Properties

Label 693.4.a.t.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.93411\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.93411 q^{2} +16.3455 q^{4} +14.7743 q^{5} -7.00000 q^{7} -41.1774 q^{8} +O(q^{10})\) \(q-4.93411 q^{2} +16.3455 q^{4} +14.7743 q^{5} -7.00000 q^{7} -41.1774 q^{8} -72.8980 q^{10} -11.0000 q^{11} -32.3144 q^{13} +34.5388 q^{14} +72.4103 q^{16} -45.2603 q^{17} -146.544 q^{19} +241.493 q^{20} +54.2752 q^{22} +153.307 q^{23} +93.2798 q^{25} +159.443 q^{26} -114.418 q^{28} +78.6971 q^{29} +106.083 q^{31} -27.8612 q^{32} +223.320 q^{34} -103.420 q^{35} +94.0807 q^{37} +723.064 q^{38} -608.367 q^{40} +417.245 q^{41} +60.3987 q^{43} -179.800 q^{44} -756.431 q^{46} +253.648 q^{47} +49.0000 q^{49} -460.253 q^{50} -528.194 q^{52} -647.312 q^{53} -162.517 q^{55} +288.242 q^{56} -388.300 q^{58} +559.388 q^{59} -602.774 q^{61} -523.425 q^{62} -441.812 q^{64} -477.423 q^{65} +343.967 q^{67} -739.801 q^{68} +510.286 q^{70} -224.903 q^{71} +1051.84 q^{73} -464.205 q^{74} -2395.33 q^{76} +77.0000 q^{77} -102.782 q^{79} +1069.81 q^{80} -2058.73 q^{82} +730.867 q^{83} -668.690 q^{85} -298.014 q^{86} +452.952 q^{88} -43.7903 q^{89} +226.201 q^{91} +2505.86 q^{92} -1251.53 q^{94} -2165.08 q^{95} +8.01384 q^{97} -241.771 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 30 q^{4} + 10 q^{5} - 56 q^{7} + 15 q^{8} - 13 q^{10} - 88 q^{11} - 148 q^{13} - 14 q^{14} + 266 q^{16} + 114 q^{17} + 58 q^{19} + 291 q^{20} - 22 q^{22} + 246 q^{23} + 244 q^{25} + 305 q^{26} - 210 q^{28} - 72 q^{29} + 252 q^{31} + 1272 q^{32} + 630 q^{34} - 70 q^{35} - 80 q^{37} + 1885 q^{38} - 342 q^{40} + 682 q^{41} - 106 q^{43} - 330 q^{44} + 120 q^{46} + 828 q^{47} + 392 q^{49} + 801 q^{50} - 1681 q^{52} + 462 q^{53} - 110 q^{55} - 105 q^{56} - 1087 q^{58} + 626 q^{59} - 854 q^{61} + 1350 q^{62} + 2997 q^{64} + 22 q^{65} + 130 q^{67} + 2202 q^{68} + 91 q^{70} + 326 q^{71} - 390 q^{73} - 359 q^{74} + 2041 q^{76} + 616 q^{77} - 508 q^{79} + 4391 q^{80} + 1528 q^{82} + 1596 q^{83} - 880 q^{85} - 414 q^{86} - 165 q^{88} + 4324 q^{89} + 1036 q^{91} + 2092 q^{92} - 1685 q^{94} + 1076 q^{95} - 964 q^{97} + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.93411 −1.74447 −0.872236 0.489085i \(-0.837331\pi\)
−0.872236 + 0.489085i \(0.837331\pi\)
\(3\) 0 0
\(4\) 16.3455 2.04318
\(5\) 14.7743 1.32145 0.660727 0.750627i \(-0.270248\pi\)
0.660727 + 0.750627i \(0.270248\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −41.1774 −1.81980
\(9\) 0 0
\(10\) −72.8980 −2.30524
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −32.3144 −0.689417 −0.344708 0.938710i \(-0.612022\pi\)
−0.344708 + 0.938710i \(0.612022\pi\)
\(14\) 34.5388 0.659348
\(15\) 0 0
\(16\) 72.4103 1.13141
\(17\) −45.2603 −0.645720 −0.322860 0.946447i \(-0.604644\pi\)
−0.322860 + 0.946447i \(0.604644\pi\)
\(18\) 0 0
\(19\) −146.544 −1.76945 −0.884723 0.466118i \(-0.845652\pi\)
−0.884723 + 0.466118i \(0.845652\pi\)
\(20\) 241.493 2.69997
\(21\) 0 0
\(22\) 54.2752 0.525978
\(23\) 153.307 1.38985 0.694926 0.719081i \(-0.255437\pi\)
