\(468\) 0 0
\(469\) 3972.73 0.391138
\(470\) 15139.5 1.48582
\(471\) 0 0
\(472\) 2806.90 0.273724
\(473\) 202.300 0.0196655
\(474\) 0 0
\(475\) 20382.3 1.96885
\(476\) 1094.68 0.105409
\(477\) 0 0
\(478\) 820.199 0.0784833
\(479\) −9874.50 −0.941915 −0.470958 0.882156i \(-0.656092\pi\)
−0.470958 + 0.882156i \(0.656092\pi\)
\(480\) 0 0
\(481\) 573.227 0.0543387
\(482\) −3023.59 −0.285727
\(483\) 0 0
\(484\) −373.697 −0.0350955
\(485\) −27140.9 −2.54104
\(486\) 0 0
\(487\) 4995.82 0.464851 0.232425 0.972614i \(-0.425334\pi\)
0.232425 + 0.972614i \(0.425334\pi\)
\(488\) −2701.39 −0.250586
\(489\) 0 0
\(490\) 2393.35 0.220655
\(491\) −900.456 −0.0827638 −0.0413819 0.999143i \(-0.513176\pi\)
−0.0413819 + 0.999143i \(0.513176\pi\)
\(492\) 0 0
\(493\) −14279.7 −1.30452
\(494\) 346.661 0.0315729
\(495\) 0 0
\(496\) −7069.28 −0.639960
\(497\) −5464.99 −0.493236
\(498\) 0 0
\(499\) 11471.6 1.02914 0.514568 0.857450i \(-0.327952\pi\)
0.514568 + 0.857450i \(0.327952\pi\)
\(500\) −16045.7 −1.43517
\(501\) 0 0
\(502\) 8234.04 0.732078
\(503\) 4206.65 0.372893 0.186447 0.982465i \(-0.440303\pi\)
0.186447 + 0.982465i \(0.440303\pi\)
\(504\) 0 0
\(505\) −26106.5 −2.30044
\(506\) −4201.33 −0.369114
\(507\) 0 0
\(508\) −5418.12 −0.473209
\(509\) 16162.9 1.40748 0.703742 0.710456i \(-0.251511\pi\)
0.703742 + 0.710456i \(0.251511\pi\)
\(510\) 0 0
\(511\) 4240.85 0.367132
\(512\) −9737.04 −0.840470
\(513\) 0 0
\(514\) −997.849 −0.0856289
\(515\) −14432.2 −1.23487
\(516\) 0 0
\(517\) −3409.53 −0.290040
\(518\) −3212.24 −0.272467
\(519\) 0 0
\(520\) −1499.37 −0.126445
\(521\) −11332.7 −0.952964 −0.476482 0.879184i \(-0.658088\pi\)
−0.476482 + 0.879184i \(0.658088\pi\)
\(522\) 0 0
\(523\) 14087.3 1.17781 0.588904 0.808203i \(-0.299560\pi\)
0.588904 + 0.808203i \(0.299560\pi\)
\(524\) −6378.12 −0.531736
\(525\) 0 0
\(526\) −4082.61 −0.338423
\(527\) 12030.3 0.994399
\(528\) 0 0
\(529\) 17533.6 1.44108
\(530\) 23462.9 1.92295
\(531\) 0 0
\(532\) 1221.51 0.0995474
\(533\) −1070.02 −0.0869566
\(534\) 0 0
\(535\) 14421.0 1.16537
\(536\) 13946.7 1.12389
\(537\) 0 0
\(538\) −4520.25 −0.362234
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −6339.91 −0.503833 −0.251917 0.967749i \(-0.581061\pi\)
−0.251917 + 0.967749i \(0.581061\pi\)
\(542\) 17309.4 1.37177
\(543\) 0 0
\(544\) 6615.60 0.521400
\(545\) 39401.6 3.09684
\(546\) 0 0
\(547\) 959.649 0.0750121 0.0375061 0.999296i \(-0.488059\pi\)
0.0375061 + 0.999296i \(0.488059\pi\)
