Properties

Label 693.4.a.t.1.4
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.315819\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.315819 q^{2} -7.90026 q^{4} +5.90817 q^{5} -7.00000 q^{7} -5.02161 q^{8} +O(q^{10})\) \(q+0.315819 q^{2} -7.90026 q^{4} +5.90817 q^{5} -7.00000 q^{7} -5.02161 q^{8} +1.86591 q^{10} -11.0000 q^{11} +2.91171 q^{13} -2.21073 q^{14} +61.6161 q^{16} -60.0496 q^{17} +69.8907 q^{19} -46.6760 q^{20} -3.47401 q^{22} -120.487 q^{23} -90.0936 q^{25} +0.919575 q^{26} +55.3018 q^{28} +174.527 q^{29} +44.5860 q^{31} +59.6324 q^{32} -18.9648 q^{34} -41.3572 q^{35} -271.813 q^{37} +22.0728 q^{38} -29.6685 q^{40} +355.169 q^{41} +545.964 q^{43} +86.9028 q^{44} -38.0521 q^{46} -413.419 q^{47} +49.0000 q^{49} -28.4533 q^{50} -23.0033 q^{52} +709.617 q^{53} -64.9898 q^{55} +35.1512 q^{56} +55.1191 q^{58} +358.442 q^{59} -574.641 q^{61} +14.0811 q^{62} -474.096 q^{64} +17.2029 q^{65} +457.221 q^{67} +474.407 q^{68} -13.0614 q^{70} +87.8142 q^{71} +403.682 q^{73} -85.8438 q^{74} -552.154 q^{76} +77.0000 q^{77} -195.205 q^{79} +364.038 q^{80} +112.169 q^{82} +1407.01 q^{83} -354.783 q^{85} +172.426 q^{86} +55.2377 q^{88} +1250.19 q^{89} -20.3820 q^{91} +951.879 q^{92} -130.566 q^{94} +412.926 q^{95} +1773.32 q^{97} +15.4751 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8} - 13 q^{10} - 88 q^{11} - 148 q^{13} - 14 q^{14} + 266 q^{16} + 114 q^{17} + 58 q^{19} + 291 q^{20} - 22 q^{22} + 246 q^{23} + 244 q^{25} + 305 q^{26} - 210 q^{28} - 72 q^{29} + 252 q^{31} + 1272 q^{32} + 630 q^{34} - 70 q^{35} - 80 q^{37} + 1885 q^{38} - 342 q^{40} + 682 q^{41} - 106 q^{43} - 330 q^{44} + 120 q^{46} + 828 q^{47} + 392 q^{49} + 801 q^{50} - 1681 q^{52} + 462 q^{53} - 110 q^{55} - 105 q^{56} - 1087 q^{58} + 626 q^{59} - 854 q^{61} + 1350 q^{62} + 2997 q^{64} + 22 q^{65} + 130 q^{67} + 2202 q^{68} + 91 q^{70} + 326 q^{71} - 390 q^{73} - 359 q^{74} + 2041 q^{76} + 616 q^{77} - 508 q^{79} + 4391 q^{80} + 1528 q^{82} + 1596 q^{83} - 880 q^{85} - 414 q^{86} - 165 q^{88} + 4324 q^{89} + 1036 q^{91} + 2092 q^{92} - 1685 q^{94} + 1076 q^{95} - 964 q^{97} + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.315819 0.111659 0.0558295 0.998440i \(-0.482220\pi\)
0.0558295 + 0.998440i \(0.482220\pi\)
\(3\) 0 0
\(4\) −7.90026 −0.987532
\(5\) 5.90817 0.528442 0.264221 0.964462i \(-0.414885\pi\)
0.264221 + 0.964462i \(0.414885\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −5.02161 −0.221926
\(9\) 0 0
\(10\) 1.86591 0.0590053
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 2.91171 0.0621203 0.0310601 0.999518i \(-0.490112\pi\)
0.0310601 + 0.999518i \(0.490112\pi\)
\(14\) −2.21073 −0.0422031
\(15\) 0 0
\(16\) 61.6161 0.962752
\(17\) −60.0496 −0.856715 −0.428358 0.903609i \(-0.640908\pi\)
−0.428358 + 0.903609i \(0.640908\pi\)
\(18\) 0 0
\(19\) 69.8907 0.843896 0.421948 0.906620i \(-0.361347\pi\)
0.421948 + 0.906620i \(0.361347\pi\)
\(20\) −46.6760 −0.521854
\(21\) 0 0
\(22\) −3.47401 −0.0336664
\(23\) −120.487 −1.09232 −0.546159 0.837682i \(-0.683910\pi\)
−0.546159 + 0.837682i \(0.683910\pi\)
\(24\) 0 0
\(25\) −90.0936 −0.720749
\(26\) 0.919575 0.00693629
\(27\) 0 0
\(28\) 55.3018 0.373252
\(29\) 174.527 1.11755 0.558774 0.829320i \(-0.311272\pi\)
0.558774 + 0.829320i \(0.311272\pi\)
\(30\) 0 0
\(31\) 44.5860 0.258319 0.129160 0.991624i \(-0.458772\pi\)
0.129160 + 0.991624i \(0.458772\pi\)
\(32\) 59.6324 0.329426
\(33\) 0 0
\(34\) −18.9648 −0.0956599
\(35\) −41.3572 −0.199732
\(36\) 0 0
\(37\) −271.813 −1.20772 −0.603862 0.797089i \(-0.706372\pi\)
−0.603862 + 0.797089i \(0.706372\pi\)
\(38\) 22.0728 0.0942285
\(39\) 0 0
\(40\) −29.6685 −0.117275
\(41\) 355.169 1.35288 0.676441 0.736497i \(-0.263521\pi\)
0.676441 + 0.736497i \(0.263521\pi\)
\(42\) 0 0
\(43\) 545.964 1.93625 0.968125 0.250468i \(-0.0805845\pi\)
0.968125 + 0.250468i \(0.0805845\pi\)
\(44\) 86.9028 0.297752
\(45\) 0 0
\(46\) −38.0521 −0.121967
\(47\) −413.419 −1.28305 −0.641524 0.767103i \(-0.721698\pi\)
−0.641524 + 0.767103i \(0.721698\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −28.4533 −0.0804780
\(51\) 0 0
\(52\) −23.0033 −0.0613458
\(53\) 709.617 1.83912 0.919560 0.392950i \(-0.128545\pi\)
0.919560 + 0.392950i \(0.128545\pi\)
\(54\) 0 0
\(55\) −64.9898 −0.159331
\(56\) 35.1512 0.0838800
\(57\) 0 0
\(58\) 55.1191 0.124784
\(59\) 358.442 0.790936 0.395468 0.918480i \(-0.370582\pi\)
0.395468 + 0.918480i \(0.370582\pi\)
\(60\) 0 0
\(61\) −574.641 −1.20615 −0.603076 0.797684i \(-0.706058\pi\)
−0.603076 + 0.797684i \(0.706058\pi\)