0.694926 + 0.719081i \(0.255437\pi\)
\(24\) 0 0
\(25\) 93.2798 0.746239
\(26\) 159.443 1.20267
\(27\) 0 0
\(28\) −114.418 −0.772250
\(29\) 78.6971 0.503920 0.251960 0.967738i \(-0.418925\pi\)
0.251960 + 0.967738i \(0.418925\pi\)
\(30\) 0 0
\(31\) 106.083 0.614614 0.307307 0.951610i \(-0.400572\pi\)
0.307307 + 0.951610i \(0.400572\pi\)
\(32\) −27.8612 −0.153913
\(33\) 0 0
\(34\) 223.320 1.12644
\(35\) −103.420 −0.499462
\(36\) 0 0
\(37\) 94.0807 0.418021 0.209010 0.977913i \(-0.432976\pi\)
0.209010 + 0.977913i \(0.432976\pi\)
\(38\) 723.064 3.08675
\(39\) 0 0
\(40\) −608.367 −2.40478
\(41\) 417.245 1.58933 0.794667 0.607045i \(-0.207645\pi\)
0.794667 + 0.607045i \(0.207645\pi\)
\(42\) 0 0
\(43\) 60.3987 0.214203 0.107101 0.994248i \(-0.465843\pi\)
0.107101 + 0.994248i \(0.465843\pi\)
\(44\) −179.800 −0.616043
\(45\) 0 0
\(46\) −756.431 −2.42456
\(47\) 253.648 0.787200 0.393600 0.919282i \(-0.371229\pi\)
0.393600 + 0.919282i \(0.371229\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −460.253 −1.30179
\(51\) 0 0
\(52\) −528.194 −1.40860
\(53\) −647.312 −1.67765 −0.838823 0.544405i \(-0.816756\pi\)
−0.838823 + 0.544405i \(0.816756\pi\)
\(54\) 0 0
\(55\) −162.517 −0.398433
\(56\) 288.242 0.687820
\(57\) 0 0
\(58\) −388.300 −0.879075
\(59\) 559.388 1.23434 0.617171 0.786829i \(-0.288279\pi\)
0.617171 + 0.786829i \(0.288279\pi\)
\(60\) 0 0
\(61\) −602.774 −1.26520 −0.632601 0.774478i \(-0.718013\pi\)
−0.632601 + 0.774478i \(0.718013\pi\)
\(62\) −523.425 −1.07218
\(63\) 0 0
\(64\) −441.812 −0.862914
\(65\) −477.423 −0.911032
\(66\) 0 0
\(67\) 343.967 0.627197 0.313599 0.949556i \(-0.398465\pi\)
0.313599 + 0.949556i \(0.398465\pi\)
\(68\) −739.801 −1.31932
\(69\) 0 0
\(70\) 510.286 0.871298
\(71\) −224.903 −0.375930 −0.187965 0.982176i \(-0.560189\pi\)
−0.187965 + 0.982176i \(0.560189\pi\)
\(72\) 0 0
\(73\) 1051.84 1.68642 0.843209 0.537586i \(-0.180664\pi\)
0.843209 + 0.537586i \(0.180664\pi\)
\(74\) −464.205 −0.729225
\(75\) 0 0
\(76\) −2395.33 −3.61530
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −102.782 −0.146378 −0.0731890 0.997318i \(-0.523318\pi\)
−0.0731890 + 0.997318i \(0.523318\pi\)
\(80\) 1069.81 1.49511
\(81\) 0 0
\(82\) −2058.73 −2.77255
\(83\) 730.867 0.966542 0.483271 0.875471i \(-0.339448\pi\)
0.483271 + 0.875471i \(0.339448\pi\)
\(84\) 0 0
\(85\) −668.690 −0.853289
\(86\) −298.014 −0.373670
\(87\) 0 0
\(88\) 452.952 0.548691
\(89\) −43.7903 −0.0521546 −0.0260773 0.999660i \(-0.508302\pi\)
−0.0260773 + 0.999660i \(0.508302\pi\)
\(90\) 0 0
\(91\) 226.201 0.260575
\(92\) 2505.86 2.83972
\(93\) 0 0
\(94\) −1251.53 −1.37325
\(95\) −2165.08 −2.33824
\(96\) 0 0
\(97\) 8.01384 0.00838847 0.00419424 0.999991i \(-0.498665\pi\)
0.00419424 + 0.999991i \(0.498665\pi\)
\(98\) −241.771 −0.249210
\(99\) 0 0
\(100\) 1524.70 1.52470
\(101\) 369.969 0.364488 0.182244 0.983253i \(-0.441664\pi\)
0.182244 + 0.983253i \(0.441664\pi\)
\(102\) 0 0
\(103\) 1350.49 1.29192 0.645958 0.763373i \(-0.276458\pi\)
0.645958 + 0.763373i \(0.276458\pi\)
\(104\) 1330.63 1.25460
\(105\) 0 0
