Properties

Label 693.4.a.t.1.3
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.09348\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.09348 q^{2} -3.61736 q^{4} -6.99302 q^{5} -7.00000 q^{7} +24.3207 q^{8} +O(q^{10})\) \(q-2.09348 q^{2} -3.61736 q^{4} -6.99302 q^{5} -7.00000 q^{7} +24.3207 q^{8} +14.6397 q^{10} -11.0000 q^{11} +13.5929 q^{13} +14.6543 q^{14} -21.9758 q^{16} -93.3418 q^{17} -54.1929 q^{19} +25.2963 q^{20} +23.0282 q^{22} +108.854 q^{23} -76.0977 q^{25} -28.4564 q^{26} +25.3215 q^{28} -68.0108 q^{29} -203.765 q^{31} -148.559 q^{32} +195.409 q^{34} +48.9511 q^{35} -288.303 q^{37} +113.452 q^{38} -170.075 q^{40} +22.3285 q^{41} -285.795 q^{43} +39.7910 q^{44} -227.884 q^{46} +433.862 q^{47} +49.0000 q^{49} +159.309 q^{50} -49.1703 q^{52} +592.467 q^{53} +76.9232 q^{55} -170.245 q^{56} +142.379 q^{58} -271.371 q^{59} +819.457 q^{61} +426.576 q^{62} +486.812 q^{64} -95.0552 q^{65} -961.774 q^{67} +337.651 q^{68} -102.478 q^{70} +599.916 q^{71} +239.044 q^{73} +603.556 q^{74} +196.035 q^{76} +77.0000 q^{77} -185.996 q^{79} +153.677 q^{80} -46.7443 q^{82} -466.853 q^{83} +652.741 q^{85} +598.305 q^{86} -267.527 q^{88} -184.217 q^{89} -95.1502 q^{91} -393.765 q^{92} -908.280 q^{94} +378.972 q^{95} -1441.50 q^{97} -102.580 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8} - 13 q^{10} - 88 q^{11} - 148 q^{13} - 14 q^{14} + 266 q^{16} + 114 q^{17} + 58 q^{19} + 291 q^{20} - 22 q^{22} + 246 q^{23} + 244 q^{25} + 305 q^{26} - 210 q^{28} - 72 q^{29} + 252 q^{31} + 1272 q^{32} + 630 q^{34} - 70 q^{35} - 80 q^{37} + 1885 q^{38} - 342 q^{40} + 682 q^{41} - 106 q^{43} - 330 q^{44} + 120 q^{46} + 828 q^{47} + 392 q^{49} + 801 q^{50} - 1681 q^{52} + 462 q^{53} - 110 q^{55} - 105 q^{56} - 1087 q^{58} + 626 q^{59} - 854 q^{61} + 1350 q^{62} + 2997 q^{64} + 22 q^{65} + 130 q^{67} + 2202 q^{68} + 91 q^{70} + 326 q^{71} - 390 q^{73} - 359 q^{74} + 2041 q^{76} + 616 q^{77} - 508 q^{79} + 4391 q^{80} + 1528 q^{82} + 1596 q^{83} - 880 q^{85} - 414 q^{86} - 165 q^{88} + 4324 q^{89} + 1036 q^{91} + 2092 q^{92} - 1685 q^{94} + 1076 q^{95} - 964 q^{97} + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.09348 −0.740155 −0.370078 0.929001i \(-0.620669\pi\)
−0.370078 + 0.929001i \(0.620669\pi\)
\(3\) 0 0
\(4\) −3.61736 −0.452170
\(5\) −6.99302 −0.625474 −0.312737 0.949840i \(-0.601246\pi\)
−0.312737 + 0.949840i \(0.601246\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 24.3207 1.07483
\(9\) 0 0
\(10\) 14.6397 0.462948
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 13.5929 0.289999 0.145000 0.989432i \(-0.453682\pi\)
0.145000 + 0.989432i \(0.453682\pi\)
\(14\) 14.6543 0.279752
\(15\) 0 0
\(16\) −21.9758 −0.343372
\(17\) −93.3418 −1.33169 −0.665845 0.746090i \(-0.731929\pi\)
−0.665845 + 0.746090i \(0.731929\pi\)
\(18\) 0 0
\(19\) −54.1929 −0.654353 −0.327176 0.944963i \(-0.606097\pi\)
−0.327176 + 0.944963i \(0.606097\pi\)
\(20\) 25.2963 0.282821
\(21\) 0 0
\(22\) 23.0282 0.223165
\(23\) 108.854 0.986855 0.493428 0.869787i \(-0.335744\pi\)
0.493428 + 0.869787i \(0.335744\pi\)
\(24\) 0 0
\(25\) −76.0977 −0.608782
\(26\) −28.4564 −0.214644
\(27\) 0 0
\(28\) 25.3215 0.170904
\(29\) −68.0108 −0.435493 −0.217746 0.976005i \(-0.569871\pi\)
−0.217746 + 0.976005i \(0.569871\pi\)
\(30\) 0 0
\(31\) −203.765 −1.18055 −0.590277 0.807201i \(-0.700982\pi\)
−0.590277 + 0.807201i \(0.700982\pi\)
\(32\) −148.559 −0.820683
\(33\) 0 0
\(34\) 195.409 0.985657
\(35\) 48.9511 0.236407
\(36\) 0 0
\(37\) −288.303 −1.28099 −0.640497 0.767960i \(-0.721272\pi\)
−0.640497 + 0.767960i \(0.721272\pi\)
\(38\) 113.452 0.484323
\(39\) 0 0
\(40\) −170.075 −0.672280
\(41\) 22.3285 0.0850520 0.0425260 0.999095i \(-0.486459\pi\)
0.0425260 + 0.999095i \(0.486459\pi\)
\(42\) 0 0
\(43\) −285.795 −1.01357 −0.506783 0.862074i \(-0.669165\pi\)
−0.506783 + 0.862074i \(0.669165\pi\)
\(44\) 39.7910 0.136334
\(45\) 0 0
\(46\) −227.884 −0.730426
\(47\) 433.862 1.34650 0.673248 0.739417i \(-0.264899\pi\)
0.673248 + 0.739417i \(0.264899\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 159.309 0.450593
\(51\) 0 0
\(52\) −49.1703 −0.131129
\(53\) 592.467 1.53550 0.767751 0.640748i \(-0.221376\pi\)
0.767751 + 0.640748i \(0.221376\pi\)
\(54\) 0 0
\(55\) 76.9232 0.188588
\(56\) −170.245 −0.406248
\(57\) 0 0
\(58\) 142.379 0.322332
\(59\) −271.371 −0.598806 −0.299403 0.954127i \(-0.596787\pi\)
−0.299403 + 0.954127i \(0.596787\pi\)
\(60\) 0 0
\(61\) 819.457 1.72001 0.860006 0.510284i \(-0.170460\pi\)
0.860006 + 0.510284i \(0.170460\pi\)