\(62\) 14.0811 0.0288436
\(63\) 0 0
\(64\) −474.096 −0.925969
\(65\) 17.2029 0.0328270
\(66\) 0 0
\(67\) 457.221 0.833709 0.416854 0.908973i \(-0.363132\pi\)
0.416854 + 0.908973i \(0.363132\pi\)
\(68\) 474.407 0.846034
\(69\) 0 0
\(70\) −13.0614 −0.0223019
\(71\) 87.8142 0.146784 0.0733918 0.997303i \(-0.476618\pi\)
0.0733918 + 0.997303i \(0.476618\pi\)
\(72\) 0 0
\(73\) 403.682 0.647225 0.323613 0.946190i \(-0.395103\pi\)
0.323613 + 0.946190i \(0.395103\pi\)
\(74\) −85.8438 −0.134853
\(75\) 0 0
\(76\) −552.154 −0.833374
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −195.205 −0.278003 −0.139001 0.990292i \(-0.544389\pi\)
−0.139001 + 0.990292i \(0.544389\pi\)
\(80\) 364.038 0.508759
\(81\) 0 0
\(82\) 112.169 0.151061
\(83\) 1407.01 1.86071 0.930356 0.366657i \(-0.119498\pi\)
0.930356 + 0.366657i \(0.119498\pi\)
\(84\) 0 0
\(85\) −354.783 −0.452725
\(86\) 172.426 0.216200
\(87\) 0 0
\(88\) 55.2377 0.0669131
\(89\) 1250.19 1.48899 0.744494 0.667629i \(-0.232691\pi\)
0.744494 + 0.667629i \(0.232691\pi\)
\(90\) 0 0
\(91\) −20.3820 −0.0234793
\(92\) 951.879 1.07870
\(93\) 0 0
\(94\) −130.566 −0.143264
\(95\) 412.926 0.445950
\(96\) 0 0
\(97\) 1773.32 1.85622 0.928110 0.372307i \(-0.121433\pi\)
0.928110 + 0.372307i \(0.121433\pi\)
\(98\) 15.4751 0.0159513
\(99\) 0 0
\(100\) 711.763 0.711763
\(101\) −1652.74 −1.62825 −0.814127 0.580687i \(-0.802784\pi\)
−0.814127 + 0.580687i \(0.802784\pi\)
\(102\) 0 0
\(103\) −851.256 −0.814338 −0.407169 0.913353i \(-0.633484\pi\)
−0.407169 + 0.913353i \(0.633484\pi\)
\(104\) −14.6215 −0.0137861
\(105\) 0 0
\(106\) 224.111 0.205354
\(107\) 822.234 0.742882 0.371441 0.928457i \(-0.378864\pi\)
0.371441 + 0.928457i \(0.378864\pi\)
\(108\) 0 0
\(109\) 310.706 0.273030 0.136515 0.990638i \(-0.456410\pi\)
0.136515 + 0.990638i \(0.456410\pi\)
\(110\) −20.5250 −0.0177908
\(111\) 0 0
\(112\) −431.313 −0.363886
\(113\) 1455.80 1.21194 0.605972 0.795486i \(-0.292784\pi\)
0.605972 + 0.795486i \(0.292784\pi\)
\(114\) 0 0
\(115\) −711.858 −0.577227
\(116\) −1378.81 −1.10362
\(117\) 0 0
\(118\) 113.203 0.0883151
\(119\) 420.347 0.323808
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −181.483 −0.134678
\(123\) 0 0
\(124\) −352.241 −0.255098
\(125\) −1270.81 −0.909316
\(126\) 0 0
\(127\) 1182.69 0.826355 0.413177 0.910651i \(-0.364419\pi\)
0.413177 + 0.910651i \(0.364419\pi\)
\(128\) −626.788 −0.432818
\(129\) 0 0
\(130\) 5.43300 0.00366543
\(131\) 1866.42 1.24481 0.622405 0.782695i \(-0.286156\pi\)
0.622405 + 0.782695i \(0.286156\pi\)
\(132\) 0 0
\(133\) −489.235 −0.318963
\(134\) 144.399 0.0930910
\(135\) 0 0
\(136\) 301.545 0.190127
\(137\) 2973.54 1.85436 0.927179 0.374619i \(-0.122227\pi\)
0.927179 + 0.374619i \(0.122227\pi\)
\(138\) 0 0
\(139\) −2904.10 −1.77211 −0.886054 0.463583i \(-0.846564\pi\)
−0.886054 + 0.463583i \(0.846564\pi\)
\(140\) 326.732 0.197242
\(141\) 0 0
\(142\) 27.7334 0.0163897
\(143\) −32.0288 −0.0187300
\(144\) 0 0
\(145\) 1031.14 0.590560
\(146\) 127.491 0.0722685
\(147\) 0 0
\(148\) 2147.39 1.19267
\(149\) −67.9990 −0.0373872 −0.0186936 0.999825i \(-0.505951\pi\)
−0.0186936 + 0.999825i \(0.505951\pi\)
\(150\) 0 0
\(151\) 3128.90 1.68627 0.843133 0.537705i \(-0.180709\pi\)
0.843133 + 0.537705i \(0.180709\pi\)
\(152\) −350.963 −0.187282
\(153\) 0 0
\(154\) 24.3181 0.0127247
\(155\) 263.422 0.136507
\(156\) 0 0
\(157\) 102.502 0.0521055 0.0260528 0.999661i \(-0.491706\pi\)
0.0260528 + 0.999661i \(0.491706\pi\)
\(158\) −61.6493 −0.0310415
\(159\) 0 0
\(160\) 352.318 0.174082
\(161\) 843.410 0.412857
\(162\) 0 0
\(163\) −3270.96 −1.57179 −0.785893 0.618363i \(-0.787796\pi\)
−0.785893 + 0.618363i \(0.787796\pi\)
\(164\) −2805.93 −1.33601
\(165\) 0 0
\(166\) 444.360 0.207765
\(167\) 1018.68 0.472021 0.236011 0.971750i \(-0.424160\pi\)
0.236011 + 0.971750i \(0.424160\pi\)
\(168\) 0 0
\(169\) −2188.52 −0.996141
\(170\) −112.047 −0.0505507
\(171\) 0 0
\(172\) −4313.26 −1.91211
\(173\) −3510.34 −1.54270 −0.771348 0.636414i \(-0.780417\pi\)
−0.771348 + 0.636414i \(0.780417\pi\)
\(174\) 0 0
\(175\) 630.655 0.272417
\(176\) −677.778 −0.290281
\(177\) 0 0
\(178\) 394.834 0.166259
\(179\) −309.297 −0.129150 −0.0645752 0.997913i \(-0.520569\pi\)
−0.0645752 + 0.997913i \(0.520569\pi\)
\(180\) 0 0
\(181\) −1938.21 −0.795944 −0.397972 0.917398i \(-0.630286\pi\)
−0.397972 + 0.917398i \(0.630286\pi\)
\(182\) −6.43702 −0.00262167
\(183\) 0 0
\(184\) 605.039 0.242413
\(185\) −1605.92 −0.638213
\(186\) 0 0
\(187\) 660.545 0.258309
\(188\) 3266.11 1.26705
\(189\) 0 0
\(190\) 130.410 0.0497943
