Properties

Label 693.4.a.t.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.85529\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.85529 q^{2} +6.86327 q^{4} -5.82801 q^{5} -7.00000 q^{7} +4.38244 q^{8} +O(q^{10})\) \(q-3.85529 q^{2} +6.86327 q^{4} -5.82801 q^{5} -7.00000 q^{7} +4.38244 q^{8} +22.4687 q^{10} -11.0000 q^{11} -87.1386 q^{13} +26.9870 q^{14} -71.8017 q^{16} +119.043 q^{17} +23.9715 q^{19} -39.9992 q^{20} +42.4082 q^{22} -119.203 q^{23} -91.0343 q^{25} +335.945 q^{26} -48.0429 q^{28} +53.7711 q^{29} -69.0226 q^{31} +241.757 q^{32} -458.946 q^{34} +40.7961 q^{35} +28.6224 q^{37} -92.4171 q^{38} -25.5409 q^{40} -419.188 q^{41} -40.0463 q^{43} -75.4959 q^{44} +459.562 q^{46} -74.1512 q^{47} +49.0000 q^{49} +350.964 q^{50} -598.055 q^{52} +244.861 q^{53} +64.1081 q^{55} -30.6770 q^{56} -207.303 q^{58} +365.224 q^{59} -456.885 q^{61} +266.102 q^{62} -357.630 q^{64} +507.844 q^{65} -470.272 q^{67} +817.025 q^{68} -157.281 q^{70} -359.954 q^{71} -902.375 q^{73} -110.348 q^{74} +164.523 q^{76} +77.0000 q^{77} +707.463 q^{79} +418.461 q^{80} +1616.09 q^{82} -541.450 q^{83} -693.784 q^{85} +154.390 q^{86} -48.2068 q^{88} +559.797 q^{89} +609.970 q^{91} -818.122 q^{92} +285.875 q^{94} -139.706 q^{95} +1524.76 q^{97} -188.909 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8} - 13 q^{10} - 88 q^{11} - 148 q^{13} - 14 q^{14} + 266 q^{16} + 114 q^{17} + 58 q^{19} + 291 q^{20} - 22 q^{22} + 246 q^{23} + 244 q^{25} + 305 q^{26} - 210 q^{28} - 72 q^{29} + 252 q^{31} + 1272 q^{32} + 630 q^{34} - 70 q^{35} - 80 q^{37} + 1885 q^{38} - 342 q^{40} + 682 q^{41} - 106 q^{43} - 330 q^{44} + 120 q^{46} + 828 q^{47} + 392 q^{49} + 801 q^{50} - 1681 q^{52} + 462 q^{53} - 110 q^{55} - 105 q^{56} - 1087 q^{58} + 626 q^{59} - 854 q^{61} + 1350 q^{62} + 2997 q^{64} + 22 q^{65} + 130 q^{67} + 2202 q^{68} + 91 q^{70} + 326 q^{71} - 390 q^{73} - 359 q^{74} + 2041 q^{76} + 616 q^{77} - 508 q^{79} + 4391 q^{80} + 1528 q^{82} + 1596 q^{83} - 880 q^{85} - 414 q^{86} - 165 q^{88} + 4324 q^{89} + 1036 q^{91} + 2092 q^{92} - 1685 q^{94} + 1076 q^{95} - 964 q^{97} + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.85529 −1.36305 −0.681526 0.731794i \(-0.738683\pi\)
−0.681526 + 0.731794i \(0.738683\pi\)
\(3\) 0 0
\(4\) 6.86327 0.857908
\(5\) −5.82801 −0.521273 −0.260636 0.965437i \(-0.583932\pi\)
−0.260636 + 0.965437i \(0.583932\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 4.38244 0.193678
\(9\) 0 0
\(10\) 22.4687 0.710522
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −87.1386 −1.85907 −0.929535 0.368735i \(-0.879791\pi\)
−0.929535 + 0.368735i \(0.879791\pi\)
\(14\) 26.9870 0.515185
\(15\) 0 0
\(16\) −71.8017 −1.12190
\(17\) 119.043 1.69836 0.849182 0.528100i \(-0.177095\pi\)
0.849182 + 0.528100i \(0.177095\pi\)
\(18\) 0 0
\(19\) 23.9715 0.289444 0.144722 0.989472i \(-0.453771\pi\)
0.144722 + 0.989472i \(0.453771\pi\)
\(20\) −39.9992 −0.447204
\(21\) 0 0
\(22\) 42.4082 0.410975
\(23\) −119.203 −1.08068 −0.540338 0.841448i \(-0.681704\pi\)
−0.540338 + 0.841448i \(0.681704\pi\)
\(24\) 0 0
\(25\) −91.0343 −0.728275
\(26\) 335.945 2.53401
\(27\) 0 0
\(28\) −48.0429 −0.324259
\(29\) 53.7711 0.344312 0.172156 0.985070i \(-0.444927\pi\)
0.172156 + 0.985070i \(0.444927\pi\)
\(30\) 0 0
\(31\) −69.0226 −0.399898 −0.199949 0.979806i \(-0.564078\pi\)
−0.199949 + 0.979806i \(0.564078\pi\)
\(32\) 241.757 1.33553
\(33\) 0 0
\(34\) −458.946 −2.31496
\(35\) 40.7961 0.197023
\(36\) 0 0
\(37\) 28.6224 0.127176 0.0635878 0.997976i \(-0.479746\pi\)
0.0635878 + 0.997976i \(0.479746\pi\)
\(38\) −92.4171 −0.394527
\(39\) 0 0
\(40\) −25.5409 −0.100959
\(41\) −419.188 −1.59674 −0.798369 0.602169i \(-0.794303\pi\)
−0.798369 + 0.602169i \(0.794303\pi\)
\(42\) 0 0
\(43\) −40.0463 −0.142023 −0.0710117 0.997475i \(-0.522623\pi\)
−0.0710117 + 0.997475i \(0.522623\pi\)
\(44\) −75.4959 −0.258669
\(45\) 0 0
\(46\) 459.562 1.47302
\(47\) −74.1512 −0.230129 −0.115065 0.993358i \(-0.536707\pi\)
−0.115065 + 0.993358i \(0.536707\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 350.964 0.992676
\(51\) 0 0
\(52\) −598.055 −1.59491
\(53\) 244.861 0.634608 0.317304 0.948324i \(-0.397223\pi\)
0.317304 + 0.948324i \(0.397223\pi\)
\(54\) 0 0
\(55\) 64.1081 0.157170
\(56\) −30.6770 −0.0732034
\(57\) 0 0
\(58\) −207.303 −0.469315
\(59\) 365.224 0.805900 0.402950 0.915222i \(-0.367985\pi\)
0.402950 + 0.915222i \(0.367985\pi\)
\(60\) 0 0
\(61\) −456.885 −0.958986 −0.479493 0.877546i \(-0.659179\pi\)
−0.479493 + 0.877546i \(0.659179\pi\)