\(62\) 426.576 0.873794
\(63\) 0 0
\(64\) 486.812 0.950805
\(65\) −95.0552 −0.181387
\(66\) 0 0
\(67\) −961.774 −1.75372 −0.876861 0.480744i \(-0.840366\pi\)
−0.876861 + 0.480744i \(0.840366\pi\)
\(68\) 337.651 0.602150
\(69\) 0 0
\(70\) −102.478 −0.174978
\(71\) 599.916 1.00277 0.501387 0.865223i \(-0.332823\pi\)
0.501387 + 0.865223i \(0.332823\pi\)
\(72\) 0 0
\(73\) 239.044 0.383260 0.191630 0.981467i \(-0.438623\pi\)
0.191630 + 0.981467i \(0.438623\pi\)
\(74\) 603.556 0.948135
\(75\) 0 0
\(76\) 196.035 0.295879
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −185.996 −0.264888 −0.132444 0.991190i \(-0.542283\pi\)
−0.132444 + 0.991190i \(0.542283\pi\)
\(80\) 153.677 0.214771
\(81\) 0 0
\(82\) −46.7443 −0.0629517
\(83\) −466.853 −0.617395 −0.308697 0.951160i \(-0.599893\pi\)
−0.308697 + 0.951160i \(0.599893\pi\)
\(84\) 0 0
\(85\) 652.741 0.832938
\(86\) 598.305 0.750196
\(87\) 0 0
\(88\) −267.527 −0.324074
\(89\) −184.217 −0.219404 −0.109702 0.993965i \(-0.534990\pi\)
−0.109702 + 0.993965i \(0.534990\pi\)
\(90\) 0 0
\(91\) −95.1502 −0.109609
\(92\) −393.765 −0.446226
\(93\) 0 0
\(94\) −908.280 −0.996616
\(95\) 378.972 0.409281
\(96\) 0 0
\(97\) −1441.50 −1.50889 −0.754443 0.656366i \(-0.772093\pi\)
−0.754443 + 0.656366i \(0.772093\pi\)
\(98\) −102.580 −0.105736
\(99\) 0 0
\(100\) 275.273 0.275273
\(101\) 1358.55 1.33843 0.669213 0.743070i \(-0.266631\pi\)
0.669213 + 0.743070i \(0.266631\pi\)
\(102\) 0 0
\(103\) 1805.19 1.72690 0.863451 0.504432i \(-0.168298\pi\)
0.863451 + 0.504432i \(0.168298\pi\)
\(104\) 330.588 0.311700
\(105\) 0 0
\(106\) −1240.32 −1.13651
\(107\) 762.019 0.688479 0.344239 0.938882i \(-0.388137\pi\)
0.344239 + 0.938882i \(0.388137\pi\)
\(108\) 0 0
\(109\) 1476.81 1.29773 0.648867 0.760902i \(-0.275243\pi\)
0.648867 + 0.760902i \(0.275243\pi\)
\(110\) −161.037 −0.139584
\(111\) 0 0
\(112\) 153.831 0.129783
\(113\) 494.257 0.411467 0.205733 0.978608i \(-0.434042\pi\)
0.205733 + 0.978608i \(0.434042\pi\)
\(114\) 0 0
\(115\) −761.219 −0.617253
\(116\) 246.020 0.196917
\(117\) 0 0
\(118\) 568.109 0.443209
\(119\) 653.393 0.503331
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1715.51 −1.27308
\(123\) 0 0
\(124\) 737.090 0.533811
\(125\) 1406.28 1.00625
\(126\) 0 0
\(127\) −129.976 −0.0908149 −0.0454075 0.998969i \(-0.514459\pi\)
−0.0454075 + 0.998969i \(0.514459\pi\)
\(128\) 169.346 0.116939
\(129\) 0 0
\(130\) 198.996 0.134255
\(131\) 2334.22 1.55680 0.778402 0.627766i \(-0.216030\pi\)
0.778402 + 0.627766i \(0.216030\pi\)
\(132\) 0 0
\(133\) 379.350 0.247322
\(134\) 2013.45 1.29803
\(135\) 0 0
\(136\) −2270.13 −1.43134
\(137\) −1111.32 −0.693042 −0.346521 0.938042i \(-0.612637\pi\)
−0.346521 + 0.938042i \(0.612637\pi\)
\(138\) 0 0
\(139\) −1170.30 −0.714125 −0.357062 0.934081i \(-0.616222\pi\)
−0.357062 + 0.934081i \(0.616222\pi\)
\(140\) −177.074 −0.106896
\(141\) 0 0
\(142\) −1255.91 −0.742208
\(143\) −149.522 −0.0874380
\(144\) 0 0
\(145\) 475.601 0.272390
\(146\) −500.433 −0.283672
\(147\) 0 0
\(148\) 1042.90 0.579227
\(149\) −1346.99 −0.740604 −0.370302 0.928911i \(-0.620746\pi\)
−0.370302 + 0.928911i \(0.620746\pi\)
\(150\) 0 0
\(151\) −1591.91 −0.857933 −0.428967 0.903320i \(-0.641122\pi\)
−0.428967 + 0.903320i \(0.641122\pi\)
\(152\) −1318.01 −0.703319
\(153\) 0 0
\(154\) −161.198 −0.0843485
\(155\) 1424.93 0.738407
\(156\) 0 0
\(157\) 1080.97 0.549497 0.274749 0.961516i \(-0.411405\pi\)
0.274749 + 0.961516i \(0.411405\pi\)
\(158\) 389.378 0.196058
\(159\) 0 0
\(160\) 1038.88 0.513316
\(161\) −761.979 −0.372996
\(162\) 0 0
\(163\) 4036.04 1.93943 0.969715 0.244237i \(-0.0785376\pi\)
0.969715 + 0.244237i \(0.0785376\pi\)
\(164\) −80.7704 −0.0384580
\(165\) 0 0
\(166\) 977.345 0.456968
\(167\) 3173.23 1.47037 0.735186 0.677865i \(-0.237095\pi\)
0.735186 + 0.677865i \(0.237095\pi\)
\(168\) 0 0
\(169\) −2012.23 −0.915901
\(170\) −1366.50 −0.616503
\(171\) 0 0
\(172\) 1033.82 0.458304
\(173\) −1460.26 −0.641743 −0.320872 0.947123i \(-0.603976\pi\)
−0.320872 + 0.947123i \(0.603976\pi\)
\(174\) 0 0
\(175\) 532.684 0.230098
\(176\) 241.734 0.103531
\(177\) 0 0
\(178\) 385.654 0.162393
\(179\) 1949.59 0.814075 0.407037 0.913411i \(-0.366562\pi\)
0.407037 + 0.913411i \(0.366562\pi\)
\(180\) 0 0
\(181\) 3156.78 1.29636 0.648182 0.761486i \(-0.275530\pi\)
0.648182 + 0.761486i \(0.275530\pi\)
\(182\) 199.195 0.0811279
\(183\) 0 0
\(184\) 2647.41 1.06070
\(185\) 2016.11 0.801229
\(186\) 0 0
\(187\) 1026.76 0.401519
\(188\) −1569.43 −0.608845
\(189\) 0 0