\(191\) −437.216 −0.165633 −0.0828163 0.996565i \(-0.526391\pi\)
−0.0828163 + 0.996565i \(0.526391\pi\)
\(192\) 0 0
\(193\) 17.5821 0.00655746 0.00327873 0.999995i \(-0.498956\pi\)
0.00327873 + 0.999995i \(0.498956\pi\)
\(194\) 560.048 0.207263
\(195\) 0 0
\(196\) −387.113 −0.141076
\(197\) 4068.89 1.47156 0.735778 0.677222i \(-0.236817\pi\)
0.735778 + 0.677222i \(0.236817\pi\)
\(198\) 0 0
\(199\) 3833.34 1.36552 0.682759 0.730643i \(-0.260780\pi\)
0.682759 + 0.730643i \(0.260780\pi\)
\(200\) 452.414 0.159953
\(201\) 0 0
\(202\) −521.967 −0.181809
\(203\) −1221.69 −0.422394
\(204\) 0 0
\(205\) 2098.40 0.714920
\(206\) −268.843 −0.0909281
\(207\) 0 0
\(208\) 179.409 0.0598065
\(209\) −768.797 −0.254444
\(210\) 0 0
\(211\) −57.2507 −0.0186792 −0.00933958 0.999956i \(-0.502973\pi\)
−0.00933958 + 0.999956i \(0.502973\pi\)
\(212\) −5606.16 −1.81619
\(213\) 0 0
\(214\) 259.677 0.0829494
\(215\) 3225.65 1.02320
\(216\) 0 0
\(217\) −312.102 −0.0976354
\(218\) 98.1270 0.0304862
\(219\) 0 0
\(220\) 513.436 0.157345
\(221\) −174.847 −0.0532194
\(222\) 0 0
\(223\) −796.167 −0.239082 −0.119541 0.992829i \(-0.538142\pi\)
−0.119541 + 0.992829i \(0.538142\pi\)
\(224\) −417.427 −0.124511
\(225\) 0 0
\(226\) 459.768 0.135324
\(227\) −2375.23 −0.694490 −0.347245 0.937774i \(-0.612883\pi\)
−0.347245 + 0.937774i \(0.612883\pi\)
\(228\) 0 0
\(229\) −4005.14 −1.15575 −0.577876 0.816125i \(-0.696118\pi\)
−0.577876 + 0.816125i \(0.696118\pi\)
\(230\) −224.818 −0.0644525
\(231\) 0 0
\(232\) −876.407 −0.248013
\(233\) −4218.29 −1.18605 −0.593024 0.805185i \(-0.702066\pi\)
−0.593024 + 0.805185i \(0.702066\pi\)
\(234\) 0 0
\(235\) −2442.55 −0.678017
\(236\) −2831.79 −0.781075
\(237\) 0 0
\(238\) 132.754 0.0361560
\(239\) 6626.55 1.79345 0.896727 0.442584i \(-0.145938\pi\)
0.896727 + 0.442584i \(0.145938\pi\)
\(240\) 0 0
\(241\) −6040.48 −1.61453 −0.807265 0.590189i \(-0.799053\pi\)
−0.807265 + 0.590189i \(0.799053\pi\)
\(242\) 38.2141 0.0101508
\(243\) 0 0
\(244\) 4539.81 1.19111
\(245\) 289.500 0.0754918
\(246\) 0 0
\(247\) 203.502 0.0524231
\(248\) −223.894 −0.0573276
\(249\) 0 0
\(250\) −401.346 −0.101533
\(251\) 2155.94 0.542158 0.271079 0.962557i \(-0.412619\pi\)
0.271079 + 0.962557i \(0.412619\pi\)
\(252\) 0 0
\(253\) 1325.36 0.329346
\(254\) 373.517 0.0922699
\(255\) 0 0
\(256\) 3594.82 0.877641
\(257\) 6708.42 1.62825 0.814125 0.580690i \(-0.197217\pi\)
0.814125 + 0.580690i \(0.197217\pi\)
\(258\) 0 0
\(259\) 1902.69 0.456477
\(260\) −135.907 −0.0324177
\(261\) 0 0
\(262\) 589.452 0.138994
\(263\) −3364.19 −0.788763 −0.394381 0.918947i \(-0.629041\pi\)
−0.394381 + 0.918947i \(0.629041\pi\)
\(264\) 0 0
\(265\) 4192.53 0.971869
\(266\) −154.510 −0.0356150
\(267\) 0 0
\(268\) −3612.17 −0.823314
\(269\) −980.866 −0.222321 −0.111161 0.993802i \(-0.535457\pi\)
−0.111161 + 0.993802i \(0.535457\pi\)
\(270\) 0 0
\(271\) −384.406 −0.0861660 −0.0430830 0.999071i \(-0.513718\pi\)
−0.0430830 + 0.999071i \(0.513718\pi\)
\(272\) −3700.02 −0.824804
\(273\) 0 0
\(274\) 939.102 0.207056
\(275\) 991.029 0.217314
\(276\) 0 0
\(277\) −188.648 −0.0409197 −0.0204598 0.999791i \(-0.506513\pi\)
−0.0204598 + 0.999791i \(0.506513\pi\)
\(278\) −917.172 −0.197872
\(279\) 0 0
\(280\) 207.679 0.0443258
\(281\) −7747.25 −1.64471 −0.822353 0.568977i \(-0.807339\pi\)
−0.822353 + 0.568977i \(0.807339\pi\)
\(282\) 0 0
\(283\) 3829.43 0.804368 0.402184 0.915559i \(-0.368251\pi\)
0.402184 + 0.915559i \(0.368251\pi\)
\(284\) −693.755 −0.144953
\(285\) 0 0
\(286\) −10.1153 −0.00209137
\(287\) −2486.19 −0.511341
\(288\) 0 0
\(289\) −1307.05 −0.266039
\(290\) 325.653 0.0659413
\(291\) 0 0
\(292\) −3189.19 −0.639156
\(293\) 3164.06 0.630875 0.315437 0.948946i \(-0.397849\pi\)
0.315437 + 0.948946i \(0.397849\pi\)
\(294\) 0 0
\(295\) 2117.74 0.417964
\(296\) 1364.94 0.268025
\(297\) 0 0
\(298\) −21.4754 −0.00417462
\(299\) −350.824 −0.0678551
\(300\) 0 0
\(301\) −3821.75 −0.731834
\(302\) 988.166 0.188287
\(303\) 0 0
\(304\) 4306.39 0.812463
\(305\) −3395.07 −0.637381
\(306\) 0 0
\(307\) 1737.84 0.323075 0.161538 0.986867i \(-0.448355\pi\)
0.161538 + 0.986867i \(0.448355\pi\)
\(308\) −608.320 −0.112540
\(309\) 0 0
\(310\) 83.1936 0.0152422
\(311\) −551.287 −0.100517 −0.0502583 0.998736i \(-0.516004\pi\)
−0.0502583 + 0.998736i \(0.516004\pi\)
\(312\) 0 0
\(313\) 8193.33 1.47960 0.739800 0.672827i \(-0.234920\pi\)
0.739800 + 0.672827i \(0.234920\pi\)
\(314\) 32.3722 0.00581805
\(315\) 0 0
\(316\) 1542.17 0.274537
\(317\) −5858.91 −1.03807 −0.519037 0.854752i \(-0.673709\pi\)