\(62\) 266.102 0.545081
\(63\) 0 0
\(64\) −357.630 −0.698496
\(65\) 507.844 0.969082
\(66\) 0 0
\(67\) −470.272 −0.857506 −0.428753 0.903422i \(-0.641047\pi\)
−0.428753 + 0.903422i \(0.641047\pi\)
\(68\) 817.025 1.45704
\(69\) 0 0
\(70\) −157.281 −0.268552
\(71\) −359.954 −0.601671 −0.300835 0.953676i \(-0.597266\pi\)
−0.300835 + 0.953676i \(0.597266\pi\)
\(72\) 0 0
\(73\) −902.375 −1.44678 −0.723391 0.690439i \(-0.757417\pi\)
−0.723391 + 0.690439i \(0.757417\pi\)
\(74\) −110.348 −0.173347
\(75\) 0 0
\(76\) 164.523 0.248317
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 707.463 1.00754 0.503771 0.863837i \(-0.331945\pi\)
0.503771 + 0.863837i \(0.331945\pi\)
\(80\) 418.461 0.584817
\(81\) 0 0
\(82\) 1616.09 2.17643
\(83\) −541.450 −0.716047 −0.358024 0.933713i \(-0.616549\pi\)
−0.358024 + 0.933713i \(0.616549\pi\)
\(84\) 0 0
\(85\) −693.784 −0.885311
\(86\) 154.390 0.193585
\(87\) 0 0
\(88\) −48.2068 −0.0583961
\(89\) 559.797 0.666723 0.333362 0.942799i \(-0.391817\pi\)
0.333362 + 0.942799i \(0.391817\pi\)
\(90\) 0 0
\(91\) 609.970 0.702662
\(92\) −818.122 −0.927121
\(93\) 0 0
\(94\) 285.875 0.313678
\(95\) −139.706 −0.150879
\(96\) 0 0
\(97\) 1524.76 1.59604 0.798021 0.602629i \(-0.205880\pi\)
0.798021 + 0.602629i \(0.205880\pi\)
\(98\) −188.909 −0.194722
\(99\) 0 0
\(100\) −624.793 −0.624793
\(101\) 1053.14 1.03754 0.518768 0.854915i \(-0.326391\pi\)
0.518768 + 0.854915i \(0.326391\pi\)
\(102\) 0 0
\(103\) 43.8955 0.0419917 0.0209959 0.999780i \(-0.493316\pi\)
0.0209959 + 0.999780i \(0.493316\pi\)
\(104\) −381.879 −0.360061
\(105\) 0 0
\(106\) −944.009 −0.865003
\(107\) 449.939 0.406516 0.203258 0.979125i \(-0.434847\pi\)
0.203258 + 0.979125i \(0.434847\pi\)
\(108\) 0 0
\(109\) −1315.63 −1.15610 −0.578048 0.816003i \(-0.696185\pi\)
−0.578048 + 0.816003i \(0.696185\pi\)
\(110\) −247.155 −0.214230
\(111\) 0 0
\(112\) 502.612 0.424039
\(113\) −725.136 −0.603673 −0.301837 0.953360i \(-0.597600\pi\)
−0.301837 + 0.953360i \(0.597600\pi\)
\(114\) 0 0
\(115\) 694.716 0.563327
\(116\) 369.046 0.295388
\(117\) 0 0
\(118\) −1408.04 −1.09848
\(119\) −833.302 −0.641921
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1761.42 1.30715
\(123\) 0 0
\(124\) −473.720 −0.343075
\(125\) 1259.05 0.900903
\(126\) 0 0
\(127\) 2440.43 1.70514 0.852572 0.522610i \(-0.175042\pi\)
0.852572 + 0.522610i \(0.175042\pi\)
\(128\) −555.289 −0.383446
\(129\) 0 0
\(130\) −1957.89 −1.32091
\(131\) 1258.33 0.839242 0.419621 0.907699i \(-0.362163\pi\)
0.419621 + 0.907699i \(0.362163\pi\)
\(132\) 0 0
\(133\) −167.801 −0.109400
\(134\) 1813.04 1.16882
\(135\) 0 0
\(136\) 521.699 0.328936
\(137\) 2790.08 1.73995 0.869974 0.493097i \(-0.164135\pi\)
0.869974 + 0.493097i \(0.164135\pi\)
\(138\) 0 0
\(139\) 539.573 0.329251 0.164626 0.986356i \(-0.447358\pi\)
0.164626 + 0.986356i \(0.447358\pi\)
\(140\) 279.994 0.169027
\(141\) 0 0
\(142\) 1387.73 0.820108
\(143\) 958.525 0.560530
\(144\) 0 0
\(145\) −313.379 −0.179481
\(146\) 3478.92 1.97204
\(147\) 0 0
\(148\) 196.443 0.109105
\(149\) 873.101 0.480049 0.240024 0.970767i \(-0.422845\pi\)
0.240024 + 0.970767i \(0.422845\pi\)
\(150\) 0 0
\(151\) 1116.95 0.601963 0.300981 0.953630i \(-0.402686\pi\)
0.300981 + 0.953630i \(0.402686\pi\)
\(152\) 105.054 0.0560590
\(153\) 0 0
\(154\) −296.857 −0.155334
\(155\) 402.264 0.208456
\(156\) 0 0
\(157\) 3064.79 1.55794 0.778970 0.627061i \(-0.215742\pi\)
0.778970 + 0.627061i \(0.215742\pi\)
\(158\) −2727.48 −1.37333
\(159\) 0 0
\(160\) −1408.96 −0.696176
\(161\) 834.421 0.408457
\(162\) 0 0
\(163\) 4051.58 1.94690 0.973449 0.228902i \(-0.0735136\pi\)
0.973449 + 0.228902i \(0.0735136\pi\)
\(164\) −2877.00 −1.36985
\(165\) 0 0
\(166\) 2087.45 0.976009
\(167\) 1148.16 0.532021 0.266011 0.963970i \(-0.414294\pi\)
0.266011 + 0.963970i \(0.414294\pi\)
\(168\) 0 0
\(169\) 5396.14 2.45614
\(170\) 2674.74 1.20672
\(171\) 0 0
\(172\) −274.848 −0.121843
\(173\) 2605.86 1.14520 0.572601 0.819834i \(-0.305934\pi\)
0.572601 + 0.819834i \(0.305934\pi\)
\(174\) 0 0
\(175\) 637.240 0.275262
\(176\) 789.819 0.338266
\(177\) 0 0
\(178\) −2158.18 −0.908778
\(179\) −3411.18 −1.42438 −0.712188 0.701988i \(-0.752296\pi\)
−0.712188 + 0.701988i \(0.752296\pi\)
\(180\) 0 0
\(181\) −641.028 −0.263244 −0.131622 0.991300i \(-0.542019\pi\)
−0.131622 + 0.991300i \(0.542019\pi\)
\(182\) −2351.61 −0.957764
\(183\) 0 0
\(184\) −522.399 −0.209303
\(185\) −166.812 −0.0662932
\(186\) 0 0
\(187\) −1309.47 −0.512076
\(188\) −508.920 −0.197430