\(106\) 3193.91 2.92661
\(107\) 1590.45 1.43696 0.718479 0.695549i \(-0.244839\pi\)
0.718479 + 0.695549i \(0.244839\pi\)
\(108\) 0 0
\(109\) 2230.29 1.95984 0.979922 0.199382i \(-0.0638933\pi\)
0.979922 + 0.199382i \(0.0638933\pi\)
\(110\) 801.878 0.695055
\(111\) 0 0
\(112\) −506.872 −0.427633
\(113\) −1145.75 −0.953830 −0.476915 0.878949i \(-0.658245\pi\)
−0.476915 + 0.878949i \(0.658245\pi\)
\(114\) 0 0
\(115\) 2265.00 1.83663
\(116\) 1286.34 1.02960
\(117\) 0 0
\(118\) −2760.08 −2.15327
\(119\) 316.822 0.244059
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 2974.15 2.20711
\(123\) 0 0
\(124\) 1733.97 1.25577
\(125\) −468.643 −0.335334
\(126\) 0 0
\(127\) 916.800 0.640574 0.320287 0.947321i \(-0.396221\pi\)
0.320287 + 0.947321i \(0.396221\pi\)
\(128\) 2402.84 1.65924
\(129\) 0 0
\(130\) 2355.66 1.58927
\(131\) −488.489 −0.325798 −0.162899 0.986643i \(-0.552084\pi\)
−0.162899 + 0.986643i \(0.552084\pi\)
\(132\) 0 0
\(133\) 1025.81 0.668787
\(134\) −1697.17 −1.09413
\(135\) 0 0
\(136\) 1863.70 1.17508
\(137\) −433.883 −0.270578 −0.135289 0.990806i \(-0.543196\pi\)
−0.135289 + 0.990806i \(0.543196\pi\)
\(138\) 0 0
\(139\) −657.839 −0.401418 −0.200709 0.979651i \(-0.564325\pi\)
−0.200709 + 0.979651i \(0.564325\pi\)
\(140\) −1690.45 −1.02049
\(141\) 0 0
\(142\) 1109.70 0.655800
\(143\) 355.459 0.207867
\(144\) 0 0
\(145\) 1162.69 0.665907
\(146\) −5189.89 −2.94191
\(147\) 0 0
\(148\) 1537.79 0.854093
\(149\) 1672.94 0.919815 0.459907 0.887967i \(-0.347883\pi\)
0.459907 + 0.887967i \(0.347883\pi\)
\(150\) 0 0
\(151\) −1730.15 −0.932432 −0.466216 0.884671i \(-0.654383\pi\)
−0.466216 + 0.884671i \(0.654383\pi\)
\(152\) 6034.30 3.22004
\(153\) 0 0
\(154\) −379.927 −0.198801
\(155\) 1567.30 0.812184
\(156\) 0 0
\(157\) 1606.88 0.816832 0.408416 0.912796i \(-0.366081\pi\)
0.408416 + 0.912796i \(0.366081\pi\)
\(158\) 507.137 0.255352
\(159\) 0 0
\(160\) −411.630 −0.203389
\(161\) −1073.15 −0.525315
\(162\) 0 0
\(163\) 1439.38 0.691664 0.345832 0.938296i \(-0.387597\pi\)
0.345832 + 0.938296i \(0.387597\pi\)
\(164\) 6820.06 3.24730
\(165\) 0 0
\(166\) −3606.18 −1.68611
\(167\) −1875.59 −0.869087 −0.434544 0.900651i \(-0.643090\pi\)
−0.434544 + 0.900651i \(0.643090\pi\)
\(168\) 0 0
\(169\) −1152.78 −0.524705
\(170\) 3299.39 1.48854
\(171\) 0 0
\(172\) 987.244 0.437655
\(173\) 576.664 0.253428 0.126714 0.991939i \(-0.459557\pi\)
0.126714 + 0.991939i \(0.459557\pi\)
\(174\) 0 0
\(175\) −652.959 −0.282052
\(176\) −796.513 −0.341133
\(177\) 0 0
\(178\) 216.066 0.0909822
\(179\) −1365.58 −0.570215 −0.285107 0.958496i \(-0.592029\pi\)
−0.285107 + 0.958496i \(0.592029\pi\)
\(180\) 0 0
\(181\) −1409.35 −0.578765 −0.289383 0.957214i \(-0.593450\pi\)
−0.289383 + 0.957214i \(0.593450\pi\)
\(182\) −1116.10 −0.454566
\(183\) 0 0
\(184\) −6312.77 −2.52926
\(185\) 1389.98 0.552395
\(186\) 0 0
\(187\) 497.864 0.194692
\(188\) 4146.00 1.60839
\(189\) 0 0
\(190\) 10682.8 4.07899
\(191\) 5210.94 1.97409 0.987043 0.160457i \(-0.0512967\pi\)
0.987043 + 0.160457i \(0.0512967\pi\)
\(192\) 0 0