\(548\) 2033.00 0.158477
\(549\) 0 0
\(550\) −8794.12 −0.681786
\(551\) −15934.2 −1.23198
\(552\) 0 0
\(553\) −4806.30 −0.369592
\(554\) 13443.9 1.03100
\(555\) 0 0
\(556\) 2175.23 0.165918
\(557\) 17184.0 1.30720 0.653598 0.756842i \(-0.273259\pi\)
0.653598 + 0.756842i \(0.273259\pi\)
\(558\) 0 0
\(559\) −50.9133 −0.00385224
\(560\) 4590.40 0.346393
\(561\) 0 0
\(562\) 10033.4 0.753086
\(563\) −6598.36 −0.493939 −0.246969 0.969023i \(-0.579435\pi\)
−0.246969 + 0.969023i \(0.579435\pi\)
\(564\) 0 0
\(565\) −18181.8 −1.35383
\(566\) −8186.84 −0.607984
\(567\) 0 0
\(568\) −19185.4 −1.41726
\(569\) −17565.4 −1.29416 −0.647081 0.762422i \(-0.724010\pi\)
−0.647081 + 0.762422i \(0.724010\pi\)
\(570\) 0 0
\(571\) −10179.7 −0.746074 −0.373037 0.927817i \(-0.621684\pi\)
−0.373037 + 0.927817i \(0.621684\pi\)
\(572\) 94.0492 0.00687482
\(573\) 0 0
\(574\) 5996.18 0.436020
\(575\) 62168.6 4.50889
\(576\) 0 0
\(577\) 6287.76 0.453662 0.226831 0.973934i \(-0.427164\pi\)
0.226831 + 0.973934i \(0.427164\pi\)
\(578\) −5206.01 −0.374639
\(579\) 0 0
\(580\) 19195.5 1.37423
\(581\) 2218.74 0.158432
\(582\) 0 0
\(583\) −5284.01 −0.375371
\(584\) 14888.0 1.05491
\(585\) 0 0
\(586\) 2001.08 0.141064
\(587\) −18601.0 −1.30791 −0.653957 0.756532i \(-0.726892\pi\)
−0.653957 + 0.756532i \(0.726892\pi\)
\(588\) 0 0
\(589\) 13424.2 0.939106
\(590\) −5579.01 −0.389295
\(591\) 0 0
\(592\) −6161.00 −0.427729
\(593\) 6362.24 0.440583 0.220292 0.975434i \(-0.429299\pi\)
0.220292 + 0.975434i \(0.429299\pi\)
\(594\) 0 0
\(595\) −7811.82 −0.538241
\(596\) 3849.83 0.264589
\(597\) 0 0
\(598\) 1057.36 0.0723054
\(599\) −12238.1 −0.834787 −0.417393 0.908726i \(-0.637056\pi\)
−0.417393 + 0.908726i \(0.637056\pi\)
\(600\) 0 0
\(601\) −25394.1 −1.72354 −0.861770 0.507300i \(-0.830644\pi\)
−0.861770 + 0.507300i \(0.830644\pi\)
\(602\) 285.307 0.0193160
\(603\) 0 0
\(604\) −3511.81 −0.236579
\(605\) 2666.77 0.179206
\(606\) 0 0
\(607\) 5680.37 0.379834 0.189917 0.981800i \(-0.439178\pi\)
0.189917 + 0.981800i \(0.439178\pi\)
\(608\) 7382.11 0.492408
\(609\) 0 0
\(610\) 5369.30 0.356388
\(611\) 858.084 0.0568157
\(612\) 0 0
\(613\) 682.502 0.0449690 0.0224845 0.999747i \(-0.492842\pi\)
0.0224845 + 0.999747i \(0.492842\pi\)
\(614\) −6913.06 −0.454378
\(615\) 0 0
\(616\) −1892.22 −0.123766
\(617\) 4304.44 0.280859 0.140430 0.990091i \(-0.455152\pi\)
0.140430 + 0.990091i \(0.455152\pi\)
\(618\) 0 0
\(619\) −13022.7 −0.845602 −0.422801 0.906223i \(-0.638953\pi\)