\(189\) 0 0
\(190\) 538.608 0.205656
\(191\) 3007.51 1.13935 0.569676 0.821870i \(-0.307069\pi\)
0.569676 + 0.821870i \(0.307069\pi\)
\(192\) 0 0
\(193\) 294.968 0.110012 0.0550058 0.998486i \(-0.482482\pi\)
0.0550058 + 0.998486i \(0.482482\pi\)
\(194\) −5878.40 −2.17549
\(195\) 0 0
\(196\) 336.300 0.122558
\(197\) −2299.84 −0.831761 −0.415880 0.909419i \(-0.636527\pi\)
−0.415880 + 0.909419i \(0.636527\pi\)
\(198\) 0 0
\(199\) −2375.19 −0.846095 −0.423048 0.906107i \(-0.639040\pi\)
−0.423048 + 0.906107i \(0.639040\pi\)
\(200\) −398.952 −0.141051
\(201\) 0 0
\(202\) −4060.15 −1.41422
\(203\) −376.398 −0.130138
\(204\) 0 0
\(205\) 2443.03 0.832336
\(206\) −169.230 −0.0572369
\(207\) 0 0
\(208\) 6256.70 2.08569
\(209\) −263.687 −0.0872707
\(210\) 0 0
\(211\) −2712.37 −0.884964 −0.442482 0.896777i \(-0.645902\pi\)
−0.442482 + 0.896777i \(0.645902\pi\)
\(212\) 1680.54 0.544435
\(213\) 0 0
\(214\) −1734.64 −0.554102
\(215\) 233.390 0.0740329
\(216\) 0 0
\(217\) 483.158 0.151147
\(218\) 5072.13 1.57582
\(219\) 0 0
\(220\) 439.991 0.134837
\(221\) −10373.3 −3.15738
\(222\) 0 0
\(223\) −4334.42 −1.30159 −0.650794 0.759255i \(-0.725564\pi\)
−0.650794 + 0.759255i \(0.725564\pi\)
\(224\) −1692.30 −0.504783
\(225\) 0 0
\(226\) 2795.61 0.822837
\(227\) 3140.12 0.918138 0.459069 0.888401i \(-0.348183\pi\)
0.459069 + 0.888401i \(0.348183\pi\)
\(228\) 0 0
\(229\) 5091.07 1.46912 0.734558 0.678546i \(-0.237390\pi\)
0.734558 + 0.678546i \(0.237390\pi\)
\(230\) −2678.33 −0.767843
\(231\) 0 0
\(232\) 235.649 0.0666857
\(233\) −1892.55 −0.532125 −0.266062 0.963956i \(-0.585723\pi\)
−0.266062 + 0.963956i \(0.585723\pi\)
\(234\) 0 0
\(235\) 432.154 0.119960
\(236\) 2506.63 0.691389
\(237\) 0 0
\(238\) 3212.62 0.874972
\(239\) −5139.77 −1.39106 −0.695531 0.718496i \(-0.744831\pi\)
−0.695531 + 0.718496i \(0.744831\pi\)
\(240\) 0 0
\(241\) −1898.64 −0.507477 −0.253738 0.967273i \(-0.581660\pi\)
−0.253738 + 0.967273i \(0.581660\pi\)
\(242\) −466.490 −0.123914
\(243\) 0 0
\(244\) −3135.72 −0.822722
\(245\) −285.572 −0.0744675
\(246\) 0 0
\(247\) −2088.84 −0.538097
\(248\) −302.487 −0.0774514
\(249\) 0 0
\(250\) −4854.00 −1.22798
\(251\) −306.680 −0.0771215 −0.0385607 0.999256i \(-0.512277\pi\)
−0.0385607 + 0.999256i \(0.512277\pi\)
\(252\) 0 0
\(253\) 1311.23 0.325836
\(254\) −9408.57 −2.32420
\(255\) 0 0
\(256\) 5001.84 1.22115
\(257\) 3742.75 0.908428 0.454214 0.890893i \(-0.349920\pi\)
0.454214 + 0.890893i \(0.349920\pi\)
\(258\) 0 0
\(259\) −200.357 −0.0480679
\(260\) 3485.47 0.831384
\(261\) 0 0
\(262\) −4851.23 −1.14393
\(263\) 3529.68 0.827564 0.413782 0.910376i \(-0.364208\pi\)
0.413782 + 0.910376i \(0.364208\pi\)
\(264\) 0 0
\(265\) −1427.05 −0.330804
\(266\) 646.920 0.149117
\(267\) 0 0
\(268\) −3227.60 −0.735662
\(269\) 1625.18 0.368361 0.184181 0.982892i \(-0.441037\pi\)
0.184181 + 0.982892i \(0.441037\pi\)
\(270\) 0 0
\(271\) 2770.60 0.621041 0.310521 0.950567i \(-0.399497\pi\)
0.310521 + 0.950567i \(0.399497\pi\)
\(272\) −8547.50 −1.90540
\(273\) 0 0
\(274\) −10756.6 −2.37164
\(275\) 1001.38 0.219583
\(276\) 0 0
\(277\) −6395.47 −1.38724 −0.693622 0.720339i \(-0.743986\pi\)
−0.693622 + 0.720339i \(0.743986\pi\)
\(278\) −2080.21 −0.448787
\(279\) 0 0
\(280\) 178.786 0.0381590
\(281\) −5580.81 −1.18478 −0.592390 0.805652i \(-0.701815\pi\)
−0.592390 + 0.805652i \(0.701815\pi\)
\(282\) 0 0
\(283\) −3176.32 −0.667182 −0.333591 0.942718i \(-0.608261\pi\)
−0.333591 + 0.942718i \(0.608261\pi\)
\(284\) −2470.46 −0.516179
\(285\) 0 0
\(286\) −3695.39 −0.764032
\(287\) 2934.32 0.603510
\(288\) 0 0
\(289\) 9258.26 1.88444
\(290\) 1208.17 0.244641
\(291\) 0 0
\(292\) −6193.24 −1.24121
\(293\) 3683.92 0.734528 0.367264 0.930117i \(-0.380295\pi\)
0.367264 + 0.930117i \(0.380295\pi\)
\(294\) 0 0
\(295\) −2128.53 −0.420094
\(296\) 125.436 0.0246311
\(297\) 0 0
\(298\) −3366.06 −0.654331
\(299\) 10387.2 2.00905
\(300\) 0 0
\(301\) 280.324 0.0536798
\(302\) −4306.18 −0.820506
\(303\) 0 0
\(304\) −1721.20 −0.324728
\(305\) 2662.73 0.499893
\(306\) 0 0
\(307\) −6180.56 −1.14900 −0.574501 0.818504i \(-0.694804\pi\)
−0.574501 + 0.818504i \(0.694804\pi\)
\(308\) 528.472 0.0977677
\(309\) 0 0
\(310\) −1550.85 −0.284136
\(311\) −5980.82 −1.09049 −0.545243 0.838278i \(-0.683563\pi\)
−0.545243 + 0.838278i \(0.683563\pi\)
\(312\) 0 0
\(313\) 4757.98 0.859224 0.429612 0.903014i \(-0.358650\pi\)
0.429612 + 0.903014i \(0.358650\pi\)
\(314\) −11815.6 −2.12355
\(315\) 0 0
\(316\) 4855.51 0.864379
\(317\) −4391.93 −0.778155 −0.389078 0.921205i \(-0.627206\pi\)