\(193\) −4236.23 −1.57995 −0.789976 0.613138i \(-0.789907\pi\)
−0.789976 + 0.613138i \(0.789907\pi\)
\(194\) −39.5412 −0.0146335
\(195\) 0 0
\(196\) 800.927 0.291883
\(197\) 2534.40 0.916592 0.458296 0.888800i \(-0.348460\pi\)
0.458296 + 0.888800i \(0.348460\pi\)
\(198\) 0 0
\(199\) −1486.78 −0.529622 −0.264811 0.964300i \(-0.585310\pi\)
−0.264811 + 0.964300i \(0.585310\pi\)
\(200\) −3841.02 −1.35801
\(201\) 0 0
\(202\) −1825.47 −0.635840
\(203\) −550.880 −0.190464
\(204\) 0 0
\(205\) 6164.50 2.10023
\(206\) −6663.45 −2.25371
\(207\) 0 0
\(208\) −2339.90 −0.780014
\(209\) 1611.98 0.533508
\(210\) 0 0
\(211\) 4445.93 1.45057 0.725285 0.688449i \(-0.241708\pi\)
0.725285 + 0.688449i \(0.241708\pi\)
\(212\) −10580.6 −3.42773
\(213\) 0 0
\(214\) −7847.45 −2.50673
\(215\) 892.348 0.283059
\(216\) 0 0
\(217\) −742.580 −0.232302
\(218\) −11004.5 −3.41889
\(219\) 0 0
\(220\) −2656.42 −0.814071
\(221\) 1462.56 0.445170
\(222\) 0 0
\(223\) 5051.11 1.51680 0.758402 0.651787i \(-0.225980\pi\)
0.758402 + 0.651787i \(0.225980\pi\)
\(224\) 195.028 0.0581736
\(225\) 0 0
\(226\) 5653.24 1.66393
\(227\) 694.112 0.202951 0.101475 0.994838i \(-0.467644\pi\)
0.101475 + 0.994838i \(0.467644\pi\)
\(228\) 0 0
\(229\) 1791.51 0.516972 0.258486 0.966015i \(-0.416776\pi\)
0.258486 + 0.966015i \(0.416776\pi\)
\(230\) −11175.7 −3.20394
\(231\) 0 0
\(232\) −3240.54 −0.917035
\(233\) 4166.66 1.17153 0.585766 0.810481i \(-0.300794\pi\)
0.585766 + 0.810481i \(0.300794\pi\)
\(234\) 0 0
\(235\) 3747.48 1.04025
\(236\) 9143.46 2.52198
\(237\) 0 0
\(238\) −1563.24 −0.425755
\(239\) −6789.46 −1.83755 −0.918774 0.394785i \(-0.870819\pi\)
−0.918774 + 0.394785i \(0.870819\pi\)
\(240\) 0 0
\(241\) −7170.37 −1.91653 −0.958265 0.285880i \(-0.907714\pi\)
−0.958265 + 0.285880i \(0.907714\pi\)
\(242\) −597.027 −0.158588
\(243\) 0 0
\(244\) −9852.62 −2.58504
\(245\) 723.941 0.188779
\(246\) 0 0
\(247\) 4735.48 1.21988
\(248\) −4368.22 −1.11848
\(249\) 0 0
\(250\) 2312.34 0.584980
\(251\) 4269.76 1.07372 0.536862 0.843670i \(-0.319609\pi\)
0.536862 + 0.843670i \(0.319609\pi\)
\(252\) 0 0
\(253\) −1686.37 −0.419056
\(254\) −4523.59 −1.11746
\(255\) 0 0
\(256\) −8321.38 −2.03159
\(257\) −1267.24 −0.307581 −0.153790 0.988103i \(-0.549148\pi\)
−0.153790 + 0.988103i \(0.549148\pi\)
\(258\) 0 0
\(259\) −658.565 −0.157997
\(260\) −7803.70 −1.86140
\(261\) 0 0
\(262\) 2410.26 0.568345
\(263\) 5297.20 1.24197 0.620987 0.783821i \(-0.286732\pi\)
0.620987 + 0.783821i \(0.286732\pi\)
\(264\) 0 0
\(265\) −9563.59 −2.21693
\(266\) −5061.44 −1.16668
\(267\) 0 0
\(268\) 5622.29 1.28148
\(269\) −138.869 −0.0314758 −0.0157379 0.999876i \(-0.505010\pi\)
−0.0157379 + 0.999876i \(0.505010\pi\)
\(270\) 0 0
\(271\) 6201.39 1.39006 0.695032 0.718979i \(-0.255390\pi\)
0.695032 + 0.718979i \(0.255390\pi\)
\(272\) −3277.31 −0.730575
\(273\) 0 0
\(274\) 2140.83 0.472015
\(275\) −1026.08 −0.224999
\(276\) 0 0
\(277\) −1486.69 −0.322478 −0.161239 0.986915i \(-0.551549\pi\)
−0.161239 + 0.986915i \(0.551549\pi\)
\(278\) 3245.85 0.700263
\(279\) 0 0