−0.422801 + 0.906223i \(0.638953\pi\)
\(620\) −16171.7 −1.04754
\(621\) 0 0
\(622\) −7802.21 −0.502958
\(623\) −11279.9 −0.725390
\(624\) 0 0
\(625\) 69412.9 4.44242
\(626\) −22549.4 −1.43971
\(627\) 0 0
\(628\) 402.443 0.0255720
\(629\) 10484.6 0.664625
\(630\) 0 0
\(631\) 18156.4 1.14548 0.572739 0.819738i \(-0.305881\pi\)
0.572739 + 0.819738i \(0.305881\pi\)
\(632\) −16873.0 −1.06198
\(633\) 0 0
\(634\) −8659.62 −0.542456
\(635\) 38664.7 2.41632
\(636\) 0 0
\(637\) 135.651 0.00843753
\(638\) 6874.96 0.426618
\(639\) 0 0
\(640\) 2733.62 0.168837
\(641\) −10368.7 −0.638905 −0.319452 0.947602i \(-0.603499\pi\)
−0.319452 + 0.947602i \(0.603499\pi\)
\(642\) 0 0
\(643\) −17679.6 −1.08431 −0.542157 0.840277i \(-0.682392\pi\)
−0.542157 + 0.840277i \(0.682392\pi\)
\(644\) 3725.76 0.227975
\(645\) 0 0
\(646\) 6340.61 0.386173
\(647\) 1774.38 0.107817 0.0539087 0.998546i \(-0.482832\pi\)
0.0539087 + 0.998546i \(0.482832\pi\)
\(648\) 0 0
\(649\) 1256.43 0.0759927
\(650\) 2213.24 0.133554
\(651\) 0 0
\(652\) 2803.76 0.168410
\(653\) 25514.1 1.52901 0.764506 0.644616i \(-0.222983\pi\)
0.764506 + 0.644616i \(0.222983\pi\)
\(654\) 0 0
\(655\) 45515.4 2.71517
\(656\) 11500.5 0.684483
\(657\) 0 0
\(658\) −4808.52 −0.284887
\(659\) 557.327 0.0329444 0.0164722 0.999864i \(-0.494756\pi\)
0.0164722 + 0.999864i \(0.494756\pi\)
\(660\) 0 0
\(661\) 11263.2 0.662768 0.331384 0.943496i \(-0.392484\pi\)
0.331384 + 0.943496i \(0.392484\pi\)
\(662\) 19979.4 1.17299
\(663\) 0 0
\(664\) 7789.11 0.455235
\(665\) −8716.92 −0.508312
\(666\) 0 0
\(667\) −48601.4 −2.82137
\(668\) 11457.2 0.663610
\(669\) 0 0
\(670\) −27720.6 −1.59842
\(671\) −1209.20 −0.0695690
\(672\) 0 0
\(673\) −3615.18 −0.207065 −0.103533 0.994626i \(-0.533015\pi\)
−0.103533 + 0.994626i \(0.533015\pi\)
\(674\) 6044.97 0.345465
\(675\) 0 0
\(676\) 6761.56 0.384704
\(677\) 23421.6 1.32964 0.664820 0.747004i \(-0.268508\pi\)
0.664820 + 0.747004i \(0.268508\pi\)
\(678\) 0 0
\(679\) 8620.30 0.487212
\(680\) −27424.2 −1.54657
\(681\) 0 0
\(682\) −5791.97 −0.325199
\(683\) −29364.9 −1.64512 −0.822559 0.568679i \(-0.807455\pi\)
−0.822559 + 0.568679i \(0.807455\pi\)
\(684\) 0 0
\(685\) −14507.9 −0.809222
\(686\) −760.161 −0.0423077
\(687\) 0 0
\(688\) 547.213 0.0303231
\(689\) 1329.84 0.0735309
\(690\) 0 0
\(691\) −20430.9 −1.12479 −0.562394 0.826869i \(-0.690120\pi\)
−0.562394 + 0.826869i \(0.690120\pi\)
\(692\) −6709.00 −0.368552
\(693\) 0 0
\(694\) 2036.79 0.111406
\(695\) −15522.8 −0.847215