−0.389078 + 0.921205i \(0.627206\pi\)
\(318\) 0 0
\(319\) −591.483 −0.103814
\(320\) 2084.27 0.364107
\(321\) 0 0
\(322\) −3216.93 −0.556748
\(323\) 2853.64 0.491582
\(324\) 0 0
\(325\) 7932.60 1.35391
\(326\) −15620.0 −2.65372
\(327\) 0 0
\(328\) −1837.07 −0.309253
\(329\) 519.059 0.0869806
\(330\) 0 0
\(331\) 8105.82 1.34603 0.673015 0.739628i \(-0.264999\pi\)
0.673015 + 0.739628i \(0.264999\pi\)
\(332\) −3716.12 −0.614303
\(333\) 0 0
\(334\) −4426.50 −0.725172
\(335\) 2740.75 0.446995
\(336\) 0 0
\(337\) 4039.57 0.652965 0.326482 0.945203i \(-0.394137\pi\)
0.326482 + 0.945203i \(0.394137\pi\)
\(338\) −20803.7 −3.34784
\(339\) 0 0
\(340\) −4761.63 −0.759516
\(341\) 759.248 0.120574
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −175.500 −0.0275068
\(345\) 0 0
\(346\) −10046.4 −1.56097
\(347\) 8412.95 1.30153 0.650765 0.759279i \(-0.274448\pi\)
0.650765 + 0.759279i \(0.274448\pi\)
\(348\) 0 0
\(349\) −7559.52 −1.15946 −0.579730 0.814808i \(-0.696842\pi\)
−0.579730 + 0.814808i \(0.696842\pi\)
\(350\) −2456.75 −0.375196
\(351\) 0 0
\(352\) −2659.33 −0.402678
\(353\) 7724.92 1.16475 0.582374 0.812921i \(-0.302124\pi\)
0.582374 + 0.812921i \(0.302124\pi\)
\(354\) 0 0
\(355\) 2097.81 0.313635
\(356\) 3842.04 0.571987
\(357\) 0 0
\(358\) 13151.1 1.94150
\(359\) −920.274 −0.135293 −0.0676465 0.997709i \(-0.521549\pi\)
−0.0676465 + 0.997709i \(0.521549\pi\)
\(360\) 0 0
\(361\) −6284.37 −0.916222
\(362\) 2471.35 0.358816
\(363\) 0 0
\(364\) 4186.39 0.602820
\(365\) 5259.05 0.754168
\(366\) 0 0
\(367\) −2615.68 −0.372037 −0.186018 0.982546i \(-0.559558\pi\)
−0.186018 + 0.982546i \(0.559558\pi\)
\(368\) 8558.98 1.21241
\(369\) 0 0
\(370\) 643.108 0.0903610
\(371\) −1714.02 −0.239859
\(372\) 0 0
\(373\) −4037.37 −0.560449 −0.280224 0.959935i \(-0.590409\pi\)
−0.280224 + 0.959935i \(0.590409\pi\)
\(374\) 5048.40 0.697986
\(375\) 0 0
\(376\) −324.963 −0.0445710
\(377\) −4685.54 −0.640100
\(378\) 0 0
\(379\) 4939.84 0.669506 0.334753 0.942306i \(-0.391347\pi\)
0.334753 + 0.942306i \(0.391347\pi\)
\(380\) −958.840 −0.129441
\(381\) 0 0
\(382\) −11594.8 −1.55299
\(383\) 245.085 0.0326978 0.0163489 0.999866i \(-0.494796\pi\)
0.0163489 + 0.999866i \(0.494796\pi\)
\(384\) 0 0
\(385\) −448.757 −0.0594046
\(386\) −1137.19 −0.149951
\(387\) 0 0
\(388\) 10464.9 1.36926
\(389\) −9961.20 −1.29834 −0.649168 0.760645i \(-0.724883\pi\)
−0.649168 + 0.760645i \(0.724883\pi\)
\(390\) 0 0
\(391\) −14190.3 −1.83538
\(392\) 214.739 0.0276683
\(393\) 0 0
\(394\) 8866.56 1.13373
\(395\) −4123.10 −0.525204
\(396\) 0 0
\(397\) −4848.35 −0.612926 −0.306463 0.951883i \(-0.599146\pi\)
−0.306463 + 0.951883i \(0.599146\pi\)
\(398\) 9157.06 1.15327
\(399\) 0 0
\(400\) 6536.42 0.817052
\(401\) 954.553 0.118873 0.0594365 0.998232i \(-0.481070\pi\)
0.0594365 + 0.998232i \(0.481070\pi\)
\(402\) 0 0
\(403\) 6014.53 0.743437
\(404\) 7227.97 0.890111
\(405\) 0 0
\(406\) 1451.12 0.177384
\(407\) −314.847 −0.0383449
\(408\) 0 0
\(409\) −199.139 −0.0240753 −0.0120376 0.999928i \(-0.503832\pi\)
−0.0120376 + 0.999928i \(0.503832\pi\)
\(410\) −9418.60 −1.13452
\(411\) 0 0
\(412\) 301.266 0.0360251
\(413\) −2556.57 −0.304602
\(414\) 0 0
\(415\) 3155.58 0.373256
\(416\) −21066.4 −2.48284
\(417\) 0 0
\(418\) 1016.59 0.118954
\(419\) 16428.4 1.91547 0.957734 0.287654i \(-0.0928752\pi\)
0.957734 + 0.287654i \(0.0928752\pi\)
\(420\) 0 0
\(421\) 11222.8 1.29920 0.649602 0.760274i \(-0.274936\pi\)
0.649602 + 0.760274i \(0.274936\pi\)
\(422\) 10457.0 1.20625
\(423\) 0 0
\(424\) 1073.09 0.122910
\(425\) −10837.0 −1.23688
\(426\) 0 0
\(427\) 3198.19 0.362463
\(428\) 3088.05 0.348753
\(429\) 0 0
\(430\) −899.787 −0.100911
\(431\) 16786.0 1.87599 0.937996 0.346645i \(-0.112679\pi\)
0.937996 + 0.346645i \(0.112679\pi\)
\(432\) 0 0
\(433\) −1619.31 −0.179721 −0.0898604 0.995954i \(-0.528642\pi\)
−0.0898604 + 0.995954i \(0.528642\pi\)
\(434\) −1862.72 −0.206021
\(435\) 0 0
\(436\) −9029.52 −0.991824
\(437\) −2857.48 −0.312795
\(438\) 0 0
\(439\) −581.616 −0.0632324 −0.0316162 0.999500i \(-0.510065\pi\)
−0.0316162 + 0.999500i \(0.510065\pi\)
\(440\) 280.950 0.0304403
\(441\) 0 0
\(442\) 39991.9 4.30367
\(443\) −1171.84 −0.125679 −0.0628397 0.998024i \(-0.520016\pi\)
−0.0628397 + 0.998024i \(0.520016\pi\)
\(444\) 0 0
\(445\) −3262.50 −0.347545
\(446\) 16710.4 1.77413
\(447\) 0 0
\(448\) 2503.41 0.264007
\(449\) 11428.6 1.20122 0.600609 0.799543i \(-0.294925\pi\)
0.600609 + 0.799543i \(0.294925\pi\)
\(450\) 0 0