−0.519037 + 0.854752i \(0.673709\pi\)
\(318\) 0 0
\(319\) −1919.80 −0.336954
\(320\) −2801.04 −0.489321
\(321\) 0 0
\(322\) 266.365 0.0460992
\(323\) −4196.90 −0.722978
\(324\) 0 0
\(325\) −262.327 −0.0447731
\(326\) −1033.03 −0.175504
\(327\) 0 0
\(328\) −1783.52 −0.300239
\(329\) 2893.93 0.484947
\(330\) 0 0
\(331\) 1952.05 0.324153 0.162076 0.986778i \(-0.448181\pi\)
0.162076 + 0.986778i \(0.448181\pi\)
\(332\) −11115.7 −1.83751
\(333\) 0 0
\(334\) 321.718 0.0527054
\(335\) 2701.34 0.440567
\(336\) 0 0
\(337\) −8151.87 −1.31769 −0.658844 0.752280i \(-0.728954\pi\)
−0.658844 + 0.752280i \(0.728954\pi\)
\(338\) −691.177 −0.111228
\(339\) 0 0
\(340\) 2802.88 0.447080
\(341\) −490.447 −0.0778861
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −2741.62 −0.429704
\(345\) 0 0
\(346\) −1108.63 −0.172256
\(347\) −78.5678 −0.0121549 −0.00607743 0.999982i \(-0.501935\pi\)
−0.00607743 + 0.999982i \(0.501935\pi\)
\(348\) 0 0
\(349\) −942.516 −0.144561 −0.0722804 0.997384i \(-0.523028\pi\)
−0.0722804 + 0.997384i \(0.523028\pi\)
\(350\) 199.173 0.0304178
\(351\) 0 0
\(352\) −655.956 −0.0993256
\(353\) −720.110 −0.108577 −0.0542884 0.998525i \(-0.517289\pi\)
−0.0542884 + 0.998525i \(0.517289\pi\)
\(354\) 0 0
\(355\) 518.821 0.0775666
\(356\) −9876.83 −1.47042
\(357\) 0 0
\(358\) −97.6818 −0.0144208
\(359\) −5213.98 −0.766527 −0.383264 0.923639i \(-0.625200\pi\)
−0.383264 + 0.923639i \(0.625200\pi\)
\(360\) 0 0
\(361\) −1974.29 −0.287840
\(362\) −612.123 −0.0888743
\(363\) 0 0
\(364\) 161.023 0.0231865
\(365\) 2385.02 0.342021
\(366\) 0 0
\(367\) −6256.57 −0.889892 −0.444946 0.895557i \(-0.646777\pi\)
−0.444946 + 0.895557i \(0.646777\pi\)
\(368\) −7423.95 −1.05163
\(369\) 0 0
\(370\) −507.179 −0.0712622
\(371\) −4967.32 −0.695122
\(372\) 0 0
\(373\) −2406.21 −0.334019 −0.167009 0.985955i \(-0.553411\pi\)
−0.167009 + 0.985955i \(0.553411\pi\)
\(374\) 208.613 0.0288425
\(375\) 0 0
\(376\) 2076.03 0.284742
\(377\) 508.173 0.0694225
\(378\) 0 0
\(379\) −1843.79 −0.249892 −0.124946 0.992164i \(-0.539876\pi\)
−0.124946 + 0.992164i \(0.539876\pi\)
\(380\) −3262.22 −0.440390
\(381\) 0 0
\(382\) −138.081 −0.0184944
\(383\) 8466.69 1.12958 0.564788 0.825236i \(-0.308958\pi\)
0.564788 + 0.825236i \(0.308958\pi\)
\(384\) 0 0
\(385\) 454.929 0.0602216
\(386\) 5.55278 0.000732199 0
\(387\) 0 0
\(388\) −14009.7 −1.83308
\(389\) −8769.09 −1.14296 −0.571479 0.820617i \(-0.693630\pi\)
−0.571479 + 0.820617i \(0.693630\pi\)
\(390\) 0 0
\(391\) 7235.20 0.935805
\(392\) −246.059 −0.0317037
\(393\) 0 0
\(394\) 1285.03 0.164312
\(395\) −1153.30 −0.146909
\(396\) 0 0
\(397\) 7946.64 1.00461 0.502306 0.864690i \(-0.332485\pi\)
0.502306 + 0.864690i \(0.332485\pi\)
\(398\) 1210.64 0.152472
\(399\) 0 0
\(400\) −5551.22 −0.693902
\(401\) −7832.40 −0.975390 −0.487695 0.873014i \(-0.662162\pi\)
−0.487695 + 0.873014i \(0.662162\pi\)
\(402\) 0 0
\(403\) 129.822 0.0160469
\(404\) 13057.1 1.60795
\(405\) 0 0
\(406\) −385.834 −0.0471640
\(407\) 2989.95 0.364143
\(408\) 0 0
\(409\) 7353.60 0.889027 0.444514 0.895772i \(-0.353377\pi\)
0.444514 + 0.895772i \(0.353377\pi\)
\(410\) 662.715 0.0798272
\(411\) 0 0
\(412\) 6725.15 0.804185
\(413\) −2509.10 −0.298946
\(414\) 0 0
\(415\) 8312.83 0.983279
\(416\) 173.632 0.0204640
\(417\) 0 0
\(418\) −242.801 −0.0284110
\(419\) 2532.08 0.295228 0.147614 0.989045i \(-0.452841\pi\)
0.147614 + 0.989045i \(0.452841\pi\)
\(420\) 0 0
\(421\) −3330.80 −0.385589 −0.192795 0.981239i \(-0.561755\pi\)
−0.192795 + 0.981239i \(0.561755\pi\)
\(422\) −18.0809 −0.00208570
\(423\) 0 0
\(424\) −3563.42 −0.408148
\(425\) 5410.08 0.617476
\(426\) 0 0
\(427\) 4022.49 0.455882
\(428\) −6495.86 −0.733620
\(429\) 0 0
\(430\) 1018.72 0.114249
\(431\) −3115.93 −0.348234 −0.174117 0.984725i \(-0.555707\pi\)
−0.174117 + 0.984725i \(0.555707\pi\)
\(432\) 0 0
\(433\) −12771.7 −1.41748 −0.708741 0.705469i \(-0.750736\pi\)
−0.708741 + 0.705469i \(0.750736\pi\)
\(434\) −98.5679 −0.0109019
\(435\) 0 0
\(436\) −2454.66 −0.269626
\(437\) −8420.93 −0.921802
\(438\) 0 0
\(439\) −15313.8 −1.66490 −0.832449 0.554102i \(-0.813062\pi\)
−0.832449 + 0.554102i \(0.813062\pi\)
\(440\) 326.353 0.0353597
\(441\) 0 0
\(442\) −55.2201 −0.00594242
\(443\) 1911.22 0.204977 0.102488 0.994734i \(-0.467320\pi\)
0.102488 + 0.994734i \(0.467320\pi\)
\(444\) 0 0
\(445\) 7386.33 0.786844
\(446\) −251.445 −0.0266956
\(447\) 0 0
\(448\) 3318.67 0.349983
\(449\) 15994.2 1.68110 0.840548 0.541737i \(-0.182233\pi\)
0.840548 + 0.541737i \(0.182233\pi\)
\(450\) 0 0
\(451\) −3906.86 −0.407909