\(696\) 0 0
\(697\) −19571.3 −1.06358
\(698\) 3623.26 0.196479
\(699\) 0 0
\(700\) 7798.67 0.421089
\(701\) 6673.16 0.359546 0.179773 0.983708i \(-0.442464\pi\)
0.179773 + 0.983708i \(0.442464\pi\)
\(702\) 0 0
\(703\) 11699.4 0.627669
\(704\) −5803.47 −0.310691
\(705\) 0 0
\(706\) −11069.5 −0.590092
\(707\) 8291.75 0.441080
\(708\) 0 0
\(709\) −14706.4 −0.778999 −0.389500 0.921027i \(-0.627352\pi\)
−0.389500 + 0.921027i \(0.627352\pi\)
\(710\) 38133.1 2.01565
\(711\) 0 0
\(712\) −39599.2 −2.08433
\(713\) 40945.4 2.15066
\(714\) 0 0
\(715\) −671.152 −0.0351044
\(716\) 6637.41 0.346441
\(717\) 0 0
\(718\) 21641.4 1.12486
\(719\) 35481.4 1.84038 0.920189 0.391473i \(-0.128035\pi\)
0.920189 + 0.391473i \(0.128035\pi\)
\(720\) 0 0
\(721\) 4583.85 0.236771
\(722\) −8125.75 −0.418849
\(723\) 0 0
\(724\) 3345.24 0.171719
\(725\) −101731. −5.21132
\(726\) 0 0
\(727\) 8818.93 0.449898 0.224949 0.974371i \(-0.427778\pi\)
0.224949 + 0.974371i \(0.427778\pi\)
\(728\) 476.219 0.0242443
\(729\) 0 0
\(730\) −29591.5 −1.50031
\(731\) −931.231 −0.0471174
\(732\) 0 0
\(733\) −645.865 −0.0325451 −0.0162726 0.999868i \(-0.505180\pi\)
−0.0162726 + 0.999868i \(0.505180\pi\)
\(734\) −21136.7 −1.06290
\(735\) 0 0
\(736\) 22516.4 1.12767
\(737\) 6242.87 0.312020
\(738\) 0 0
\(739\) 6264.49 0.311831 0.155915 0.987770i \(-0.450167\pi\)
0.155915 + 0.987770i \(0.450167\pi\)
\(740\) −14093.9 −0.700140
\(741\) 0 0
\(742\) −7452.12 −0.368701
\(743\) −4320.14 −0.213312 −0.106656 0.994296i \(-0.534014\pi\)
−0.106656 + 0.994296i \(0.534014\pi\)
\(744\) 0 0
\(745\) −27473.1 −1.35105
\(746\) −19006.9 −0.932830
\(747\) 0 0
\(748\) 1720.21 0.0840870
\(749\) −4580.29 −0.223445
\(750\) 0 0
\(751\) 32107.5 1.56008 0.780041 0.625729i \(-0.215198\pi\)
0.780041 + 0.625729i \(0.215198\pi\)
\(752\) −9222.63 −0.447227
\(753\) 0 0
\(754\) −1730.24 −0.0835697
\(755\) 25060.9 1.20803
\(756\) 0 0
\(757\) 25385.0 1.21880 0.609401 0.792862i \(-0.291410\pi\)
0.609401 + 0.792862i \(0.291410\pi\)
\(758\) −30386.2 −1.45604
\(759\) 0 0
\(760\) −30601.7 −1.46058
\(761\) −5092.57 −0.242583 −0.121291 0.992617i \(-0.538704\pi\)
−0.121291 + 0.992617i \(0.538704\pi\)
\(762\) 0 0
\(763\) −12514.5 −0.593780
\(764\) 8794.98 0.416480
\(765\) 0 0
\(766\) 18680.0 0.881119
\(767\) −316.209 −0.0148861
\(768\) 0 0
\(769\) 10162.4 0.476547 0.238273 0.971198i \(-0.423419\pi\)
0.238273 + 0.971198i \(0.423419\pi\)
\(770\) 3760.99 0.176021
\(771\) 0 0
\(772\) 13175.0 0.614221