\(451\) 4611.07 0.481434
\(452\) −4976.80 −0.517896
\(453\) 0 0
\(454\) −12106.1 −1.25147
\(455\) −3554.91 −0.366279
\(456\) 0 0
\(457\) −10643.0 −1.08940 −0.544701 0.838630i \(-0.683357\pi\)
−0.544701 + 0.838630i \(0.683357\pi\)
\(458\) −19627.6 −2.00248
\(459\) 0 0
\(460\) 4768.02 0.483283
\(461\) −2911.16 −0.294114 −0.147057 0.989128i \(-0.546980\pi\)
−0.147057 + 0.989128i \(0.546980\pi\)
\(462\) 0 0
\(463\) −15206.9 −1.52640 −0.763202 0.646160i \(-0.776374\pi\)
−0.763202 + 0.646160i \(0.776374\pi\)
\(464\) −3860.86 −0.386284
\(465\) 0 0
\(466\) 7296.33 0.725313
\(467\) 14031.2 1.39034 0.695169 0.718847i \(-0.255330\pi\)
0.695169 + 0.718847i \(0.255330\pi\)
\(468\) 0 0
\(469\) 3291.91 0.324107
\(470\) −1666.08 −0.163512
\(471\) 0 0
\(472\) 1600.57 0.156085
\(473\) 440.509 0.0428216
\(474\) 0 0
\(475\) −2182.23 −0.210795
\(476\) −5719.17 −0.550710
\(477\) 0 0
\(478\) 19815.3 1.89609
\(479\) −14647.2 −1.39718 −0.698590 0.715523i \(-0.746189\pi\)
−0.698590 + 0.715523i \(0.746189\pi\)
\(480\) 0 0
\(481\) −2494.12 −0.236428
\(482\) 7319.79 0.691716
\(483\) 0 0
\(484\) 830.455 0.0779917
\(485\) −8886.33 −0.831974
\(486\) 0 0
\(487\) −11869.8 −1.10446 −0.552230 0.833692i \(-0.686223\pi\)
−0.552230 + 0.833692i \(0.686223\pi\)
\(488\) −2002.27 −0.185735
\(489\) 0 0
\(490\) 1100.96 0.101503
\(491\) −959.814 −0.0882195 −0.0441098 0.999027i \(-0.514045\pi\)
−0.0441098 + 0.999027i \(0.514045\pi\)
\(492\) 0 0
\(493\) 6401.08 0.584767
\(494\) 8053.10 0.733454
\(495\) 0 0
\(496\) 4955.94 0.448646
\(497\) 2519.68 0.227410
\(498\) 0 0
\(499\) 18146.9 1.62799 0.813997 0.580869i \(-0.197287\pi\)
0.813997 + 0.580869i \(0.197287\pi\)
\(500\) 8641.19 0.772892
\(501\) 0 0
\(502\) 1182.34 0.105121
\(503\) −10934.7 −0.969294 −0.484647 0.874710i \(-0.661052\pi\)
−0.484647 + 0.874710i \(0.661052\pi\)
\(504\) 0 0
\(505\) −6137.70 −0.540840
\(506\) −5055.18 −0.444131
\(507\) 0 0
\(508\) 16749.3 1.46286
\(509\) −3876.11 −0.337535 −0.168768 0.985656i \(-0.553979\pi\)
−0.168768 + 0.985656i \(0.553979\pi\)
\(510\) 0 0
\(511\) 6316.63 0.546832
\(512\) −14841.2 −1.28105
\(513\) 0 0
\(514\) −14429.4 −1.23823
\(515\) −255.823 −0.0218892
\(516\) 0 0
\(517\) 815.664 0.0693865
\(518\) 772.435 0.0655190
\(519\) 0 0
\(520\) 2225.60 0.187690
\(521\) −2971.13 −0.249842 −0.124921 0.992167i \(-0.539868\pi\)
−0.124921 + 0.992167i \(0.539868\pi\)
\(522\) 0 0
\(523\) 20391.8 1.70491 0.852457 0.522797i \(-0.175112\pi\)
0.852457 + 0.522797i \(0.175112\pi\)
\(524\) 8636.25 0.719993
\(525\) 0 0
\(526\) −13607.9 −1.12801
\(527\) −8216.66 −0.679172
\(528\) 0 0
\(529\) 2042.35 0.167860
\(530\) 5501.69 0.450902
\(531\) 0 0
\(532\) −1151.66 −0.0938549
\(533\) 36527.5 2.96844
\(534\) 0 0
\(535\) −2622.25 −0.211906
\(536\) −2060.94 −0.166080
\(537\) 0 0
\(538\) −6265.55 −0.502095
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −13628.9 −1.08309 −0.541544 0.840672i \(-0.682160\pi\)
−0.541544 + 0.840672i \(0.682160\pi\)
\(542\) −10681.5 −0.846511
\(543\) 0 0
\(544\) 28779.5 2.26822
\(545\) 7667.50 0.602641
\(546\) 0 0
\(547\) −4077.34 −0.318710 −0.159355 0.987221i \(-0.550941\pi\)
−0.159355 + 0.987221i \(0.550941\pi\)
\(548\) 19149.1 1.49272
\(549\) 0 0
\(550\) −3860.60 −0.299303
\(551\) 1288.98 0.0996591
\(552\) 0 0
\(553\) −4952.24 −0.380815
\(554\) 24656.4 1.89088
\(555\) 0 0
\(556\) 3703.23 0.282468
\(557\) −7792.93 −0.592813 −0.296407 0.955062i \(-0.595788\pi\)
−0.296407 + 0.955062i \(0.595788\pi\)
\(558\) 0 0
\(559\) 3489.58 0.264031
\(560\) −2929.23 −0.221040
\(561\) 0 0
\(562\) 21515.6 1.61491
\(563\) 18076.2 1.35315 0.676575 0.736374i \(-0.263464\pi\)
0.676575 + 0.736374i \(0.263464\pi\)
\(564\) 0 0
\(565\) 4226.10 0.314678
\(566\) 12245.6 0.909404
\(567\) 0 0
\(568\) −1577.47 −0.116530
\(569\) −23137.8 −1.70472 −0.852362 0.522951i \(-0.824831\pi\)
−0.852362 + 0.522951i \(0.824831\pi\)
\(570\) 0 0
\(571\) −25202.6 −1.84711 −0.923553 0.383470i \(-0.874729\pi\)
−0.923553 + 0.383470i \(0.874729\pi\)
\(572\) 6578.61 0.480884
\(573\) 0 0
\(574\) −11312.7 −0.822615
\(575\) 10851.6 0.787029
\(576\) 0 0
\(577\) 18777.6 1.35480 0.677402 0.735613i \(-0.263106\pi\)
0.677402 + 0.735613i \(0.263106\pi\)
\(578\) −35693.3 −2.56859
\(579\) 0 0
\(580\) −2150.80 −0.153978
\(581\) 3790.15 0.270640
\(582\) 0 0
\(583\) −2693.47 −0.191341
\(584\) −3954.60 −0.280210
\(585\) 0 0
\(586\) −14202.6 −1.00120
\(587\) 17123.4 1.20402 0.602008 0.798490i \(-0.294367\pi\)
0.602008 + 0.798490i \(0.294367\pi\)
\(588\) 0 0
\(589\) −1654.58 −0.115748
\(590\) 8206.09 0.572609