\(452\) −11501.2 −1.19683
\(453\) 0 0
\(454\) −750.142 −0.0775460
\(455\) −120.420 −0.0124074
\(456\) 0 0
\(457\) −2724.26 −0.278852 −0.139426 0.990232i \(-0.544526\pi\)
−0.139426 + 0.990232i \(0.544526\pi\)
\(458\) −1264.90 −0.129050
\(459\) 0 0
\(460\) 5623.86 0.570030
\(461\) −1935.41 −0.195533 −0.0977666 0.995209i \(-0.531170\pi\)
−0.0977666 + 0.995209i \(0.531170\pi\)
\(462\) 0 0
\(463\) 16266.1 1.63272 0.816361 0.577542i \(-0.195988\pi\)
0.816361 + 0.577542i \(0.195988\pi\)
\(464\) 10753.7 1.07592
\(465\) 0 0
\(466\) −1332.22 −0.132433
\(467\) 14971.5 1.48351 0.741754 0.670672i \(-0.233994\pi\)
0.741754 + 0.670672i \(0.233994\pi\)
\(468\) 0 0
\(469\) −3200.55 −0.315112
\(470\) −771.403 −0.0757067
\(471\) 0 0
\(472\) −1799.96 −0.175529
\(473\) −6005.60 −0.583801
\(474\) 0 0
\(475\) −6296.70 −0.608237
\(476\) −3320.85 −0.319771
\(477\) 0 0
\(478\) 2092.79 0.200255
\(479\) 11407.5 1.08815 0.544075 0.839037i \(-0.316881\pi\)
0.544075 + 0.839037i \(0.316881\pi\)
\(480\) 0 0
\(481\) −791.442 −0.0750242
\(482\) −1907.70 −0.180277
\(483\) 0 0
\(484\) −955.931 −0.0897757
\(485\) 10477.1 0.980905
\(486\) 0 0
\(487\) 15644.5 1.45568 0.727842 0.685744i \(-0.240523\pi\)
0.727842 + 0.685744i \(0.240523\pi\)
\(488\) 2885.62 0.267676
\(489\) 0 0
\(490\) 91.4297 0.00842933
\(491\) 6594.27 0.606100 0.303050 0.952975i \(-0.401995\pi\)
0.303050 + 0.952975i \(0.401995\pi\)
\(492\) 0 0
\(493\) −10480.3 −0.957421
\(494\) 64.2697 0.00585350
\(495\) 0 0
\(496\) 2747.22 0.248697
\(497\) −614.699 −0.0554790
\(498\) 0 0
\(499\) 5492.47 0.492739 0.246369 0.969176i \(-0.420762\pi\)
0.246369 + 0.969176i \(0.420762\pi\)
\(500\) 10039.7 0.897979
\(501\) 0 0
\(502\) 680.887 0.0605368
\(503\) 9529.33 0.844715 0.422358 0.906429i \(-0.361203\pi\)
0.422358 + 0.906429i \(0.361203\pi\)
\(504\) 0 0
\(505\) −9764.65 −0.860438
\(506\) 418.573 0.0367744
\(507\) 0 0
\(508\) −9343.58 −0.816052
\(509\) 19628.2 1.70924 0.854622 0.519250i \(-0.173789\pi\)
0.854622 + 0.519250i \(0.173789\pi\)
\(510\) 0 0
\(511\) −2825.78 −0.244628
\(512\) 6149.62 0.530815
\(513\) 0 0
\(514\) 2118.65 0.181809
\(515\) −5029.36 −0.430331
\(516\) 0 0
\(517\) 4547.60 0.386854
\(518\) 600.907 0.0509697
\(519\) 0 0
\(520\) −86.3861 −0.00728515
\(521\) 19650.6 1.65242 0.826209 0.563364i \(-0.190493\pi\)
0.826209 + 0.563364i \(0.190493\pi\)
\(522\) 0 0
\(523\) −4045.28 −0.338218 −0.169109 0.985597i \(-0.554089\pi\)
−0.169109 + 0.985597i \(0.554089\pi\)
\(524\) −14745.2 −1.22929
\(525\) 0 0
\(526\) −1062.47 −0.0880724
\(527\) −2677.37 −0.221306
\(528\) 0 0
\(529\) 2350.14 0.193157
\(530\) 1324.08 0.108518
\(531\) 0 0
\(532\) 3865.08 0.314986
\(533\) 1034.15 0.0840414
\(534\) 0 0
\(535\) 4857.89 0.392570
\(536\) −2295.99 −0.185021
\(537\) 0 0
\(538\) −309.776 −0.0248242
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 8478.65 0.673800 0.336900 0.941540i \(-0.390622\pi\)
0.336900 + 0.941540i \(0.390622\pi\)
\(542\) −121.403 −0.00962120
\(543\) 0 0
\(544\) −3580.90 −0.282224
\(545\) 1835.70 0.144281
\(546\) 0 0
\(547\) −20754.0 −1.62226 −0.811130 0.584866i \(-0.801147\pi\)
−0.811130 + 0.584866i \(0.801147\pi\)
\(548\) −23491.8 −1.83124
\(549\) 0 0
\(550\) 312.986 0.0242650
\(551\) 12197.8 0.943095
\(552\) 0 0
\(553\) 1366.43 0.105075
\(554\) −59.5786 −0.00456905
\(555\) 0 0
\(556\) 22943.2 1.75001
\(557\) 17200.9 1.30849 0.654244 0.756284i \(-0.272987\pi\)
0.654244 + 0.756284i \(0.272987\pi\)
\(558\) 0 0
\(559\) 1589.69 0.120280
\(560\) −2548.27 −0.192293
\(561\) 0 0
\(562\) −2446.73 −0.183646
\(563\) 9509.54 0.711864 0.355932 0.934512i \(-0.384163\pi\)
0.355932 + 0.934512i \(0.384163\pi\)
\(564\) 0 0
\(565\) 8601.08 0.640443
\(566\) 1209.41 0.0898149
\(567\) 0 0
\(568\) −440.968 −0.0325750
\(569\) 16818.3 1.23912 0.619561 0.784948i \(-0.287311\pi\)
0.619561 + 0.784948i \(0.287311\pi\)
\(570\) 0 0
\(571\) −5473.88 −0.401182 −0.200591 0.979675i \(-0.564286\pi\)
−0.200591 + 0.979675i \(0.564286\pi\)
\(572\) 253.036 0.0184965
\(573\) 0 0
\(574\) −785.185 −0.0570958
\(575\) 10855.1 0.787286
\(576\) 0 0
\(577\) 20076.7 1.44854 0.724268 0.689519i \(-0.242178\pi\)
0.724268 + 0.689519i \(0.242178\pi\)
\(578\) −412.792 −0.0297057
\(579\) 0 0
\(580\) −8146.24 −0.583197
\(581\) −9849.05 −0.703283
\(582\) 0 0
\(583\) −7805.78 −0.554516
\(584\) −2027.13 −0.143636
\(585\) 0 0
\(586\) 999.271 0.0704428
\(587\) 11497.5 0.808434 0.404217 0.914663i \(-0.367544\pi\)
0.404217 + 0.914663i \(0.367544\pi\)
\(588\) 0 0
\(589\) 3116.15 0.217994
\(590\) 668.822 0.0466694
\(591\) 0 0
\(592\) −16748.1 −1.16274