\(280\) 4258.57 0.908923
\(281\) −4425.70 −0.939555 −0.469778 0.882785i \(-0.655666\pi\)
−0.469778 + 0.882785i \(0.655666\pi\)
\(282\) 0 0
\(283\) −1502.45 −0.315588 −0.157794 0.987472i \(-0.550438\pi\)
−0.157794 + 0.987472i \(0.550438\pi\)
\(284\) −3676.14 −0.768094
\(285\) 0 0
\(286\) −1753.87 −0.362618
\(287\) −2920.72 −0.600712
\(288\) 0 0
\(289\) −2864.50 −0.583045
\(290\) −5736.87 −1.16166
\(291\) 0 0
\(292\) 17192.8 3.44566
\(293\) 5606.97 1.11796 0.558980 0.829181i \(-0.311193\pi\)
0.558980 + 0.829181i \(0.311193\pi\)
\(294\) 0 0
\(295\) 8264.57 1.63112
\(296\) −3874.00 −0.760715
\(297\) 0 0
\(298\) −8254.46 −1.60459
\(299\) −4954.01 −0.958188
\(300\) 0 0
\(301\) −422.791 −0.0809609
\(302\) 8536.73 1.62660
\(303\) 0 0
\(304\) −10611.3 −2.00197
\(305\) −8905.56 −1.67191
\(306\) 0 0
\(307\) 2660.03 0.494514 0.247257 0.968950i \(-0.420471\pi\)
0.247257 + 0.968950i \(0.420471\pi\)
\(308\) 1258.60 0.232842
\(309\) 0 0
\(310\) −7733.23 −1.41683
\(311\) 5233.58 0.954241 0.477121 0.878838i \(-0.341680\pi\)
0.477121 + 0.878838i \(0.341680\pi\)
\(312\) 0 0
\(313\) 2462.59 0.444708 0.222354 0.974966i \(-0.428626\pi\)
0.222354 + 0.974966i \(0.428626\pi\)
\(314\) −7928.50 −1.42494
\(315\) 0 0
\(316\) −1680.02 −0.299077
\(317\) 3920.02 0.694543 0.347272 0.937765i \(-0.387108\pi\)
0.347272 + 0.937765i \(0.387108\pi\)
\(318\) 0 0
\(319\) −865.669 −0.151938
\(320\) −6527.46 −1.14030
\(321\) 0 0
\(322\) 5295.02 0.916397
\(323\) 6632.62 1.14257
\(324\) 0 0
\(325\) −3014.29 −0.514469
\(326\) −7102.08 −1.20659
\(327\) 0 0
\(328\) −17181.1 −2.89227
\(329\) −1775.54 −0.297534
\(330\) 0 0
\(331\) −11647.6 −1.93417 −0.967086 0.254450i \(-0.918106\pi\)
−0.967086 + 0.254450i \(0.918106\pi\)
\(332\) 11946.3 1.97482
\(333\) 0 0
\(334\) 9254.37 1.51610
\(335\) 5081.87 0.828812
\(336\) 0 0
\(337\) −8628.94 −1.39480 −0.697401 0.716681i \(-0.745660\pi\)
−0.697401 + 0.716681i \(0.745660\pi\)
\(338\) 5687.93 0.915333
\(339\) 0 0
\(340\) −10930.0 −1.74343
\(341\) −1166.91 −0.185313
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −2487.06 −0.389806
\(345\) 0 0
\(346\) −2845.33 −0.442097
\(347\) 1753.00 0.271199 0.135600 0.990764i \(-0.456704\pi\)
0.135600 + 0.990764i \(0.456704\pi\)
\(348\) 0 0
\(349\) −11437.8 −1.75430 −0.877152 0.480213i \(-0.840559\pi\)
−0.877152 + 0.480213i \(0.840559\pi\)
\(350\) 3221.77 0.492031
\(351\) 0 0
\(352\) 306.473 0.0464065
\(353\) −363.466 −0.0548027 −0.0274014 0.999625i \(-0.508723\pi\)
−0.0274014 + 0.999625i \(0.508723\pi\)
\(354\) 0 0
\(355\) −3322.78 −0.496774
\(356\) −715.772 −0.106561
\(357\) 0 0
\(358\) 6737.94 0.994724
\(359\) −5084.34 −0.747469 −0.373734 0.927536i \(-0.621923\pi\)
−0.373734 + 0.927536i \(0.621923\pi\)
\(360\) 0 0
\(361\) 14616.1 2.13094
\(362\) 6953.91 1.00964
\(363\) 0 0
\(364\) 3697.36 0.532402
\(365\) 15540.2 2.22852
\(366\) 0 0
\(367\) 3672.38 0.522334 0.261167 0.965294i \(-0.415893\pi\)
0.261167 + 0.965294i \(0.415893\pi\)
\(368\) 11101.0 1.57249
\(369\) 0 0
\(370\) −6858.30 −0.963637
\(371\) 4531.19 0.634090
\(372\) 0 0