\(591\) 0 0
\(592\) −2055.14 −0.142679
\(593\) 22319.3 1.54561 0.772803 0.634647i \(-0.218854\pi\)
0.772803 + 0.634647i \(0.218854\pi\)
\(594\) 0 0
\(595\) 4856.49 0.334616
\(596\) 5992.33 0.411838
\(597\) 0 0
\(598\) −40045.6 −2.73844
\(599\) 5844.36 0.398655 0.199327 0.979933i \(-0.436124\pi\)
0.199327 + 0.979933i \(0.436124\pi\)
\(600\) 0 0
\(601\) −27815.8 −1.88791 −0.943953 0.330081i \(-0.892924\pi\)
−0.943953 + 0.330081i \(0.892924\pi\)
\(602\) −1080.73 −0.0731683
\(603\) 0 0
\(604\) 7665.95 0.516429
\(605\) −705.189 −0.0473884
\(606\) 0 0
\(607\) −15980.5 −1.06858 −0.534290 0.845301i \(-0.679421\pi\)
−0.534290 + 0.845301i \(0.679421\pi\)
\(608\) 5795.28 0.386562
\(609\) 0 0
\(610\) −10265.6 −0.681380
\(611\) 6461.43 0.427826
\(612\) 0 0
\(613\) 22639.1 1.49166 0.745829 0.666138i \(-0.232054\pi\)
0.745829 + 0.666138i \(0.232054\pi\)
\(614\) 23827.9 1.56615
\(615\) 0 0
\(616\) 337.448 0.0220717
\(617\) 6134.28 0.400254 0.200127 0.979770i \(-0.435864\pi\)
0.200127 + 0.979770i \(0.435864\pi\)
\(618\) 0 0
\(619\) 13953.0 0.906005 0.453003 0.891509i \(-0.350353\pi\)
0.453003 + 0.891509i \(0.350353\pi\)
\(620\) 2760.85 0.178836
\(621\) 0 0
\(622\) 23057.8 1.48639
\(623\) −3918.58 −0.251998
\(624\) 0 0
\(625\) 4041.54 0.258659
\(626\) −18343.4 −1.17117
\(627\) 0 0
\(628\) 21034.4 1.33657
\(629\) 3407.30 0.215991
\(630\) 0 0
\(631\) −15765.0 −0.994602 −0.497301 0.867578i \(-0.665676\pi\)
−0.497301 + 0.867578i \(0.665676\pi\)
\(632\) 3100.41 0.195139
\(633\) 0 0
\(634\) 16932.2 1.06067
\(635\) −14222.9 −0.888845
\(636\) 0 0
\(637\) −4269.79 −0.265581
\(638\) 2280.34 0.141504
\(639\) 0 0
\(640\) 3236.23 0.199880
\(641\) 1189.73 0.0733097 0.0366549 0.999328i \(-0.488330\pi\)
0.0366549 + 0.999328i \(0.488330\pi\)
\(642\) 0 0
\(643\) 13633.3 0.836149 0.418075 0.908413i \(-0.362705\pi\)
0.418075 + 0.908413i \(0.362705\pi\)
\(644\) 5726.85 0.350419
\(645\) 0 0
\(646\) −11001.6 −0.670051
\(647\) 11326.2 0.688221 0.344110 0.938929i \(-0.388181\pi\)
0.344110 + 0.938929i \(0.388181\pi\)
\(648\) 0 0
\(649\) −4017.46 −0.242988
\(650\) −30582.5 −1.84545
\(651\) 0 0
\(652\) 27807.1 1.67026
\(653\) 28224.5 1.69144 0.845719 0.533629i \(-0.179172\pi\)
0.845719 + 0.533629i \(0.179172\pi\)
\(654\) 0 0
\(655\) −7333.55 −0.437474
\(656\) 30098.4 1.79138
\(657\) 0 0
\(658\) −2001.12 −0.118559
\(659\) 5538.71 0.327402 0.163701 0.986510i \(-0.447657\pi\)
0.163701 + 0.986510i \(0.447657\pi\)
\(660\) 0 0
\(661\) 3176.03 0.186888 0.0934441 0.995625i \(-0.470212\pi\)
0.0934441 + 0.995625i \(0.470212\pi\)
\(662\) −31250.3 −1.83471
\(663\) 0 0
\(664\) −2372.87 −0.138683
\(665\) 977.943 0.0570271
\(666\) 0 0
\(667\) −6409.68 −0.372090
\(668\) 7880.15 0.456425
\(669\) 0 0
\(670\) −10566.4 −0.609277
\(671\) 5025.73 0.289145
\(672\) 0 0
\(673\) 32576.2 1.86586 0.932928 0.360062i \(-0.117245\pi\)
0.932928 + 0.360062i \(0.117245\pi\)
\(674\) −15573.7 −0.890025
\(675\) 0 0
\(676\) 37035.1 2.10714
\(677\) −18529.8 −1.05193 −0.525967 0.850505i \(-0.676296\pi\)
−0.525967 + 0.850505i \(0.676296\pi\)
\(678\) 0 0
\(679\) −10673.3 −0.603248
\(680\) −3040.46 −0.171465
\(681\) 0 0
\(682\) −2927.12 −0.164348
\(683\) 34880.4 1.95412 0.977058 0.212972i \(-0.0683143\pi\)
0.977058 + 0.212972i \(0.0683143\pi\)
\(684\) 0 0
\(685\) −16260.6 −0.906988
\(686\) 1322.36 0.0735978
\(687\) 0 0
\(688\) 2875.39 0.159336
\(689\) −21336.8 −1.17978
\(690\) 0 0
\(691\) −21942.1 −1.20798 −0.603992 0.796991i \(-0.706424\pi\)
−0.603992 + 0.796991i \(0.706424\pi\)
\(692\) 17884.7 0.982479
\(693\) 0 0
\(694\) −32434.4 −1.77405
\(695\) −3144.63 −0.171630
\(696\) 0 0
\(697\) −49901.5 −2.71184
\(698\) 29144.1 1.58040
\(699\) 0 0
\(700\) 4373.55 0.236150
\(701\) 8513.96 0.458727 0.229364 0.973341i \(-0.426335\pi\)
0.229364 + 0.973341i \(0.426335\pi\)
\(702\) 0 0
\(703\) 686.123 0.0368103
\(704\) 3933.93 0.210604
\(705\) 0 0
\(706\) −29781.8 −1.58761
\(707\) −7371.97 −0.392152
\(708\) 0 0
\(709\) −27813.5 −1.47329 −0.736643 0.676282i \(-0.763590\pi\)
−0.736643 + 0.676282i \(0.763590\pi\)
\(710\) −8087.68 −0.427500
\(711\) 0 0
\(712\) 2453.27 0.129130
\(713\) 8227.70 0.432159
\(714\) 0 0
\(715\) −5586.29 −0.292189
\(716\) −23411.8 −1.22198
\(717\) 0 0
\(718\) 3547.92 0.184411
\(719\) 65.2658 0.00338526 0.00169263 0.999999i \(-0.499461\pi\)
0.00169263 + 0.999999i \(0.499461\pi\)
\(720\) 0 0
\(721\) −307.268 −0.0158714
\(722\) 24228.1 1.24886
\(723\) 0 0
\(724\) −4399.55 −0.225840
\(725\) −4895.02 −0.250754
\(726\) 0 0
\(727\) 24711.7 1.26067 0.630334 0.776324i \(-0.282918\pi\)