\(593\) 10976.4 0.760112 0.380056 0.924963i \(-0.375905\pi\)
0.380056 + 0.924963i \(0.375905\pi\)
\(594\) 0 0
\(595\) 2483.48 0.171114
\(596\) 537.210 0.0369211
\(597\) 0 0
\(598\) −110.797 −0.00757663
\(599\) −16070.8 −1.09622 −0.548108 0.836408i \(-0.684652\pi\)
−0.548108 + 0.836408i \(0.684652\pi\)
\(600\) 0 0
\(601\) 21112.5 1.43294 0.716469 0.697619i \(-0.245757\pi\)
0.716469 + 0.697619i \(0.245757\pi\)
\(602\) −1206.98 −0.0817158
\(603\) 0 0
\(604\) −24719.1 −1.66524
\(605\) 714.888 0.0480402
\(606\) 0 0
\(607\) 5734.02 0.383421 0.191711 0.981452i \(-0.438597\pi\)
0.191711 + 0.981452i \(0.438597\pi\)
\(608\) 4167.75 0.278001
\(609\) 0 0
\(610\) −1072.23 −0.0711693
\(611\) −1203.76 −0.0797034
\(612\) 0 0
\(613\) −6140.30 −0.404575 −0.202288 0.979326i \(-0.564838\pi\)
−0.202288 + 0.979326i \(0.564838\pi\)
\(614\) 548.845 0.0360742
\(615\) 0 0
\(616\) −386.664 −0.0252908
\(617\) −11576.5 −0.755355 −0.377678 0.925937i \(-0.623277\pi\)
−0.377678 + 0.925937i \(0.623277\pi\)
\(618\) 0 0
\(619\) −1734.81 −0.112646 −0.0563229 0.998413i \(-0.517938\pi\)
−0.0563229 + 0.998413i \(0.517938\pi\)
\(620\) −2081.10 −0.134805
\(621\) 0 0
\(622\) −174.107 −0.0112236
\(623\) −8751.34 −0.562785
\(624\) 0 0
\(625\) 3753.55 0.240227
\(626\) 2587.61 0.165210
\(627\) 0 0
\(628\) −809.794 −0.0514559
\(629\) 16322.3 1.03468
\(630\) 0 0
\(631\) −4137.48 −0.261031 −0.130516 0.991446i \(-0.541663\pi\)
−0.130516 + 0.991446i \(0.541663\pi\)
\(632\) 980.241 0.0616960
\(633\) 0 0
\(634\) −1850.36 −0.115910
\(635\) 6987.55 0.436681
\(636\) 0 0
\(637\) 142.674 0.00887433
\(638\) −606.310 −0.0376239
\(639\) 0 0
\(640\) −3703.17 −0.228720
\(641\) −21993.0 −1.35518 −0.677590 0.735440i \(-0.736976\pi\)
−0.677590 + 0.735440i \(0.736976\pi\)
\(642\) 0 0
\(643\) 8688.04 0.532850 0.266425 0.963856i \(-0.414157\pi\)
0.266425 + 0.963856i \(0.414157\pi\)
\(644\) −6663.15 −0.407710
\(645\) 0 0
\(646\) −1325.46 −0.0807270
\(647\) 11937.5 0.725365 0.362682 0.931913i \(-0.381861\pi\)
0.362682 + 0.931913i \(0.381861\pi\)
\(648\) 0 0
\(649\) −3942.87 −0.238476
\(650\) −82.8478 −0.00499932
\(651\) 0 0
\(652\) 25841.4 1.55219
\(653\) −20662.1 −1.23824 −0.619120 0.785296i \(-0.712511\pi\)
−0.619120 + 0.785296i \(0.712511\pi\)
\(654\) 0 0
\(655\) 11027.1 0.657811
\(656\) 21884.2 1.30249
\(657\) 0 0
\(658\) 913.959 0.0541487
\(659\) 6620.23 0.391331 0.195666 0.980671i \(-0.437313\pi\)
0.195666 + 0.980671i \(0.437313\pi\)
\(660\) 0 0
\(661\) −26958.9 −1.58635 −0.793176 0.608993i \(-0.791574\pi\)
−0.793176 + 0.608993i \(0.791574\pi\)
\(662\) 616.496 0.0361945
\(663\) 0 0
\(664\) −7065.44 −0.412940
\(665\) −2890.48 −0.168553
\(666\) 0 0
\(667\) −21028.3 −1.22072
\(668\) −8047.81 −0.466136
\(669\) 0 0
\(670\) 853.135 0.0491932
\(671\) 6321.05 0.363668
\(672\) 0 0
\(673\) −1054.58 −0.0604029 −0.0302014 0.999544i \(-0.509615\pi\)
−0.0302014 + 0.999544i \(0.509615\pi\)
\(674\) −2574.52 −0.147132
\(675\) 0 0
\(676\) 17289.9 0.983721
\(677\) 15114.1 0.858024 0.429012 0.903299i \(-0.358862\pi\)
0.429012 + 0.903299i \(0.358862\pi\)
\(678\) 0 0
\(679\) −12413.2 −0.701585
\(680\) 1781.58 0.100471
\(681\) 0 0
\(682\) −154.892 −0.00869668
\(683\) −3670.31 −0.205623 −0.102812 0.994701i \(-0.532784\pi\)
−0.102812 + 0.994701i \(0.532784\pi\)
\(684\) 0 0
\(685\) 17568.2 0.979921
\(686\) −108.326 −0.00602902
\(687\) 0 0
\(688\) 33640.2 1.86413
\(689\) 2066.20 0.114247
\(690\) 0 0
\(691\) −13438.6 −0.739836 −0.369918 0.929064i \(-0.620614\pi\)
−0.369918 + 0.929064i \(0.620614\pi\)
\(692\) 27732.6 1.52346
\(693\) 0 0
\(694\) −24.8132 −0.00135720
\(695\) −17157.9 −0.936457
\(696\) 0 0
\(697\) −21327.8 −1.15903
\(698\) −297.665 −0.0161415
\(699\) 0 0
\(700\) −4982.34 −0.269021
\(701\) −7018.53 −0.378154 −0.189077 0.981962i \(-0.560550\pi\)
−0.189077 + 0.981962i \(0.560550\pi\)
\(702\) 0 0
\(703\) −18997.2 −1.01919
\(704\) 5215.06 0.279190
\(705\) 0 0
\(706\) −227.425 −0.0121236
\(707\) 11569.2 0.615422
\(708\) 0 0
\(709\) 19329.5 1.02389 0.511944 0.859019i \(-0.328926\pi\)
0.511944 + 0.859019i \(0.328926\pi\)
\(710\) 163.854 0.00866101
\(711\) 0 0
\(712\) −6277.97 −0.330445
\(713\) −5372.04 −0.282166
\(714\) 0 0
\(715\) −189.232 −0.00989771
\(716\) 2443.52 0.127540
\(717\) 0 0
\(718\) −1646.67 −0.0855896
\(719\) 26523.0 1.37572 0.687859 0.725845i \(-0.258551\pi\)
0.687859 + 0.725845i \(0.258551\pi\)
\(720\) 0 0
\(721\) 5958.80 0.307791
\(722\) −623.520 −0.0321399
\(723\) 0 0
\(724\) 15312.3 0.786021
\(725\) −15723.8 −0.805472
\(726\) 0 0
\(727\) −3371.33 −0.171989 −0.0859944 0.996296i \(-0.527407\pi\)