\(190\) −793.368 −0.302932
\(191\) −4298.46 −1.62841 −0.814203 0.580580i \(-0.802826\pi\)
−0.814203 + 0.580580i \(0.802826\pi\)
\(192\) 0 0
\(193\) 869.612 0.324332 0.162166 0.986764i \(-0.448152\pi\)
0.162166 + 0.986764i \(0.448152\pi\)
\(194\) 3017.74 1.11681
\(195\) 0 0
\(196\) −177.251 −0.0645957
\(197\) 578.333 0.209160 0.104580 0.994516i \(-0.466650\pi\)
0.104580 + 0.994516i \(0.466650\pi\)
\(198\) 0 0
\(199\) 4791.42 1.70681 0.853404 0.521250i \(-0.174534\pi\)
0.853404 + 0.521250i \(0.174534\pi\)
\(200\) −1850.75 −0.654338
\(201\) 0 0
\(202\) −2844.10 −0.990644
\(203\) 476.076 0.164601
\(204\) 0 0
\(205\) −156.144 −0.0531979
\(206\) −3779.13 −1.27818
\(207\) 0 0
\(208\) −298.715 −0.0995777
\(209\) 596.122 0.197295
\(210\) 0 0
\(211\) 3192.91 1.04175 0.520875 0.853633i \(-0.325606\pi\)
0.520875 + 0.853633i \(0.325606\pi\)
\(212\) −2143.17 −0.694308
\(213\) 0 0
\(214\) −1595.27 −0.509581
\(215\) 1998.57 0.633959
\(216\) 0 0
\(217\) 1426.35 0.446208
\(218\) −3091.67 −0.960524
\(219\) 0 0
\(220\) −278.259 −0.0852737
\(221\) −1268.78 −0.386189
\(222\) 0 0
\(223\) −644.701 −0.193598 −0.0967991 0.995304i \(-0.530860\pi\)
−0.0967991 + 0.995304i \(0.530860\pi\)
\(224\) 1039.92 0.310189
\(225\) 0 0
\(226\) −1034.71 −0.304549
\(227\) −942.889 −0.275691 −0.137845 0.990454i \(-0.544018\pi\)
−0.137845 + 0.990454i \(0.544018\pi\)
\(228\) 0 0
\(229\) −2421.98 −0.698904 −0.349452 0.936954i \(-0.613632\pi\)
−0.349452 + 0.936954i \(0.613632\pi\)
\(230\) 1593.59 0.456863
\(231\) 0 0
\(232\) −1654.07 −0.468081
\(233\) 5640.92 1.58605 0.793023 0.609192i \(-0.208506\pi\)
0.793023 + 0.609192i \(0.208506\pi\)
\(234\) 0 0
\(235\) −3034.00 −0.842198
\(236\) 981.647 0.270762
\(237\) 0 0
\(238\) −1367.86 −0.372543
\(239\) −2184.21 −0.591149 −0.295575 0.955320i \(-0.595511\pi\)
−0.295575 + 0.955320i \(0.595511\pi\)
\(240\) 0 0
\(241\) 1519.98 0.406269 0.203134 0.979151i \(-0.434887\pi\)
0.203134 + 0.979151i \(0.434887\pi\)
\(242\) −253.311 −0.0672869
\(243\) 0 0
\(244\) −2964.27 −0.777738
\(245\) −342.658 −0.0893535
\(246\) 0 0
\(247\) −736.638 −0.189762
\(248\) −4955.69 −1.26890
\(249\) 0 0
\(250\) −2944.01 −0.744783
\(251\) −3651.63 −0.918283 −0.459142 0.888363i \(-0.651843\pi\)
−0.459142 + 0.888363i \(0.651843\pi\)
\(252\) 0 0
\(253\) −1197.40 −0.297548
\(254\) 272.101 0.0672172
\(255\) 0 0
\(256\) −4249.02 −1.03736
\(257\) −1510.10 −0.366528 −0.183264 0.983064i \(-0.558666\pi\)
−0.183264 + 0.983064i \(0.558666\pi\)
\(258\) 0 0
\(259\) 2018.12 0.484170
\(260\) 343.849 0.0820177
\(261\) 0 0
\(262\) −4886.62 −1.15228
\(263\) −1903.00 −0.446175 −0.223087 0.974798i \(-0.571614\pi\)
−0.223087 + 0.974798i \(0.571614\pi\)
\(264\) 0 0
\(265\) −4143.13 −0.960417
\(266\) −794.161 −0.183057
\(267\) 0 0
\(268\) 3479.08 0.792980
\(269\) −149.202 −0.0338178 −0.0169089 0.999857i \(-0.505383\pi\)
−0.0169089 + 0.999857i \(0.505383\pi\)
\(270\) 0 0
\(271\) −1389.42 −0.311444 −0.155722 0.987801i \(-0.549770\pi\)
−0.155722 + 0.987801i \(0.549770\pi\)
\(272\) 2051.26 0.457265
\(273\) 0 0
\(274\) 2326.53 0.512959
\(275\) 837.075 0.183555
\(276\) 0 0
\(277\) −468.647 −0.101654 −0.0508272 0.998707i \(-0.516186\pi\)
−0.0508272 + 0.998707i \(0.516186\pi\)
\(278\) 2449.99 0.528563
\(279\) 0 0
\(280\) 1190.52 0.254098
\(281\) 4609.75 0.978628 0.489314 0.872108i \(-0.337247\pi\)
0.489314 + 0.872108i \(0.337247\pi\)
\(282\) 0 0
\(283\) −4188.07 −0.879700 −0.439850 0.898071i \(-0.644968\pi\)
−0.439850 + 0.898071i \(0.644968\pi\)
\(284\) −2170.11 −0.453424
\(285\) 0 0
\(286\) 313.020 0.0647177
\(287\) −156.300 −0.0321466
\(288\) 0 0
\(289\) 3799.70 0.773397
\(290\) −995.658 −0.201611
\(291\) 0 0
\(292\) −864.708 −0.173299
\(293\) −4766.65 −0.950412 −0.475206 0.879874i \(-0.657627\pi\)
−0.475206 + 0.879874i \(0.657627\pi\)
\(294\) 0 0
\(295\) 1897.70 0.374538
\(296\) −7011.73 −1.37685
\(297\) 0 0
\(298\) 2819.90 0.548162
\(299\) 1479.64 0.286187
\(300\) 0 0
\(301\) 2000.56 0.383092
\(302\) 3332.63 0.635004
\(303\) 0 0
\(304\) 1190.93 0.224687
\(305\) −5730.48 −1.07582
\(306\) 0 0
\(307\) −10210.5 −1.89819 −0.949094 0.314994i \(-0.897997\pi\)
−0.949094 + 0.314994i \(0.897997\pi\)
\(308\) −278.537 −0.0515295
\(309\) 0 0
\(310\) −2983.05 −0.546536
\(311\) 968.081 0.176511 0.0882554 0.996098i \(-0.471871\pi\)
0.0882554 + 0.996098i \(0.471871\pi\)
\(312\) 0 0
\(313\) 1143.87 0.206567 0.103284 0.994652i \(-0.467065\pi\)
0.103284 + 0.994652i \(0.467065\pi\)
\(314\) −2262.99 −0.406713
\(315\) 0 0
\(316\) 672.814 0.119774