0.630334 + 0.776324i \(0.282918\pi\)
\(728\) 2673.16 0.136090
\(729\) 0 0
\(730\) −20275.2 −1.02797
\(731\) −4767.24 −0.241207
\(732\) 0 0
\(733\) −27286.3 −1.37496 −0.687478 0.726205i \(-0.741282\pi\)
−0.687478 + 0.726205i \(0.741282\pi\)
\(734\) 10084.2 0.507105
\(735\) 0 0
\(736\) −28818.1 −1.44328
\(737\) 5173.00 0.258548
\(738\) 0 0
\(739\) 1330.19 0.0662138 0.0331069 0.999452i \(-0.489460\pi\)
0.0331069 + 0.999452i \(0.489460\pi\)
\(740\) −1144.87 −0.0568735
\(741\) 0 0
\(742\) 6608.06 0.326940
\(743\) 14905.2 0.735963 0.367982 0.929833i \(-0.380049\pi\)
0.367982 + 0.929833i \(0.380049\pi\)
\(744\) 0 0
\(745\) −5088.44 −0.250236
\(746\) 15565.3 0.763920
\(747\) 0 0
\(748\) −8987.27 −0.439314
\(749\) −3149.57 −0.153649
\(750\) 0 0
\(751\) −21448.2 −1.04215 −0.521076 0.853510i \(-0.674469\pi\)
−0.521076 + 0.853510i \(0.674469\pi\)
\(752\) 5324.18 0.258182
\(753\) 0 0
\(754\) 18064.1 0.872489
\(755\) −6509.61 −0.313787
\(756\) 0 0
\(757\) 5266.07 0.252838 0.126419 0.991977i \(-0.459652\pi\)
0.126419 + 0.991977i \(0.459652\pi\)
\(758\) −19044.5 −0.912571
\(759\) 0 0
\(760\) −612.253 −0.0292220
\(761\) 24314.9 1.15823 0.579117 0.815244i \(-0.303397\pi\)
0.579117 + 0.815244i \(0.303397\pi\)
\(762\) 0 0
\(763\) 9209.41 0.436963
\(764\) 20641.4 0.977459
\(765\) 0 0
\(766\) −944.873 −0.0445687
\(767\) −31825.1 −1.49822
\(768\) 0 0
\(769\) −6799.74 −0.318862 −0.159431 0.987209i \(-0.550966\pi\)
−0.159431 + 0.987209i \(0.550966\pi\)
\(770\) 1730.09 0.0809714
\(771\) 0 0
\(772\) 2024.44 0.0943798
\(773\) −2665.83 −0.124040 −0.0620202 0.998075i \(-0.519754\pi\)
−0.0620202 + 0.998075i \(0.519754\pi\)
\(774\) 0 0
\(775\) 6283.43 0.291235
\(776\) 6682.17 0.309119
\(777\) 0 0
\(778\) 38403.3 1.76970
\(779\) −10048.6 −0.462166
\(780\) 0 0
\(781\) 3959.49 0.181411
\(782\) 54707.7 2.50172
\(783\) 0 0
\(784\) −3518.28 −0.160272
\(785\) −17861.6 −0.812112
\(786\) 0 0
\(787\) −19896.6 −0.901191 −0.450596 0.892728i \(-0.648788\pi\)
−0.450596 + 0.892728i \(0.648788\pi\)
\(788\) −15784.4 −0.713575
\(789\) 0 0
\(790\) 15895.8 0.715880
\(791\) 5075.95 0.228167
\(792\) 0 0
\(793\) 39812.3 1.78282
\(794\) 18691.8 0.835449
\(795\) 0 0
\(796\) −16301.6 −0.725872
\(797\) 30665.5 1.36289 0.681447 0.731868i \(-0.261351\pi\)
0.681447 + 0.731868i \(0.261351\pi\)
\(798\) 0 0
\(799\) −8827.19 −0.390843
\(800\) −22008.2 −0.972633
\(801\) 0 0
\(802\) −3680.08 −0.162030
\(803\) 9926.13 0.436221
\(804\) 0 0
\(805\) −4863.01 −0.212918
\(806\) −23187.8 −1.01334
\(807\) 0 0
\(808\) 4615.31 0.200948
\(809\) −26189.0 −1.13814 −0.569071 0.822289i \(-0.692697\pi\)
−0.569071 + 0.822289i \(0.692697\pi\)
\(810\) 0 0
\(811\) 19230.2 0.832631 0.416315 0.909220i \(-0.363321\pi\)
0.416315 + 0.909220i \(0.363321\pi\)
\(812\) −2583.32 −0.111646
\(813\) 0 0
\(814\) 1213.83 0.0522661
\(815\) −23612.7 −1.01487
\(816\) 0 0
\(817\) −959.970 −0.0411078
\(818\) 767.739 0.0328158
\(819\) 0 0
\(820\) 16767.2 0.714068
\(821\) −42674.2 −1.81406 −0.907028 0.421070i \(-0.861655\pi\)
−0.907028 + 0.421070i \(0.861655\pi\)
\(822\) 0 0
\(823\) −21127.7 −0.894856 −0.447428 0.894320i \(-0.647660\pi\)
−0.447428 + 0.894320i \(0.647660\pi\)
\(824\) 192.369 0.00813288
\(825\) 0 0
\(826\) 9856.31 0.415188
\(827\) −3011.35 −0.126620 −0.0633101 0.997994i \(-0.520166\pi\)
−0.0633101 + 0.997994i \(0.520166\pi\)
\(828\) 0 0
\(829\) −5221.80 −0.218770 −0.109385 0.993999i \(-0.534888\pi\)
−0.109385 + 0.993999i \(0.534888\pi\)
\(830\) −12165.7 −0.508767
\(831\) 0 0
\(832\) 31163.4 1.29855
\(833\) 5833.11 0.242623
\(834\) 0 0
\(835\) −6691.50 −0.277328
\(836\) −1809.75 −0.0748703
\(837\) 0 0
\(838\) −63336.4 −2.61088
\(839\) −46130.3 −1.89821 −0.949104 0.314963i \(-0.898008\pi\)
−0.949104 + 0.314963i \(0.898008\pi\)
\(840\) 0 0
\(841\) −21497.7 −0.881449
\(842\) −43267.1 −1.77088
\(843\) 0 0
\(844\) −18615.7 −0.759218
\(845\) −31448.7 −1.28032
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −17581.4 −0.711967
\(849\) 0 0
\(850\) 41779.8 1.68592
\(851\) −3411.88 −0.137436
\(852\) 0 0
\(853\) 15030.9 0.603338 0.301669 0.953413i \(-0.402456\pi\)
0.301669 + 0.953413i \(0.402456\pi\)
\(854\) −12330.0 −0.494055
\(855\) 0 0
\(856\) 1971.83 0.0787332
\(857\) 33506.6 1.33555 0.667773 0.744365i \(-0.267248\pi\)
0.667773 + 0.744365i \(0.267248\pi\)
\(858\) 0 0
\(859\) 18085.0 0.718338 0.359169 0.933273i \(-0.383060\pi\)
0.359169 + 0.933273i \(0.383060\pi\)
\(860\) 1601.82 0.0635135
\(861\) 0 0
\(862\) −64714.9 −2.55707