−0.0859944 + 0.996296i \(0.527407\pi\)
\(728\) 102.350 0.00521065
\(729\) 0 0
\(730\) 753.236 0.0381897
\(731\) −32784.9 −1.65881
\(732\) 0 0
\(733\) 3582.65 0.180530 0.0902649 0.995918i \(-0.471229\pi\)
0.0902649 + 0.995918i \(0.471229\pi\)
\(734\) −1975.94 −0.0993644
\(735\) 0 0
\(736\) −7184.94 −0.359837
\(737\) −5029.44 −0.251373
\(738\) 0 0
\(739\) 9324.88 0.464169 0.232085 0.972696i \(-0.425445\pi\)
0.232085 + 0.972696i \(0.425445\pi\)
\(740\) 12687.2 0.630256
\(741\) 0 0
\(742\) −1568.77 −0.0776166
\(743\) 25589.5 1.26351 0.631754 0.775169i \(-0.282335\pi\)
0.631754 + 0.775169i \(0.282335\pi\)
\(744\) 0 0
\(745\) −401.749 −0.0197570
\(746\) −759.928 −0.0372962
\(747\) 0 0
\(748\) −5218.48 −0.255089
\(749\) −5755.64 −0.280783
\(750\) 0 0
\(751\) −410.886 −0.0199647 −0.00998233 0.999950i \(-0.503178\pi\)
−0.00998233 + 0.999950i \(0.503178\pi\)
\(752\) −25473.3 −1.23526
\(753\) 0 0
\(754\) 160.491 0.00775164
\(755\) 18486.0 0.891094
\(756\) 0 0
\(757\) 19538.4 0.938093 0.469047 0.883173i \(-0.344598\pi\)
0.469047 + 0.883173i \(0.344598\pi\)
\(758\) −582.304 −0.0279027
\(759\) 0 0
\(760\) −2073.55 −0.0989678
\(761\) 29347.7 1.39797 0.698984 0.715137i \(-0.253636\pi\)
0.698984 + 0.715137i \(0.253636\pi\)
\(762\) 0 0
\(763\) −2174.95 −0.103196
\(764\) 3454.12 0.163568
\(765\) 0 0
\(766\) 2673.94 0.126127
\(767\) 1043.68 0.0491332
\(768\) 0 0
\(769\) −36589.3 −1.71579 −0.857897 0.513822i \(-0.828229\pi\)
−0.857897 + 0.513822i \(0.828229\pi\)
\(770\) 143.675 0.00672428
\(771\) 0 0
\(772\) −138.903 −0.00647571
\(773\) 13663.7 0.635770 0.317885 0.948129i \(-0.397027\pi\)
0.317885 + 0.948129i \(0.397027\pi\)
\(774\) 0 0
\(775\) −4016.92 −0.186183
\(776\) −8904.91 −0.411943
\(777\) 0 0
\(778\) −2769.45 −0.127621
\(779\) 24823.0 1.14169
\(780\) 0 0
\(781\) −965.956 −0.0442569
\(782\) 2285.01 0.104491
\(783\) 0 0
\(784\) 3019.19 0.137536
\(785\) 605.600 0.0275348
\(786\) 0 0
\(787\) 4847.67 0.219569 0.109784 0.993955i \(-0.464984\pi\)
0.109784 + 0.993955i \(0.464984\pi\)
\(788\) −32145.3 −1.45321
\(789\) 0 0
\(790\) −364.235 −0.0164036
\(791\) −10190.6 −0.458072
\(792\) 0 0
\(793\) −1673.19 −0.0749265
\(794\) 2509.70 0.112174
\(795\) 0 0
\(796\) −30284.4 −1.34849
\(797\) −12263.0 −0.545015 −0.272507 0.962154i \(-0.587853\pi\)
−0.272507 + 0.962154i \(0.587853\pi\)
\(798\) 0 0
\(799\) 24825.6 1.09921
\(800\) −5372.50 −0.237433
\(801\) 0 0
\(802\) −2473.62 −0.108911
\(803\) −4440.51 −0.195146
\(804\) 0 0
\(805\) 4983.00 0.218171
\(806\) 41.0002 0.00179177
\(807\) 0 0
\(808\) 8299.40 0.361351
\(809\) −12722.6 −0.552909 −0.276454 0.961027i \(-0.589159\pi\)
−0.276454 + 0.961027i \(0.589159\pi\)
\(810\) 0 0
\(811\) −29124.5 −1.26104 −0.630518 0.776175i \(-0.717157\pi\)
−0.630518 + 0.776175i \(0.717157\pi\)
\(812\) 9651.68 0.417127
\(813\) 0 0
\(814\) 944.282 0.0406598
\(815\) −19325.4 −0.830598
\(816\) 0 0
\(817\) 38157.8 1.63399
\(818\) 2322.41 0.0992678
\(819\) 0 0
\(820\) −16577.9 −0.706007
\(821\) −34423.9 −1.46334 −0.731671 0.681658i \(-0.761259\pi\)
−0.731671 + 0.681658i \(0.761259\pi\)
\(822\) 0 0
\(823\) 36006.1 1.52502 0.762511 0.646976i \(-0.223967\pi\)
0.762511 + 0.646976i \(0.223967\pi\)
\(824\) 4274.67 0.180722
\(825\) 0 0
\(826\) −792.421 −0.0333800
\(827\) 10870.9 0.457095 0.228547 0.973533i \(-0.426602\pi\)
0.228547 + 0.973533i \(0.426602\pi\)
\(828\) 0 0
\(829\) 11156.1 0.467389 0.233695 0.972310i \(-0.424918\pi\)
0.233695 + 0.972310i \(0.424918\pi\)
\(830\) 2625.35 0.109792
\(831\) 0 0
\(832\) −1380.43 −0.0575215
\(833\) −2942.43 −0.122388
\(834\) 0 0
\(835\) 6018.51 0.249436
\(836\) 6073.70 0.251272
\(837\) 0 0
\(838\) 799.681 0.0329648
\(839\) −608.545 −0.0250409 −0.0125204 0.999922i \(-0.503985\pi\)
−0.0125204 + 0.999922i \(0.503985\pi\)
\(840\) 0 0
\(841\) 6070.79 0.248915
\(842\) −1051.93 −0.0430545
\(843\) 0 0
\(844\) 452.296 0.0184463
\(845\) −12930.1 −0.526403
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 43723.9 1.77062
\(849\) 0 0
\(850\) 1708.61 0.0689467
\(851\) 32750.0 1.31922
\(852\) 0 0
\(853\) −8347.05 −0.335050 −0.167525 0.985868i \(-0.553577\pi\)
−0.167525 + 0.985868i \(0.553577\pi\)
\(854\) 1270.38 0.0509033
\(855\) 0 0
\(856\) −4128.93 −0.164865
\(857\) −11283.0 −0.449733 −0.224866 0.974390i \(-0.572195\pi\)
−0.224866 + 0.974390i \(0.572195\pi\)
\(858\) 0 0
\(859\) 47077.4 1.86992 0.934960 0.354752i \(-0.115435\pi\)
0.934960 + 0.354752i \(0.115435\pi\)
\(860\) −25483.4 −1.01044
\(861\) 0 0
\(862\) −984.070 −0.0388835
\(863\) 18151.7 0.715979 0.357989 0.933726i \(-0.383462\pi\)