\(773\) 14229.8 0.662108 0.331054 0.943612i \(-0.392596\pi\)
0.331054 + 0.943612i \(0.392596\pi\)
\(774\) 0 0
\(775\) 85705.9 3.97245
\(776\) 30262.5 1.39995
\(777\) 0 0
\(778\) 3894.40 0.179461
\(779\) −21838.9 −1.00444
\(780\) 0 0
\(781\) −8587.84 −0.393466
\(782\) 19339.6 0.884379
\(783\) 0 0
\(784\) −1457.97 −0.0664163
\(785\) −2871.90 −0.130576
\(786\) 0 0
\(787\) 13391.2 0.606537 0.303269 0.952905i \(-0.401922\pi\)
0.303269 + 0.952905i \(0.401922\pi\)
\(788\) 9516.34 0.430210
\(789\) 0 0
\(790\) 33537.0 1.51037
\(791\) 5774.79 0.259580
\(792\) 0 0
\(793\) 304.323 0.0136278
\(794\) 8905.91 0.398059
\(795\) 0 0
\(796\) 5807.46 0.258593
\(797\) −8830.58 −0.392466 −0.196233 0.980557i \(-0.562871\pi\)
−0.196233 + 0.980557i \(0.562871\pi\)
\(798\) 0 0
\(799\) 15694.8 0.694922
\(800\) 47130.7 2.08290
\(801\) 0 0
\(802\) −7411.38 −0.326315
\(803\) 6664.20 0.292870
\(804\) 0 0
\(805\) −26587.7 −1.16409
\(806\) 1457.68 0.0637029
\(807\) 0 0
\(808\) 29109.1 1.26739
\(809\) 44283.6 1.92451 0.962255 0.272149i \(-0.0877343\pi\)
0.962255 + 0.272149i \(0.0877343\pi\)
\(810\) 0 0
\(811\) −42502.7 −1.84029 −0.920143 0.391582i \(-0.871928\pi\)
−0.920143 + 0.391582i \(0.871928\pi\)
\(812\) −6096.75 −0.263490
\(813\) 0 0
\(814\) −5047.81 −0.217353
\(815\) −20008.1 −0.859942
\(816\) 0 0
\(817\) −1039.13 −0.0444975
\(818\) −30009.3 −1.28270
\(819\) 0 0
\(820\) 26308.7 1.12041
\(821\) −20018.3 −0.850968 −0.425484 0.904966i \(-0.639896\pi\)
−0.425484 + 0.904966i \(0.639896\pi\)
\(822\) 0 0
\(823\) −31778.1 −1.34595 −0.672973 0.739667i \(-0.734983\pi\)
−0.672973 + 0.739667i \(0.734983\pi\)
\(824\) 16092.1 0.680334
\(825\) 0 0
\(826\) 1771.97 0.0746424
\(827\) 9416.88 0.395958 0.197979 0.980206i \(-0.436562\pi\)
0.197979 + 0.980206i \(0.436562\pi\)
\(828\) 0 0
\(829\) −30106.3 −1.26132 −0.630661 0.776058i \(-0.717216\pi\)
−0.630661 + 0.776058i \(0.717216\pi\)
\(830\) −15481.7 −0.647443
\(831\) 0 0
\(832\) 1460.57 0.0608609
\(833\) 2481.13 0.103201
\(834\) 0 0
\(835\) −81760.4 −3.38855
\(836\) 1919.52 0.0794114
\(837\) 0 0
\(838\) 16148.5 0.665682
\(839\) 45186.6 1.85937 0.929687 0.368350i \(-0.120077\pi\)
0.929687 + 0.368350i \(0.120077\pi\)
\(840\) 0 0
\(841\) 55141.3 2.26091
\(842\) −23887.4 −0.977691
\(843\) 0 0
\(844\) 4273.58 0.174292
\(845\) −48251.6 −1.96439
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −14293.0 −0.578802
\(849\) 0 0
\(850\) 40481.2 1.63352
\(851\) 35684.7 1.43743
\(852\) 0 0
\(853\) −2401.55 −0.0963980 −0.0481990 0.998838i \(-0.515348\pi\)