\(863\) −23344.1 −0.920791 −0.460396 0.887714i \(-0.652292\pi\)
−0.460396 + 0.887714i \(0.652292\pi\)
\(864\) 0 0
\(865\) −15187.0 −0.596963
\(866\) 6242.91 0.244969
\(867\) 0 0
\(868\) 3316.04 0.129670
\(869\) −7782.10 −0.303785
\(870\) 0 0
\(871\) 40978.9 1.59416
\(872\) −5765.66 −0.223910
\(873\) 0 0
\(874\) 11016.4 0.426356
\(875\) −8813.35 −0.340509
\(876\) 0 0
\(877\) −16403.0 −0.631573 −0.315786 0.948830i \(-0.602268\pi\)
−0.315786 + 0.948830i \(0.602268\pi\)
\(878\) 2242.30 0.0861890
\(879\) 0 0
\(880\) −4603.07 −0.176329
\(881\) −19795.6 −0.757017 −0.378509 0.925598i \(-0.623563\pi\)
−0.378509 + 0.925598i \(0.623563\pi\)
\(882\) 0 0
\(883\) −26755.7 −1.01971 −0.509854 0.860261i \(-0.670301\pi\)
−0.509854 + 0.860261i \(0.670301\pi\)
\(884\) −71194.4 −2.70874
\(885\) 0 0
\(886\) 4517.80 0.171307
\(887\) 26296.7 0.995442 0.497721 0.867337i \(-0.334170\pi\)
0.497721 + 0.867337i \(0.334170\pi\)
\(888\) 0 0
\(889\) −17083.0 −0.644484
\(890\) 12577.9 0.473721
\(891\) 0 0
\(892\) −29748.3 −1.11664
\(893\) −1777.52 −0.0666096
\(894\) 0 0
\(895\) 19880.4 0.742489
\(896\) 3887.02 0.144929
\(897\) 0 0
\(898\) −44060.4 −1.63732
\(899\) −3711.42 −0.137690
\(900\) 0 0
\(901\) 29149.0 1.07780
\(902\) −17777.0 −0.656220
\(903\) 0 0
\(904\) −3177.86 −0.116918
\(905\) 3735.92 0.137222
\(906\) 0 0
\(907\) −41082.5 −1.50399 −0.751996 0.659167i \(-0.770909\pi\)
−0.751996 + 0.659167i \(0.770909\pi\)
\(908\) 21551.5 0.787679
\(909\) 0 0
\(910\) 13705.2 0.499257
\(911\) −34300.4 −1.24745 −0.623723 0.781645i \(-0.714381\pi\)
−0.623723 + 0.781645i \(0.714381\pi\)
\(912\) 0 0
\(913\) 5955.95 0.215896
\(914\) 41031.7 1.48491
\(915\) 0 0
\(916\) 34941.4 1.26037
\(917\) −8808.31 −0.317204
\(918\) 0 0
\(919\) 40816.1 1.46507 0.732535 0.680730i \(-0.238337\pi\)
0.732535 + 0.680730i \(0.238337\pi\)
\(920\) 3044.55 0.109104
\(921\) 0 0
\(922\) 11223.4 0.400892
\(923\) 31365.9 1.11855
\(924\) 0 0
\(925\) −2605.62 −0.0926188
\(926\) 58627.0 2.08057
\(927\) 0 0
\(928\) 12999.5 0.459839
\(929\) −11293.8 −0.398857 −0.199429 0.979912i \(-0.563909\pi\)
−0.199429 + 0.979912i \(0.563909\pi\)
\(930\) 0 0
\(931\) 1174.60 0.0413492
\(932\) −12989.1 −0.456514
\(933\) 0 0
\(934\) −54094.5 −1.89510
\(935\) 7631.63 0.266931
\(936\) 0 0
\(937\) 27145.4 0.946428 0.473214 0.880948i \(-0.343094\pi\)
0.473214 + 0.880948i \(0.343094\pi\)
\(938\) −12691.3 −0.441774
\(939\) 0 0
\(940\) 2965.99 0.102915
\(941\) 17834.4 0.617838 0.308919 0.951088i \(-0.400033\pi\)
0.308919 + 0.951088i \(0.400033\pi\)
\(942\) 0 0
\(943\) 49968.5 1.72555
\(944\) −26223.7 −0.904141
\(945\) 0 0
\(946\) −1698.29 −0.0583681
\(947\) 36957.3 1.26817 0.634083 0.773265i \(-0.281378\pi\)
0.634083 + 0.773265i \(0.281378\pi\)
\(948\) 0 0
\(949\) 78631.7 2.68967
\(950\) 8413.13 0.287324
\(951\) 0 0
\(952\) −3651.89 −0.124326
\(953\) −42725.6 −1.45227 −0.726137 0.687550i \(-0.758686\pi\)
−0.726137 + 0.687550i \(0.758686\pi\)
\(954\) 0 0
\(955\) −17527.8 −0.593913
\(956\) −35275.6 −1.19340
\(957\) 0 0
\(958\) 56469.3 1.90443
\(959\) −19530.6 −0.657639
\(960\) 0 0
\(961\) −25026.9 −0.840082
\(962\) 9615.55 0.322264
\(963\) 0 0
\(964\) −13030.8 −0.435368
\(965\) −1719.07 −0.0573460
\(966\) 0 0
\(967\) −18274.2 −0.607713 −0.303856 0.952718i \(-0.598274\pi\)
−0.303856 + 0.952718i \(0.598274\pi\)
\(968\) 530.275 0.0176071
\(969\) 0 0
\(970\) 34259.4 1.13402
\(971\) 39923.1 1.31946 0.659729 0.751503i \(-0.270671\pi\)
0.659729 + 0.751503i \(0.270671\pi\)
\(972\) 0 0
\(973\) −3777.01 −0.124445
\(974\) 45761.5 1.50543
\(975\) 0 0
\(976\) 32805.1 1.07589
\(977\) −26746.2 −0.875832 −0.437916 0.899016i \(-0.644283\pi\)
−0.437916 + 0.899016i \(0.644283\pi\)
\(978\) 0 0
\(979\) −6157.77 −0.201025
\(980\) −1959.96 −0.0638863
\(981\) 0 0
\(982\) 3700.36 0.120248
\(983\) −38975.0 −1.26461 −0.632303 0.774721i \(-0.717890\pi\)
−0.632303 + 0.774721i \(0.717890\pi\)
\(984\) 0 0
\(985\) 13403.5 0.433574
\(986\) −24678.0 −0.797068
\(987\) 0 0
\(988\) −14336.3 −0.461638
\(989\) 4773.64 0.153481
\(990\) 0 0
\(991\) 59856.3 1.91866 0.959332 0.282279i \(-0.0910903\pi\)
0.959332 + 0.282279i \(0.0910903\pi\)
\(992\) −16686.7 −0.534076
\(993\) 0 0
\(994\) −9714.08 −0.309972
\(995\) 13842.6 0.441047
\(996\) 0 0
\(997\) 42609.3 1.35351 0.676755 0.736208i \(-0.263386\pi\)
0.676755 + 0.736208i \(0.263386\pi\)
\(998\) −69961.8 −2.21904
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.t.1.2 yes 8
3.2 odd 2 693.4.a.s.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.7 8 3.2 odd 2
693.4.a.t.1.2 yes 8 1.1 even 1 trivial