\(317\) −4477.92 −0.793391 −0.396696 0.917950i \(-0.629843\pi\)
−0.396696 + 0.917950i \(0.629843\pi\)
\(318\) 0 0
\(319\) 748.119 0.131306
\(320\) −3404.29 −0.594704
\(321\) 0 0
\(322\) 1595.19 0.276075
\(323\) 5058.47 0.871395
\(324\) 0 0
\(325\) −1034.39 −0.176546
\(326\) −8449.36 −1.43548
\(327\) 0 0
\(328\) 543.045 0.0914166
\(329\) −3037.03 −0.508927
\(330\) 0 0
\(331\) 6910.13 1.14748 0.573739 0.819038i \(-0.305492\pi\)
0.573739 + 0.819038i \(0.305492\pi\)
\(332\) 1688.77 0.279167
\(333\) 0 0
\(334\) −6643.09 −1.08830
\(335\) 6725.70 1.09691
\(336\) 0 0
\(337\) 2277.26 0.368101 0.184050 0.982917i \(-0.441079\pi\)
0.184050 + 0.982917i \(0.441079\pi\)
\(338\) 4212.56 0.677909
\(339\) 0 0
\(340\) −2361.20 −0.376629
\(341\) 2241.41 0.355951
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −6950.72 −1.08941
\(345\) 0 0
\(346\) 3057.02 0.474990
\(347\) −5231.70 −0.809372 −0.404686 0.914456i \(-0.632619\pi\)
−0.404686 + 0.914456i \(0.632619\pi\)
\(348\) 0 0
\(349\) −1509.59 −0.231538 −0.115769 0.993276i \(-0.536933\pi\)
−0.115769 + 0.993276i \(0.536933\pi\)
\(350\) −1115.16 −0.170308
\(351\) 0 0
\(352\) 1634.15 0.247445
\(353\) −9194.02 −1.38626 −0.693128 0.720814i \(-0.743768\pi\)
−0.693128 + 0.720814i \(0.743768\pi\)
\(354\) 0 0
\(355\) −4195.22 −0.627209
\(356\) 666.380 0.0992081
\(357\) 0 0
\(358\) −4081.43 −0.602542
\(359\) −10798.5 −1.58752 −0.793762 0.608228i \(-0.791881\pi\)
−0.793762 + 0.608228i \(0.791881\pi\)
\(360\) 0 0
\(361\) −3922.13 −0.571822
\(362\) −6608.64 −0.959510
\(363\) 0 0
\(364\) 344.192 0.0495620
\(365\) −1671.64 −0.239719
\(366\) 0 0
\(367\) −1315.27 −0.187076 −0.0935378 0.995616i \(-0.529818\pi\)
−0.0935378 + 0.995616i \(0.529818\pi\)
\(368\) −2392.16 −0.338859
\(369\) 0 0
\(370\) −4220.68 −0.593034
\(371\) −4147.27 −0.580365
\(372\) 0 0
\(373\) −6348.16 −0.881221 −0.440610 0.897698i \(-0.645238\pi\)
−0.440610 + 0.897698i \(0.645238\pi\)
\(374\) −2149.50 −0.297187
\(375\) 0 0
\(376\) 10551.8 1.44726
\(377\) −924.463 −0.126292
\(378\) 0 0
\(379\) 6776.47 0.918427 0.459213 0.888326i \(-0.348131\pi\)
0.459213 + 0.888326i \(0.348131\pi\)
\(380\) −1370.88 −0.185065
\(381\) 0 0
\(382\) 8998.72 1.20527
\(383\) 14440.7 1.92659 0.963297 0.268437i \(-0.0865073\pi\)
0.963297 + 0.268437i \(0.0865073\pi\)
\(384\) 0 0
\(385\) −538.462 −0.0712794
\(386\) −1820.51 −0.240056
\(387\) 0 0
\(388\) 5214.42 0.682273
\(389\) 11087.0 1.44507 0.722534 0.691335i \(-0.242977\pi\)
0.722534 + 0.691335i \(0.242977\pi\)
\(390\) 0 0
\(391\) −10160.6 −1.31418
\(392\) 1191.71 0.153547
\(393\) 0 0
\(394\) −1210.73 −0.154811
\(395\) 1300.67 0.165681
\(396\) 0 0
\(397\) 6864.56 0.867814 0.433907 0.900958i \(-0.357135\pi\)
0.433907 + 0.900958i \(0.357135\pi\)
\(398\) −10030.7 −1.26330
\(399\) 0 0
\(400\) 1672.31 0.209039
\(401\) 3464.90 0.431493 0.215747 0.976449i \(-0.430781\pi\)
0.215747 + 0.976449i \(0.430781\pi\)
\(402\) 0 0
\(403\) −2769.75 −0.342360
\(404\) −4914.38 −0.605196
\(405\) 0 0
\(406\) −996.653 −0.121830
\(407\) 3171.34 0.386234
\(408\) 0 0
\(409\) −4876.20 −0.589518 −0.294759 0.955572i \(-0.595239\pi\)
−0.294759 + 0.955572i \(0.595239\pi\)
\(410\) 326.883 0.0393747
\(411\) 0 0
\(412\) −6530.03 −0.780854
\(413\) 1899.60 0.226327
\(414\) 0 0
\(415\) 3264.71 0.386165
\(416\) −2019.35 −0.237997
\(417\) 0 0
\(418\) −1247.97 −0.146029
\(419\) 8520.23 0.993414 0.496707 0.867918i \(-0.334542\pi\)
0.496707 + 0.867918i \(0.334542\pi\)
\(420\) 0 0
\(421\) 6164.41 0.713622 0.356811 0.934177i \(-0.383864\pi\)
0.356811 + 0.934177i \(0.383864\pi\)
\(422\) −6684.29 −0.771057
\(423\) 0 0
\(424\) 14409.2 1.65041
\(425\) 7103.10 0.810708
\(426\) 0 0
\(427\) −5736.20 −0.650103
\(428\) −2756.50 −0.311309
\(429\) 0 0
\(430\) −4183.95 −0.469228
\(431\) 639.993 0.0715252 0.0357626 0.999360i \(-0.488614\pi\)
0.0357626 + 0.999360i \(0.488614\pi\)
\(432\) 0 0
\(433\) 3938.71 0.437142 0.218571 0.975821i \(-0.429861\pi\)
0.218571 + 0.975821i \(0.429861\pi\)
\(434\) −2986.03 −0.330263
\(435\) 0 0
\(436\) −5342.16 −0.586796
\(437\) −5899.12 −0.645751
\(438\) 0 0
\(439\) 110.576 0.0120216 0.00601082 0.999982i \(-0.498087\pi\)
0.00601082 + 0.999982i \(0.498087\pi\)
\(440\) 1870.82 0.202700
\(441\) 0 0
\(442\) 2656.17 0.285840
\(443\) −16940.5 −1.81686 −0.908428 0.418041i \(-0.862717\pi\)
−0.908428 + 0.418041i \(0.862717\pi\)
\(444\) 0 0
\(445\) 1288.23 0.137232
\(446\) 1349.67 0.143293
\(447\) 0 0
\(448\) −3407.69 −0.359371
\(449\) 5625.02 0.591228 0.295614 0.955308i \(-0.404476\pi\)
0.295614 + 0.955308i \(0.404476\pi\)
\(450\) 0 0