−0.0481990 + 0.998838i \(0.515348\pi\)
\(854\) −1705.36 −0.0683328
\(855\) 0 0
\(856\) −16079.6 −0.642043
\(857\) 4218.83 0.168159 0.0840797 0.996459i \(-0.473205\pi\)
0.0840797 + 0.996459i \(0.473205\pi\)
\(858\) 0 0
\(859\) −15508.3 −0.615992 −0.307996 0.951388i \(-0.599658\pi\)
−0.307996 + 0.951388i \(0.599658\pi\)
\(860\) 1251.81 0.0496352
\(861\) 0 0
\(862\) 18943.2 0.748503
\(863\) −18753.2 −0.739706 −0.369853 0.929090i \(-0.620592\pi\)
−0.369853 + 0.929090i \(0.620592\pi\)
\(864\) 0 0
\(865\) 47876.6 1.88191
\(866\) 15825.6 0.620990
\(867\) 0 0
\(868\) 5136.35 0.200851
\(869\) −7552.75 −0.294833
\(870\) 0 0
\(871\) −1571.16 −0.0611213
\(872\) −43933.4 −1.70616
\(873\) 0 0
\(874\) 21580.4 0.835203
\(875\) −36368.2 −1.40511
\(876\) 0 0
\(877\) 45435.5 1.74943 0.874713 0.484641i \(-0.161050\pi\)
0.874713 + 0.484641i \(0.161050\pi\)
\(878\) −5344.73 −0.205439
\(879\) 0 0
\(880\) 7213.49 0.276326
\(881\) −20328.9 −0.777410 −0.388705 0.921362i \(-0.627078\pi\)
−0.388705 + 0.921362i \(0.627078\pi\)
\(882\) 0 0
\(883\) 18438.6 0.702728 0.351364 0.936239i \(-0.385718\pi\)
0.351364 + 0.936239i \(0.385718\pi\)
\(884\) −432.929 −0.0164717
\(885\) 0 0
\(886\) 27060.2 1.02608
\(887\) 35240.4 1.33400 0.667000 0.745058i \(-0.267578\pi\)
0.667000 + 0.745058i \(0.267578\pi\)
\(888\) 0 0
\(889\) −12280.4 −0.463298
\(890\) 78707.6 2.96436
\(891\) 0 0
\(892\) −4835.08 −0.181491
\(893\) 17513.3 0.656281
\(894\) 0 0
\(895\) −47365.7 −1.76901
\(896\) −868.232 −0.0323723
\(897\) 0 0
\(898\) 9339.89 0.347078
\(899\) −67002.1 −2.48570
\(900\) 0 0
\(901\) 24323.4 0.899368
\(902\) 9422.57 0.347824
\(903\) 0 0
\(904\) 20273.0 0.745875
\(905\) −23872.2 −0.876839
\(906\) 0 0
\(907\) −27735.7 −1.01538 −0.507690 0.861540i \(-0.669500\pi\)
−0.507690 + 0.861540i \(0.669500\pi\)
\(908\) −7620.40 −0.278515
\(909\) 0 0
\(910\) −946.536 −0.0344806
\(911\) 12663.6 0.460554 0.230277 0.973125i \(-0.426037\pi\)
0.230277 + 0.973125i \(0.426037\pi\)
\(912\) 0 0
\(913\) 3486.59 0.126385
\(914\) 375.901 0.0136036
\(915\) 0 0
\(916\) 3998.28 0.144221
\(917\) −14456.3 −0.520598
\(918\) 0 0
\(919\) −16398.4 −0.588612 −0.294306 0.955711i \(-0.595088\pi\)
−0.294306 + 0.955711i \(0.595088\pi\)
\(920\) −93339.0 −3.34489
\(921\) 0 0
\(922\) 1802.31 0.0643773
\(923\) 2161.32 0.0770756
\(924\) 0 0
\(925\) 74694.2 2.65506
\(926\) −28104.3 −0.997369
\(927\) 0 0
\(928\) −36845.2 −1.30335
\(929\) −42073.8 −1.48589 −0.742947 0.669350i \(-0.766573\pi\)