\(373\) 9877.17 1.37110 0.685550 0.728025i \(-0.259562\pi\)
0.685550 + 0.728025i \(0.259562\pi\)
\(374\) −2456.52 −0.339635
\(375\) 0 0
\(376\) −10444.6 −1.43255
\(377\) −2543.05 −0.347411
\(378\) 0 0
\(379\) −806.035 −0.109243 −0.0546217 0.998507i \(-0.517395\pi\)
−0.0546217 + 0.998507i \(0.517395\pi\)
\(380\) −35389.3 −4.77745
\(381\) 0 0
\(382\) −25711.4 −3.44374
\(383\) 10298.5 1.37397 0.686986 0.726671i \(-0.258933\pi\)
0.686986 + 0.726671i \(0.258933\pi\)
\(384\) 0 0
\(385\) 1137.62 0.150594
\(386\) 20902.0 2.75618
\(387\) 0 0
\(388\) 130.990 0.0171392
\(389\) 261.011 0.0340200 0.0170100 0.999855i \(-0.494585\pi\)
0.0170100 + 0.999855i \(0.494585\pi\)
\(390\) 0 0
\(391\) −6938.70 −0.897456
\(392\) −2017.69 −0.259972
\(393\) 0 0
\(394\) −12505.0 −1.59897
\(395\) −1518.53 −0.193432
\(396\) 0 0
\(397\) 5217.48 0.659591 0.329796 0.944052i \(-0.393020\pi\)
0.329796 + 0.944052i \(0.393020\pi\)
\(398\) 7335.92 0.923911
\(399\) 0 0
\(400\) 6754.42 0.844303
\(401\) 9584.00 1.19352 0.596761 0.802419i \(-0.296454\pi\)
0.596761 + 0.802419i \(0.296454\pi\)
\(402\) 0 0
\(403\) −3428.01 −0.423725
\(404\) 6047.32 0.744716
\(405\) 0 0
\(406\) 2718.10 0.332259
\(407\) −1034.89 −0.126038
\(408\) 0 0
\(409\) 8828.72 1.06737 0.533683 0.845685i \(-0.320808\pi\)
0.533683 + 0.845685i \(0.320808\pi\)
\(410\) −30416.3 −3.66379
\(411\) 0 0
\(412\) 22074.3 2.63962
\(413\) −3915.72 −0.466537
\(414\) 0 0
\(415\) 10798.0 1.27724
\(416\) 900.320 0.106110
\(417\) 0 0
\(418\) −7953.70 −0.930689
\(419\) −8400.12 −0.979410 −0.489705 0.871888i \(-0.662895\pi\)
−0.489705 + 0.871888i \(0.662895\pi\)
\(420\) 0 0
\(421\) 1479.36 0.171258 0.0856289 0.996327i \(-0.472710\pi\)
0.0856289 + 0.996327i \(0.472710\pi\)
\(422\) −21936.7 −2.53048
\(423\) 0 0
\(424\) 26654.7 3.05298
\(425\) −4221.88 −0.481861
\(426\) 0 0
\(427\) 4219.42 0.478201
\(428\) 25996.6 2.93597
\(429\) 0 0
\(430\) −4402.94 −0.493788
\(431\) 5864.95 0.655463 0.327731 0.944771i \(-0.393716\pi\)
0.327731 + 0.944771i \(0.393716\pi\)
\(432\) 0 0
\(433\) −4186.93 −0.464690 −0.232345 0.972633i \(-0.574640\pi\)
−0.232345 + 0.972633i \(0.574640\pi\)
\(434\) 3663.97 0.405245
\(435\) 0 0
\(436\) 36455.1 4.00432
\(437\) −22466.1 −2.45927
\(438\) 0 0
\(439\) 4744.75 0.515842 0.257921 0.966166i \(-0.416963\pi\)
0.257921 + 0.966166i \(0.416963\pi\)
\(440\) 6692.04 0.725069
\(441\) 0 0
\(442\) −7216.45 −0.776587
\(443\) 6661.14 0.714403 0.357201 0.934027i \(-0.383731\pi\)
0.357201 + 0.934027i \(0.383731\pi\)
\(444\) 0 0
\(445\) −646.970 −0.0689199
\(446\) −24922.7 −2.64602
\(447\) 0 0
\(448\) 3092.68 0.326151
\(449\) −18086.5 −1.90101 −0.950506 0.310707i \(-0.899434\pi\)
−0.950506 + 0.310707i \(0.899434\pi\)
\(450\) 0 0
\(451\) −4589.70 −0.479202
\(452\) −18727.8 −1.94885
\(453\) 0 0
\(454\) −3424.83 −0.354042
\(455\) 3341.96 0.344338
\(456\) 0 0
\(457\) 403.581 0.0413101 0.0206550 0.999787i \(-0.493425\pi\)
0.0206550 + 0.999787i \(0.493425\pi\)
\(458\) −8839.53 −0.901843
\(459\) 0 0
\(460\) 37022.4 3.75256
\(461\) 12833.0 1.29651 0.648256 0.761422i \(-0.275499\pi\)