\(451\) −245.614 −0.0256441
\(452\) −1787.90 −0.186053
\(453\) 0 0
\(454\) 1973.92 0.204054
\(455\) 665.387 0.0685578
\(456\) 0 0
\(457\) 13399.8 1.37159 0.685793 0.727797i \(-0.259456\pi\)
0.685793 + 0.727797i \(0.259456\pi\)
\(458\) 5070.36 0.517298
\(459\) 0 0
\(460\) 2753.60 0.279103
\(461\) −3548.83 −0.358537 −0.179269 0.983800i \(-0.557373\pi\)
−0.179269 + 0.983800i \(0.557373\pi\)
\(462\) 0 0
\(463\) 15722.0 1.57811 0.789053 0.614326i \(-0.210572\pi\)
0.789053 + 0.614326i \(0.210572\pi\)
\(464\) 1494.59 0.149536
\(465\) 0 0
\(466\) −11809.1 −1.17392
\(467\) 19145.3 1.89708 0.948540 0.316657i \(-0.102560\pi\)
0.948540 + 0.316657i \(0.102560\pi\)
\(468\) 0 0
\(469\) 6732.41 0.662844
\(470\) 6351.61 0.623358
\(471\) 0 0
\(472\) −6599.93 −0.643615
\(473\) 3143.74 0.305601
\(474\) 0 0
\(475\) 4123.96 0.398358
\(476\) −2363.56 −0.227591
\(477\) 0 0
\(478\) 4572.59 0.437543
\(479\) −4243.61 −0.404793 −0.202396 0.979304i \(-0.564873\pi\)
−0.202396 + 0.979304i \(0.564873\pi\)
\(480\) 0 0
\(481\) −3918.87 −0.371487
\(482\) −3182.05 −0.300702
\(483\) 0 0
\(484\) −437.700 −0.0411064
\(485\) 10080.4 0.943769
\(486\) 0 0
\(487\) −5633.82 −0.524215 −0.262107 0.965039i \(-0.584417\pi\)
−0.262107 + 0.965039i \(0.584417\pi\)
\(488\) 19929.7 1.84872
\(489\) 0 0
\(490\) 717.346 0.0661355
\(491\) −2089.90 −0.192089 −0.0960445 0.995377i \(-0.530619\pi\)
−0.0960445 + 0.995377i \(0.530619\pi\)
\(492\) 0 0
\(493\) 6348.25 0.579941
\(494\) 1542.13 0.140453
\(495\) 0 0
\(496\) 4477.90 0.405370
\(497\) −4199.41 −0.379013
\(498\) 0 0
\(499\) −15107.3 −1.35530 −0.677651 0.735383i \(-0.737002\pi\)
−0.677651 + 0.735383i \(0.737002\pi\)
\(500\) −5087.02 −0.454997
\(501\) 0 0
\(502\) 7644.61 0.679672
\(503\) 20468.9 1.81444 0.907220 0.420656i \(-0.138200\pi\)
0.907220 + 0.420656i \(0.138200\pi\)
\(504\) 0 0
\(505\) −9500.39 −0.837152
\(506\) 2506.72 0.220232
\(507\) 0 0
\(508\) 470.170 0.0410638
\(509\) 9681.40 0.843066 0.421533 0.906813i \(-0.361492\pi\)
0.421533 + 0.906813i \(0.361492\pi\)
\(510\) 0 0
\(511\) −1673.31 −0.144859
\(512\) 7540.45 0.650867
\(513\) 0 0
\(514\) 3161.37 0.271288
\(515\) −12623.7 −1.08013
\(516\) 0 0
\(517\) −4772.48 −0.405984
\(518\) −4224.89 −0.358361
\(519\) 0 0
\(520\) −2311.81 −0.194960
\(521\) 14360.2 1.20755 0.603775 0.797155i \(-0.293663\pi\)
0.603775 + 0.797155i \(0.293663\pi\)
\(522\) 0 0
\(523\) 9440.79 0.789325 0.394663 0.918826i \(-0.370861\pi\)
0.394663 + 0.918826i \(0.370861\pi\)
\(524\) −8443.70 −0.703940
\(525\) 0 0
\(526\) 3983.88 0.330239
\(527\) 19019.8 1.57213
\(528\) 0 0
\(529\) −317.766 −0.0261171
\(530\) 8673.54 0.710858
\(531\) 0 0
\(532\) −1372.25 −0.111832
\(533\) 303.509 0.0246650
\(534\) 0 0
\(535\) −5328.81 −0.430626
\(536\) −23391.0 −1.88496
\(537\) 0 0
\(538\) 312.350 0.0250304
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 17757.4 1.41118 0.705590 0.708620i \(-0.250682\pi\)
0.705590 + 0.708620i \(0.250682\pi\)
\(542\) 2908.72 0.230517
\(543\) 0 0
\(544\) 13866.8 1.09289
\(545\) −10327.4 −0.811699
\(546\) 0 0
\(547\) 3081.08 0.240836 0.120418 0.992723i \(-0.461576\pi\)
0.120418 + 0.992723i \(0.461576\pi\)
\(548\) 4020.06 0.313373
\(549\) 0 0
\(550\) −1752.40 −0.135859
\(551\) 3685.70 0.284966
\(552\) 0 0
\(553\) 1301.97 0.100118
\(554\) 981.102 0.0752401
\(555\) 0 0
\(556\) 4233.39 0.322906
\(557\) −9681.04 −0.736443 −0.368222 0.929738i \(-0.620033\pi\)
−0.368222 + 0.929738i \(0.620033\pi\)
\(558\) 0 0
\(559\) −3884.78 −0.293933
\(560\) −1075.74 −0.0811757
\(561\) 0 0
\(562\) −9650.40 −0.724337
\(563\) 9538.12 0.714003 0.357002 0.934104i \(-0.383799\pi\)
0.357002 + 0.934104i \(0.383799\pi\)
\(564\) 0 0
\(565\) −3456.34 −0.257362
\(566\) 8767.63 0.651115
\(567\) 0 0
\(568\) 14590.3 1.07781
\(569\) −17921.0 −1.32036 −0.660181 0.751107i \(-0.729520\pi\)
−0.660181 + 0.751107i \(0.729520\pi\)
\(570\) 0 0
\(571\) −22573.5 −1.65441 −0.827207 0.561897i \(-0.810072\pi\)
−0.827207 + 0.561897i \(0.810072\pi\)
\(572\) 540.874 0.0395368
\(573\) 0 0
\(574\) 327.210 0.0237935
\(575\) −8283.56 −0.600779
\(576\) 0 0
\(577\) 9454.60 0.682149 0.341075 0.940036i \(-0.389209\pi\)
0.341075 + 0.940036i \(0.389209\pi\)
\(578\) −7954.58 −0.572434
\(579\) 0 0
\(580\) −1720.42 −0.123166
\(581\) 3267.97 0.233353
\(582\) 0 0
\(583\) −6517.14 −0.462971
\(584\) 5813.71 0.411940
\(585\) 0 0
\(586\) 9978.87 0.703453
\(587\) 11553.1 0.812345 0.406173 0.913796i \(-0.366863\pi\)
0.406173 + 0.913796i \(0.366863\pi\)
\(588\) 0 0
\(589\) 11042.6 0.772499
\(590\) −3972.80 −0.277216
\(591\) 0 0