−0.742947 + 0.669350i \(0.766573\pi\)
\(930\) 0 0
\(931\) 2768.61 0.0974623
\(932\) 16893.7 0.593745
\(933\) 0 0
\(934\) 16172.1 0.566559
\(935\) −12275.7 −0.429368
\(936\) 0 0
\(937\) 11771.2 0.410402 0.205201 0.978720i \(-0.434215\pi\)
0.205201 + 0.978720i \(0.434215\pi\)
\(938\) 8804.42 0.306476
\(939\) 0 0
\(940\) −21097.7 −0.732055
\(941\) 6056.53 0.209817 0.104908 0.994482i \(-0.466545\pi\)
0.104908 + 0.994482i \(0.466545\pi\)
\(942\) 0 0
\(943\) −66611.3 −2.30028
\(944\) 3398.59 0.117177
\(945\) 0 0
\(946\) 448.340 0.0154089
\(947\) −2545.73 −0.0873551 −0.0436775 0.999046i \(-0.513907\pi\)
−0.0436775 + 0.999046i \(0.513907\pi\)
\(948\) 0 0
\(949\) −1677.19 −0.0573699
\(950\) 45171.5 1.54269
\(951\) 0 0
\(952\) 8710.29 0.296536
\(953\) −17699.0 −0.601602 −0.300801 0.953687i \(-0.597254\pi\)
−0.300801 + 0.953687i \(0.597254\pi\)
\(954\) 0 0
\(955\) −62762.5 −2.12665
\(956\) −1142.99 −0.0386683
\(957\) 0 0
\(958\) −21884.0 −0.738037
\(959\) 4607.89 0.155158
\(960\) 0 0
\(961\) 26656.5 0.894784
\(962\) 1270.39 0.0425770
\(963\) 0 0
\(964\) 4213.52 0.140776
\(965\) −94019.1 −3.13635
\(966\) 0 0
\(967\) −48183.5 −1.60235 −0.801177 0.598427i \(-0.795793\pi\)
−0.801177 + 0.598427i \(0.795793\pi\)
\(968\) −2973.48 −0.0987308
\(969\) 0 0
\(970\) −60149.9 −1.99103
\(971\) 9670.55 0.319612 0.159806 0.987148i \(-0.448913\pi\)
0.159806 + 0.987148i \(0.448913\pi\)
\(972\) 0 0
\(973\) 4930.25 0.162443
\(974\) 11071.8 0.364234
\(975\) 0 0
\(976\) −3270.84 −0.107272
\(977\) 14624.6 0.478897 0.239449 0.970909i \(-0.423033\pi\)
0.239449 + 0.970909i \(0.423033\pi\)
\(978\) 0 0
\(979\) −17725.5 −0.578661
\(980\) −3335.26 −0.108715
\(981\) 0 0
\(982\) −1995.60 −0.0648495
\(983\) 11183.6 0.362871 0.181436 0.983403i \(-0.441926\pi\)
0.181436 + 0.983403i \(0.441926\pi\)
\(984\) 0 0
\(985\) −67910.3 −2.19675
\(986\) −31646.9 −1.02215
\(987\) 0 0
\(988\) −483.090 −0.0155558
\(989\) −3169.47 −0.101904
\(990\) 0 0
\(991\) 18858.3 0.604493 0.302247 0.953230i \(-0.402263\pi\)
0.302247 + 0.953230i \(0.402263\pi\)
\(992\) 31041.1 0.993505
\(993\) 0 0
\(994\) −12111.6 −0.386475
\(995\) −41443.1 −1.32044
\(996\) 0 0
\(997\) 156.252 0.00496345 0.00248172 0.999997i \(-0.499210\pi\)
0.00248172 + 0.999997i \(0.499210\pi\)
\(998\) 25423.5 0.806379
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.t.1.6 yes 8
3.2 odd 2 693.4.a.s.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.3 8 3.2 odd 2
693.4.a.t.1.6 yes 8 1.1 even 1 trivial