0.357989 + 0.933726i \(0.383462\pi\)
\(864\) 0 0
\(865\) −20739.7 −0.815226
\(866\) −4033.55 −0.158274
\(867\) 0 0
\(868\) 2465.69 0.0964181
\(869\) 2147.25 0.0838210
\(870\) 0 0
\(871\) 1331.30 0.0517902
\(872\) −1560.25 −0.0605924
\(873\) 0 0
\(874\) −2659.49 −0.102927
\(875\) 8895.66 0.343689
\(876\) 0 0
\(877\) −29337.8 −1.12961 −0.564804 0.825225i \(-0.691048\pi\)
−0.564804 + 0.825225i \(0.691048\pi\)
\(878\) −4836.41 −0.185901
\(879\) 0 0
\(880\) −4004.42 −0.153397
\(881\) −13439.4 −0.513943 −0.256971 0.966419i \(-0.582725\pi\)
−0.256971 + 0.966419i \(0.582725\pi\)
\(882\) 0 0
\(883\) 20543.7 0.782957 0.391478 0.920187i \(-0.371964\pi\)
0.391478 + 0.920187i \(0.371964\pi\)
\(884\) 1381.34 0.0525559
\(885\) 0 0
\(886\) 603.599 0.0228875
\(887\) 8340.53 0.315724 0.157862 0.987461i \(-0.449540\pi\)
0.157862 + 0.987461i \(0.449540\pi\)
\(888\) 0 0
\(889\) −8278.85 −0.312333
\(890\) 2332.75 0.0878582
\(891\) 0 0
\(892\) 6289.93 0.236101
\(893\) −28894.1 −1.08276
\(894\) 0 0
\(895\) −1827.38 −0.0682486
\(896\) 4387.52 0.163590
\(897\) 0 0
\(898\) 5051.27 0.187709
\(899\) 7781.48 0.288684
\(900\) 0 0
\(901\) −42612.2 −1.57560
\(902\) −1233.86 −0.0455467
\(903\) 0 0
\(904\) −7310.43 −0.268962
\(905\) −11451.3 −0.420611
\(906\) 0 0
\(907\) 20125.1 0.736763 0.368381 0.929675i \(-0.379912\pi\)
0.368381 + 0.929675i \(0.379912\pi\)
\(908\) 18764.9 0.685831
\(909\) 0 0
\(910\) −38.0310 −0.00138540
\(911\) −41255.4 −1.50039 −0.750193 0.661219i \(-0.770039\pi\)
−0.750193 + 0.661219i \(0.770039\pi\)
\(912\) 0 0
\(913\) −15477.1 −0.561026
\(914\) −860.373 −0.0311363
\(915\) 0 0
\(916\) 31641.7 1.14134
\(917\) −13065.0 −0.470494
\(918\) 0 0
\(919\) 1034.04 0.0371164 0.0185582 0.999828i \(-0.494092\pi\)
0.0185582 + 0.999828i \(0.494092\pi\)
\(920\) 3574.67 0.128101
\(921\) 0 0
\(922\) −611.238 −0.0218330
\(923\) 255.690 0.00911824
\(924\) 0 0
\(925\) 24488.6 0.870466
\(926\) 5137.15 0.182308
\(927\) 0 0
\(928\) 10407.5 0.368149
\(929\) 26854.6 0.948408 0.474204 0.880415i \(-0.342736\pi\)
0.474204 + 0.880415i \(0.342736\pi\)
\(930\) 0 0
\(931\) 3424.64 0.120557
\(932\) 33325.6 1.17126
\(933\) 0 0
\(934\) 4728.29 0.165647
\(935\) 3902.61 0.136502
\(936\) 0 0
\(937\) −2310.22 −0.0805461 −0.0402730 0.999189i \(-0.512823\pi\)
−0.0402730 + 0.999189i \(0.512823\pi\)
\(938\) −1010.80 −0.0351851
\(939\) 0 0
\(940\) 19296.7 0.669564
\(941\) −52782.7 −1.82855 −0.914276 0.405093i \(-0.867239\pi\)
−0.914276 + 0.405093i \(0.867239\pi\)
\(942\) 0 0
\(943\) −42793.3 −1.47778
\(944\) 22085.8 0.761476
\(945\) 0 0
\(946\) −1896.68 −0.0651866
\(947\) −56229.8 −1.92949 −0.964743 0.263195i \(-0.915224\pi\)
−0.964743 + 0.263195i \(0.915224\pi\)
\(948\) 0 0
\(949\) 1175.41 0.0402058
\(950\) −1988.62 −0.0679151
\(951\) 0 0
\(952\) −2110.82 −0.0718613
\(953\) −15410.4 −0.523812 −0.261906 0.965093i \(-0.584351\pi\)
−0.261906 + 0.965093i \(0.584351\pi\)
\(954\) 0 0
\(955\) −2583.14 −0.0875273
\(956\) −52351.4 −1.77109
\(957\) 0 0
\(958\) 3602.72 0.121502
\(959\) −20814.8 −0.700881
\(960\) 0 0
\(961\) −27803.1 −0.933271
\(962\) −249.953 −0.00837712
\(963\) 0 0
\(964\) 47721.4 1.59440
\(965\) 103.878 0.00346524
\(966\) 0 0
\(967\) −35125.4 −1.16811 −0.584053 0.811716i \(-0.698534\pi\)
−0.584053 + 0.811716i \(0.698534\pi\)
\(968\) −607.614 −0.0201751
\(969\) 0 0
\(970\) 3308.86 0.109527
\(971\) −23595.7 −0.779836 −0.389918 0.920850i \(-0.627497\pi\)
−0.389918 + 0.920850i \(0.627497\pi\)
\(972\) 0 0
\(973\) 20328.7 0.669794
\(974\) 4940.82 0.162540
\(975\) 0 0
\(976\) −35407.2 −1.16122
\(977\) −17361.9 −0.568533 −0.284267 0.958745i \(-0.591750\pi\)
−0.284267 + 0.958745i \(0.591750\pi\)
\(978\) 0 0
\(979\) −13752.1 −0.448947
\(980\) −2287.13 −0.0745506
\(981\) 0 0
\(982\) 2082.60 0.0676765
\(983\) −55493.4 −1.80057 −0.900287 0.435296i \(-0.856644\pi\)
−0.900287 + 0.435296i \(0.856644\pi\)
\(984\) 0 0
\(985\) 24039.7 0.777633
\(986\) −3309.88 −0.106905
\(987\) 0 0
\(988\) −1607.72 −0.0517695
\(989\) −65781.6 −2.11500
\(990\) 0 0
\(991\) −12348.7 −0.395831 −0.197915 0.980219i \(-0.563417\pi\)
−0.197915 + 0.980219i \(0.563417\pi\)
\(992\) 2658.77 0.0850969
\(993\) 0 0
\(994\) −194.134 −0.00619472
\(995\) 22648.0 0.721598
\(996\) 0 0
\(997\) −30574.2 −0.971208 −0.485604 0.874179i \(-0.661400\pi\)
−0.485604 + 0.874179i \(0.661400\pi\)
\(998\) 1734.63 0.0550187
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.t.1.4 yes 8
3.2 odd 2 693.4.a.s.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.5 8 3.2 odd 2
693.4.a.t.1.4 yes 8 1.1 even 1 trivial