\(592\) 6335.71 0.439858
\(593\) 12795.9 0.886115 0.443057 0.896493i \(-0.353894\pi\)
0.443057 + 0.896493i \(0.353894\pi\)
\(594\) 0 0
\(595\) −4569.19 −0.314821
\(596\) 4872.56 0.334879
\(597\) 0 0
\(598\) −3097.59 −0.211823
\(599\) 26094.7 1.77997 0.889983 0.455993i \(-0.150716\pi\)
0.889983 + 0.455993i \(0.150716\pi\)
\(600\) 0 0
\(601\) −6283.94 −0.426501 −0.213251 0.976998i \(-0.568405\pi\)
−0.213251 + 0.976998i \(0.568405\pi\)
\(602\) −4188.13 −0.283547
\(603\) 0 0
\(604\) 5758.52 0.387932
\(605\) −846.155 −0.0568613
\(606\) 0 0
\(607\) −16754.4 −1.12033 −0.560165 0.828381i \(-0.689262\pi\)
−0.560165 + 0.828381i \(0.689262\pi\)
\(608\) 8050.87 0.537016
\(609\) 0 0
\(610\) 11996.6 0.796277
\(611\) 5897.44 0.390482
\(612\) 0 0
\(613\) −25906.0 −1.70690 −0.853452 0.521171i \(-0.825495\pi\)
−0.853452 + 0.521171i \(0.825495\pi\)
\(614\) 21375.4 1.40495
\(615\) 0 0
\(616\) 1872.69 0.122488
\(617\) 27420.4 1.78915 0.894573 0.446922i \(-0.147480\pi\)
0.894573 + 0.446922i \(0.147480\pi\)
\(618\) 0 0
\(619\) 3612.48 0.234568 0.117284 0.993098i \(-0.462581\pi\)
0.117284 + 0.993098i \(0.462581\pi\)
\(620\) −5154.48 −0.333885
\(621\) 0 0
\(622\) −2026.65 −0.130645
\(623\) 1289.52 0.0829271
\(624\) 0 0
\(625\) −321.920 −0.0206029
\(626\) −2394.67 −0.152892
\(627\) 0 0
\(628\) −3910.27 −0.248466
\(629\) 26910.8 1.70589
\(630\) 0 0
\(631\) 7508.72 0.473720 0.236860 0.971544i \(-0.423882\pi\)
0.236860 + 0.971544i \(0.423882\pi\)
\(632\) −4523.54 −0.284710
\(633\) 0 0
\(634\) 9374.42 0.587233
\(635\) 908.923 0.0568024
\(636\) 0 0
\(637\) 666.051 0.0414284
\(638\) −1566.17 −0.0971869
\(639\) 0 0
\(640\) −1184.24 −0.0731423
\(641\) −15144.1 −0.933159 −0.466580 0.884479i \(-0.654514\pi\)
−0.466580 + 0.884479i \(0.654514\pi\)
\(642\) 0 0
\(643\) 1896.99 0.116345 0.0581726 0.998307i \(-0.481473\pi\)
0.0581726 + 0.998307i \(0.481473\pi\)
\(644\) 2756.35 0.168658
\(645\) 0 0
\(646\) −10589.8 −0.644968
\(647\) −8478.01 −0.515154 −0.257577 0.966258i \(-0.582924\pi\)
−0.257577 + 0.966258i \(0.582924\pi\)
\(648\) 0 0
\(649\) 2985.08 0.180547
\(650\) 2165.46 0.130672
\(651\) 0 0
\(652\) −14599.8 −0.876952
\(653\) −28619.2 −1.71509 −0.857547 0.514405i \(-0.828013\pi\)
−0.857547 + 0.514405i \(0.828013\pi\)
\(654\) 0 0
\(655\) −16323.2 −0.973741
\(656\) −490.688 −0.0292045
\(657\) 0 0
\(658\) 6357.96 0.376685
\(659\) 13750.0 0.812780 0.406390 0.913700i \(-0.366787\pi\)
0.406390 + 0.913700i \(0.366787\pi\)
\(660\) 0 0
\(661\) −11608.8 −0.683100 −0.341550 0.939864i \(-0.610952\pi\)
−0.341550 + 0.939864i \(0.610952\pi\)
\(662\) −14466.2 −0.849312
\(663\) 0 0
\(664\) −11354.2 −0.663595
\(665\) −2652.80 −0.154694
\(666\) 0 0
\(667\) −7403.26 −0.429768
\(668\) −11478.7 −0.664858
\(669\) 0 0
\(670\) −14080.1 −0.811882
\(671\) −9014.03 −0.518603
\(672\) 0 0
\(673\) −28286.3 −1.62015 −0.810073 0.586329i \(-0.800572\pi\)
−0.810073 + 0.586329i \(0.800572\pi\)
\(674\) −4767.38 −0.272452
\(675\) 0 0
\(676\) 7278.97 0.414143
\(677\) 14535.0 0.825148 0.412574 0.910924i \(-0.364630\pi\)
0.412574 + 0.910924i \(0.364630\pi\)
\(678\) 0 0
\(679\) 10090.5 0.570305
\(680\) 15875.1 0.895268
\(681\) 0 0
\(682\) −4692.34 −0.263459
\(683\) −2583.97 −0.144762 −0.0723812 0.997377i \(-0.523060\pi\)
−0.0723812 + 0.997377i \(0.523060\pi\)
\(684\) 0 0
\(685\) 7771.50 0.433480
\(686\) 718.062 0.0399646
\(687\) 0 0
\(688\) 6280.58 0.348030
\(689\) 8053.33 0.445294
\(690\) 0 0
\(691\) −2187.71 −0.120440 −0.0602202 0.998185i \(-0.519180\pi\)
−0.0602202 + 0.998185i \(0.519180\pi\)
\(692\) 5282.29 0.290177
\(693\) 0 0
\(694\) 10952.4 0.599061
\(695\) 8183.91 0.446667
\(696\) 0 0
\(697\) −2084.19 −0.113263
\(698\) 3160.30 0.171374
\(699\) 0 0
\(700\) −1926.91 −0.104043
\(701\) −10636.4 −0.573082 −0.286541 0.958068i \(-0.592506\pi\)
−0.286541 + 0.958068i \(0.592506\pi\)
\(702\) 0 0
\(703\) 15624.0 0.838222
\(704\) −5354.93 −0.286679
\(705\) 0 0
\(706\) 19247.5 1.02605
\(707\) −9509.87 −0.505878
\(708\) 0 0
\(709\) 2296.86 0.121665 0.0608324 0.998148i \(-0.480624\pi\)
0.0608324 + 0.998148i \(0.480624\pi\)
\(710\) 8782.59 0.464232
\(711\) 0 0
\(712\) −4480.28 −0.235823
\(713\) −22180.6 −1.16504
\(714\) 0 0
\(715\) 1045.61 0.0546902
\(716\) −7052.38 −0.368100
\(717\) 0 0
\(718\) 22606.3 1.17501
\(719\) 13507.6 0.700624 0.350312 0.936633i \(-0.386076\pi\)
0.350312 + 0.936633i \(0.386076\pi\)
\(720\) 0 0
\(721\) −12636.4 −0.652708
\(722\) 8210.88 0.423237
\(723\) 0 0
\(724\) −11419.2 −0.586176
\(725\) 5175.47 0.265120
\(726\) 0 0
\(727\) 19678.8 1.00392 0.501959 0.864892i \(-0.332613\pi\)