0.648256 + 0.761422i \(0.275499\pi\)
\(462\) 0 0
\(463\) −6730.20 −0.675549 −0.337774 0.941227i \(-0.609674\pi\)
−0.337774 + 0.941227i \(0.609674\pi\)
\(464\) 5698.48 0.570141
\(465\) 0 0
\(466\) −20558.7 −2.04370
\(467\) 11787.7 1.16803 0.584015 0.811743i \(-0.301481\pi\)
0.584015 + 0.811743i \(0.301481\pi\)
\(468\) 0 0
\(469\) −2407.77 −0.237058
\(470\) −18490.5 −1.81468
\(471\) 0 0
\(472\) −23034.2 −2.24626
\(473\) −664.385 −0.0645845
\(474\) 0 0
\(475\) −13669.6 −1.32043
\(476\) 5178.61 0.498658
\(477\) 0 0
\(478\) 33500.0 3.20555
\(479\) −8240.02 −0.786005 −0.393002 0.919537i \(-0.628564\pi\)
−0.393002 + 0.919537i \(0.628564\pi\)
\(480\) 0 0
\(481\) −3040.17 −0.288190
\(482\) 35379.4 3.34333
\(483\) 0 0
\(484\) 1977.80 0.185744
\(485\) 118.399 0.0110850
\(486\) 0 0
\(487\) 14711.3 1.36886 0.684429 0.729080i \(-0.260052\pi\)
0.684429 + 0.729080i \(0.260052\pi\)
\(488\) 24820.7 2.30242
\(489\) 0 0
\(490\) −3572.00 −0.329320
\(491\) 17891.4 1.64445 0.822227 0.569160i \(-0.192732\pi\)
0.822227 + 0.569160i \(0.192732\pi\)
\(492\) 0 0
\(493\) −3561.86 −0.325392
\(494\) −23365.4 −2.12805
\(495\) 0 0
\(496\) 7681.49 0.695381
\(497\) 1574.32 0.142088
\(498\) 0 0
\(499\) −6616.76 −0.593601 −0.296801 0.954939i \(-0.595920\pi\)
−0.296801 + 0.954939i \(0.595920\pi\)
\(500\) −7660.18 −0.685148
\(501\) 0 0
\(502\) −21067.5 −1.87308
\(503\) −12112.3 −1.07368 −0.536841 0.843683i \(-0.680383\pi\)
−0.536841 + 0.843683i \(0.680383\pi\)
\(504\) 0 0
\(505\) 5466.04 0.481654
\(506\) 8320.75 0.731032
\(507\) 0 0
\(508\) 14985.5 1.30881
\(509\) −9955.07 −0.866897 −0.433449 0.901178i \(-0.642703\pi\)
−0.433449 + 0.901178i \(0.642703\pi\)
\(510\) 0 0
\(511\) −7362.88 −0.637406
\(512\) 21835.9 1.88481
\(513\) 0 0
\(514\) 6252.70 0.536566
\(515\) 19952.5 1.70721
\(516\) 0 0
\(517\) −2790.13 −0.237350
\(518\) 3249.43 0.275621
\(519\) 0 0
\(520\) 19659.1 1.65790
\(521\) −10077.7 −0.847434 −0.423717 0.905795i \(-0.639275\pi\)
−0.423717 + 0.905795i \(0.639275\pi\)
\(522\) 0 0
\(523\) 1287.74 0.107666 0.0538328 0.998550i \(-0.482856\pi\)
0.0538328 + 0.998550i \(0.482856\pi\)
\(524\) −7984.58 −0.665664
\(525\) 0 0
\(526\) −26137.0 −2.16659
\(527\) −4801.35 −0.396869
\(528\) 0 0
\(529\) 11335.9 0.931691
\(530\) 47187.8 3.86737
\(531\) 0 0
\(532\) 16767.3 1.36645
\(533\) −13483.0 −1.09571
\(534\) 0 0
\(535\) 23497.8 1.89887
\(536\) −14163.7 −1.14138
\(537\) 0 0
\(538\) 685.194 0.0549086
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 21639.6 1.71970 0.859850 0.510546i \(-0.170557\pi\)
0.859850 + 0.510546i \(0.170557\pi\)
\(542\) −30598.3 −2.42493
\(543\) 0 0
\(544\) 1261.01 0.0993847
\(545\) 32951.0 2.58984
\(546\) 0 0
\(547\) 7156.42 0.559390 0.279695 0.960089i \(-0.409767\pi\)
0.279695 + 0.960089i \(0.409767\pi\)
\(548\) −7092.02 −0.552840
\(549\) 0 0
\(550\) 5062.78 0.392505
\(551\) −11532.6 −0.891660
\(552\) 0 0
\(553\) 719.473 0.0553257
\(554\) 7335.47 0.562553
\(555\) 0 0
\(556\) −10752.7 −0.820171
\(557\) 14142.9 1.07586 0.537929 0.842990i \(-0.319207\pi\)
0.537929 + 0.842990i \(0.319207\pi\)
\(558\) 0 0