0.501959 + 0.864892i \(0.332613\pi\)
\(728\) −2314.12 −0.117812
\(729\) 0 0
\(730\) 3499.53 0.177430
\(731\) 26676.6 1.34975
\(732\) 0 0
\(733\) 12254.2 0.617486 0.308743 0.951145i \(-0.400092\pi\)
0.308743 + 0.951145i \(0.400092\pi\)
\(734\) 2753.49 0.138465
\(735\) 0 0
\(736\) −16171.3 −0.809895
\(737\) 10579.5 0.528767
\(738\) 0 0
\(739\) 9407.00 0.468257 0.234129 0.972206i \(-0.424776\pi\)
0.234129 + 0.972206i \(0.424776\pi\)
\(740\) −7293.00 −0.362292
\(741\) 0 0
\(742\) 8682.21 0.429560
\(743\) −1201.12 −0.0593067 −0.0296534 0.999560i \(-0.509440\pi\)
−0.0296534 + 0.999560i \(0.509440\pi\)
\(744\) 0 0
\(745\) 9419.55 0.463229
\(746\) 13289.7 0.652240
\(747\) 0 0
\(748\) −3714.16 −0.181555
\(749\) −5334.14 −0.260220
\(750\) 0 0
\(751\) 15855.7 0.770418 0.385209 0.922829i \(-0.374129\pi\)
0.385209 + 0.922829i \(0.374129\pi\)
\(752\) −9534.48 −0.462349
\(753\) 0 0
\(754\) 1935.34 0.0934761
\(755\) 11132.3 0.536615
\(756\) 0 0
\(757\) −27304.0 −1.31094 −0.655469 0.755222i \(-0.727529\pi\)
−0.655469 + 0.755222i \(0.727529\pi\)
\(758\) −14186.4 −0.679779
\(759\) 0 0
\(760\) 9216.85 0.439908
\(761\) 14086.4 0.671002 0.335501 0.942040i \(-0.391094\pi\)
0.335501 + 0.942040i \(0.391094\pi\)
\(762\) 0 0
\(763\) −10337.7 −0.490497
\(764\) 15549.1 0.736316
\(765\) 0 0
\(766\) −30231.3 −1.42598
\(767\) −3688.72 −0.173653
\(768\) 0 0
\(769\) −22751.7 −1.06690 −0.533452 0.845831i \(-0.679105\pi\)
−0.533452 + 0.845831i \(0.679105\pi\)
\(770\) 1127.26 0.0527579
\(771\) 0 0
\(772\) −3145.70 −0.146653
\(773\) −20276.2 −0.943445 −0.471722 0.881747i \(-0.656368\pi\)
−0.471722 + 0.881747i \(0.656368\pi\)
\(774\) 0 0
\(775\) 15506.0 0.718700
\(776\) −35058.2 −1.62180
\(777\) 0 0
\(778\) −23210.3 −1.06958
\(779\) −1210.05 −0.0556540
\(780\) 0 0
\(781\) −6599.07 −0.302347
\(782\) 21271.1 0.972701
\(783\) 0 0
\(784\) −1076.82 −0.0490532
\(785\) −7559.26 −0.343696
\(786\) 0 0
\(787\) 30782.4 1.39425 0.697124 0.716950i \(-0.254463\pi\)
0.697124 + 0.716950i \(0.254463\pi\)
\(788\) −2092.04 −0.0945758
\(789\) 0 0
\(790\) −2722.93 −0.122630
\(791\) −3459.80 −0.155520
\(792\) 0 0
\(793\) 11138.8 0.498802
\(794\) −14370.8 −0.642317
\(795\) 0 0
\(796\) −17332.3 −0.771767
\(797\) 34592.5 1.53743 0.768714 0.639593i \(-0.220897\pi\)
0.768714 + 0.639593i \(0.220897\pi\)
\(798\) 0 0
\(799\) −40497.5 −1.79311
\(800\) 11305.0 0.499617
\(801\) 0 0
\(802\) −7253.68 −0.319372
\(803\) −2629.48 −0.115557
\(804\) 0 0
\(805\) 5328.53 0.233300
\(806\) 5798.40 0.253399
\(807\) 0 0
\(808\) 33040.9 1.43858
\(809\) −39785.7 −1.72904 −0.864518 0.502601i \(-0.832376\pi\)
−0.864518 + 0.502601i \(0.832376\pi\)
\(810\) 0 0
\(811\) −8711.79 −0.377204 −0.188602 0.982054i \(-0.560396\pi\)
−0.188602 + 0.982054i \(0.560396\pi\)
\(812\) −1722.14 −0.0744275
\(813\) 0 0
\(814\) −6639.12 −0.285873
\(815\) −28224.1 −1.21306
\(816\) 0 0
\(817\) 15488.1 0.663229
\(818\) 10208.2 0.436335
\(819\) 0 0
\(820\) 564.828 0.0240545
\(821\) −1148.86 −0.0488374 −0.0244187 0.999702i \(-0.507773\pi\)
−0.0244187 + 0.999702i \(0.507773\pi\)
\(822\) 0 0
\(823\) 20030.0 0.848360 0.424180 0.905578i \(-0.360562\pi\)
0.424180 + 0.905578i \(0.360562\pi\)
\(824\) 43903.5 1.85613
\(825\) 0 0
\(826\) −3976.76 −0.167517
\(827\) 34601.5 1.45491 0.727456 0.686154i \(-0.240703\pi\)
0.727456 + 0.686154i \(0.240703\pi\)
\(828\) 0 0
\(829\) −36147.7 −1.51443 −0.757214 0.653166i \(-0.773440\pi\)
−0.757214 + 0.653166i \(0.773440\pi\)
\(830\) −6834.59 −0.285822
\(831\) 0 0
\(832\) 6617.18 0.275733
\(833\) −4573.75 −0.190241
\(834\) 0 0
\(835\) −22190.5 −0.919680
\(836\) −2156.39 −0.0892108
\(837\) 0 0
\(838\) −17836.9 −0.735281
\(839\) 7564.84 0.311284 0.155642 0.987814i \(-0.450255\pi\)
0.155642 + 0.987814i \(0.450255\pi\)
\(840\) 0 0
\(841\) −19763.5 −0.810346
\(842\) −12905.0 −0.528191
\(843\) 0 0
\(844\) −11549.9 −0.471048
\(845\) 14071.6 0.572872
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −13020.0 −0.527249
\(849\) 0 0
\(850\) −14870.2 −0.600050
\(851\) −31383.0 −1.26416
\(852\) 0 0
\(853\) 33128.9 1.32979 0.664895 0.746937i \(-0.268476\pi\)
0.664895 + 0.746937i \(0.268476\pi\)
\(854\) 12008.6 0.481178
\(855\) 0 0
\(856\) 18532.8 0.739998
\(857\) −29744.5 −1.18559 −0.592797 0.805352i \(-0.701976\pi\)
−0.592797 + 0.805352i \(0.701976\pi\)
\(858\) 0 0
\(859\) −3418.95 −0.135801 −0.0679005 0.997692i \(-0.521630\pi\)
−0.0679005 + 0.997692i \(0.521630\pi\)
\(860\) −7229.54 −0.286657
\(861\) 0 0
\(862\) −1339.81 −0.0529398
\(863\) −18222.3 −0.718764 −0.359382 0.933191i \(-0.617012\pi\)
−0.359382 + 0.933191i \(0.617012\pi\)
\(864\) 0 0
\(865\) 10211.6 0.401394
\(866\) −8245.59 −0.323553
\(867\) 0 0
\(868\) −5159.63 −0.201762
\(869\) 2045.95 0.0798668
\(870\) 0 0
\(871\) −13073.3 −0.508578
\(872\) 35917.0 1.39484
\(873\) 0 0
\(874\) 12349.7 0.477956
\(875\) −9843.96 −0.380327
\(876\) 0 0
\(877\) −33406.0 −1.28625 −0.643124 0.765762i \(-0.722362\pi\)
−0.643124 + 0.765762i \(0.722362\pi\)
\(878\) −231.488 −0.00889788
\(879\) 0 0
\(880\) −1690.45 −0.0647558
\(881\) 14129.7 0.540341 0.270170 0.962813i \(-0.412920\pi\)
0.270170 + 0.962813i \(0.412920\pi\)
\(882\) 0 0
\(883\) 22044.4 0.840150 0.420075 0.907489i \(-0.362004\pi\)
0.420075 + 0.907489i \(0.362004\pi\)
\(884\) 4589.65 0.174623
\(885\) 0 0
\(886\) 35464.5 1.34476
\(887\) −597.301 −0.0226104 −0.0113052 0.999936i \(-0.503599\pi\)
−0.0113052 + 0.999936i \(0.503599\pi\)
\(888\) 0 0
\(889\) 909.831 0.0343248
\(890\) −2696.89 −0.101573
\(891\) 0 0
\(892\) 2332.12 0.0875393
\(893\) −23512.2 −0.881083
\(894\) 0 0
\(895\) −13633.5 −0.509183
\(896\) −1185.42 −0.0441988
\(897\) 0 0
\(898\) −11775.8 −0.437600
\(899\) 13858.2 0.514123
\(900\) 0 0
\(901\) −55302.0 −2.04481
\(902\) 514.187 0.0189807
\(903\) 0 0
\(904\) 12020.6 0.442258
\(905\) −22075.4 −0.810842
\(906\) 0 0
\(907\) 48604.6 1.77937 0.889686 0.456573i \(-0.150923\pi\)
0.889686 + 0.456573i \(0.150923\pi\)
\(908\) 3410.77 0.124659
\(909\) 0 0
\(910\) −1392.97 −0.0507434
\(911\) 16134.7 0.586791 0.293395 0.955991i \(-0.405215\pi\)
0.293395 + 0.955991i \(0.405215\pi\)
\(912\) 0 0
\(913\) 5135.38 0.186152
\(914\) −28052.1 −1.01519
\(915\) 0 0
\(916\) 8761.18 0.316023
\(917\) −16339.5 −0.588417
\(918\) 0 0
\(919\) 8686.36 0.311792 0.155896 0.987774i \(-0.450174\pi\)
0.155896 + 0.987774i \(0.450174\pi\)
\(920\) −18513.3 −0.663442
\(921\) 0 0
\(922\) 7429.40 0.265373
\(923\) 8154.58 0.290803
\(924\) 0 0
\(925\) 21939.2 0.779846
\(926\) −32913.6 −1.16804
\(927\) 0 0
\(928\) 10103.6 0.357401
\(929\) −35449.0 −1.25193 −0.625966 0.779850i \(-0.715295\pi\)
−0.625966 + 0.779850i \(0.715295\pi\)
\(930\) 0 0
\(931\) −2655.45 −0.0934790
\(932\) −20405.2 −0.717162
\(933\) 0 0
\(934\) −40080.1 −1.40413
\(935\) −7180.15 −0.251140
\(936\) 0 0
\(937\) 20315.3 0.708293 0.354147 0.935190i \(-0.384771\pi\)
0.354147 + 0.935190i \(0.384771\pi\)
\(938\) −14094.1 −0.490608
\(939\) 0 0
\(940\) 10975.1 0.380817
\(941\) −45109.4 −1.56273 −0.781363 0.624077i \(-0.785475\pi\)
−0.781363 + 0.624077i \(0.785475\pi\)
\(942\) 0 0
\(943\) 2430.56 0.0839340
\(944\) 5963.61 0.205613
\(945\) 0 0
\(946\) −6581.35 −0.226193
\(947\) −19141.9 −0.656842 −0.328421 0.944531i \(-0.606516\pi\)
−0.328421 + 0.944531i \(0.606516\pi\)
\(948\) 0 0
\(949\) 3249.30 0.111145
\(950\) −8633.40 −0.294847
\(951\) 0 0
\(952\) 15890.9 0.540996
\(953\) 21864.2 0.743180 0.371590 0.928397i \(-0.378813\pi\)
0.371590 + 0.928397i \(0.378813\pi\)
\(954\) 0 0
\(955\) 30059.2 1.01853
\(956\) 7901.07 0.267300
\(957\) 0 0
\(958\) 8883.90 0.299610
\(959\) 7779.27 0.261945
\(960\) 0 0
\(961\) 11729.0 0.393709
\(962\) 8204.07 0.274958
\(963\) 0 0
\(964\) −5498.33 −0.183702
\(965\) −6081.21 −0.202861
\(966\) 0 0
\(967\) −27394.8 −0.911021 −0.455510 0.890230i \(-0.650543\pi\)
−0.455510 + 0.890230i \(0.650543\pi\)
\(968\) 2942.80 0.0977120
\(969\) 0 0
\(970\) −21103.1 −0.698536
\(971\) 6029.69 0.199281 0.0996405 0.995024i \(-0.468231\pi\)
0.0996405 + 0.995024i \(0.468231\pi\)
\(972\) 0 0
\(973\) 8192.08 0.269914
\(974\) 11794.3 0.388000
\(975\) 0 0
\(976\) −18008.3 −0.590605
\(977\) 2257.94 0.0739384 0.0369692 0.999316i \(-0.488230\pi\)
0.0369692 + 0.999316i \(0.488230\pi\)
\(978\) 0 0
\(979\) 2026.39 0.0661529
\(980\) 1239.52 0.0404030
\(981\) 0 0
\(982\) 4375.15 0.142176
\(983\) 18653.3 0.605237 0.302619 0.953112i \(-0.402139\pi\)
0.302619 + 0.953112i \(0.402139\pi\)
\(984\) 0 0
\(985\) −4044.29 −0.130824
\(986\) −13289.9 −0.429247
\(987\) 0 0
\(988\) 2664.68 0.0858045
\(989\) −31110.0 −1.00024
\(990\) 0 0
\(991\) −18262.4 −0.585394 −0.292697 0.956205i \(-0.594553\pi\)
−0.292697 + 0.956205i \(0.594553\pi\)
\(992\) 30271.1 0.968860
\(993\) 0 0
\(994\) 8791.36 0.280528
\(995\) −33506.5 −1.06756
\(996\) 0 0
\(997\) 51536.4 1.63708 0.818542 0.574446i \(-0.194783\pi\)
0.818542 + 0.574446i \(0.194783\pi\)
\(998\) 31626.8 1.00313
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.t.1.3 yes 8
3.2 odd 2 693.4.a.s.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.6 8 3.2 odd 2
693.4.a.t.1.3 yes 8 1.1 even 1 trivial