\(559\) −1951.75 −0.147675
\(560\) −7488.68 −0.565097
\(561\) 0 0
\(562\) 21836.9 1.63903
\(563\) 23097.9 1.72906 0.864529 0.502583i \(-0.167617\pi\)
0.864529 + 0.502583i \(0.167617\pi\)
\(564\) 0 0
\(565\) −16927.6 −1.26044
\(566\) 7413.25 0.550534
\(567\) 0 0
\(568\) 9260.92 0.684119
\(569\) −6152.18 −0.453274 −0.226637 0.973979i \(-0.572773\pi\)
−0.226637 + 0.973979i \(0.572773\pi\)
\(570\) 0 0
\(571\) −22342.5 −1.63748 −0.818741 0.574162i \(-0.805328\pi\)
−0.818741 + 0.574162i \(0.805328\pi\)
\(572\) 5810.14 0.424710
\(573\) 0 0
\(574\) 14411.1 1.04793
\(575\) 14300.4 1.03716
\(576\) 0 0
\(577\) −23692.0 −1.70938 −0.854689 0.519140i \(-0.826252\pi\)
−0.854689 + 0.519140i \(0.826252\pi\)
\(578\) 14133.8 1.01711
\(579\) 0 0
\(580\) 19004.8 1.36057
\(581\) −5116.07 −0.365319
\(582\) 0 0
\(583\) 7120.44 0.505829
\(584\) −43312.0 −3.06895
\(585\) 0 0
\(586\) −27665.4 −1.95025
\(587\) −3747.23 −0.263483 −0.131742 0.991284i \(-0.542057\pi\)
−0.131742 + 0.991284i \(0.542057\pi\)
\(588\) 0 0
\(589\) −15545.8 −1.08753
\(590\) −40778.3 −2.84545
\(591\) 0 0
\(592\) 6812.41 0.472953
\(593\) −14175.4 −0.981639 −0.490820 0.871261i \(-0.663303\pi\)
−0.490820 + 0.871261i \(0.663303\pi\)
\(594\) 0 0
\(595\) 4680.83 0.322513
\(596\) 27344.9 1.87935
\(597\) 0 0
\(598\) 24443.7 1.67153
\(599\) 14398.5 0.982151 0.491075 0.871117i \(-0.336604\pi\)
0.491075 + 0.871117i \(0.336604\pi\)
\(600\) 0 0
\(601\) 14943.3 1.01423 0.507114 0.861879i \(-0.330712\pi\)
0.507114 + 0.861879i \(0.330712\pi\)
\(602\) 2086.10 0.141234
\(603\) 0 0
\(604\) −28280.0 −1.90513
\(605\) 1787.69 0.120132
\(606\) 0 0
\(607\) 16994.3 1.13637 0.568185 0.822901i \(-0.307646\pi\)
0.568185 + 0.822901i \(0.307646\pi\)
\(608\) 4082.89 0.272340
\(609\) 0 0
\(610\) 43941.0 2.91659
\(611\) −8196.50 −0.542709
\(612\) 0 0
\(613\) −19859.4 −1.30851 −0.654253 0.756276i \(-0.727017\pi\)
−0.654253 + 0.756276i \(0.727017\pi\)
\(614\) −13124.9 −0.862666
\(615\) 0 0
\(616\) −3170.66 −0.207386
\(617\) 15541.0 1.01403 0.507016 0.861937i \(-0.330749\pi\)
0.507016 + 0.861937i \(0.330749\pi\)
\(618\) 0 0
\(619\) −11192.3 −0.726746 −0.363373 0.931644i \(-0.618375\pi\)
−0.363373 + 0.931644i \(0.618375\pi\)
\(620\) 25618.2 1.65944
\(621\) 0 0
\(622\) −25823.1 −1.66465
\(623\) 306.532 0.0197126
\(624\) 0 0
\(625\) −18583.9 −1.18937
\(626\) −12150.7 −0.775781
\(627\) 0 0
\(628\) 26265.1 1.66894
\(629\) −4258.12 −0.269924
\(630\) 0 0
\(631\) −21967.4 −1.38591 −0.692955 0.720981i \(-0.743692\pi\)
−0.692955 + 0.720981i \(0.743692\pi\)
\(632\) 4232.29 0.266379
\(633\) 0 0
\(634\) −19341.8 −1.21161
\(635\) 13545.1 0.846488
\(636\) 0 0
\(637\) −1583.41 −0.0984881
\(638\) 4271.31 0.265051
\(639\) 0 0
\(640\) 35500.3 2.19261
\(641\) −5862.10 −0.361215 −0.180608 0.983555i \(-0.557806\pi\)
−0.180608 + 0.983555i \(0.557806\pi\)
\(642\) 0 0
\(643\) −23698.2 −1.45344 −0.726722 0.686932i \(-0.758957\pi\)
−0.726722 + 0.686932i \(0.758957\pi\)
\(644\) −17541.1 −1.07331
\(645\) 0 0
\(646\) −32726.1 −1.99318
\(647\) −13171.6 −0.800355 −0.400177 0.916438i \(-0.631051\pi\)
−0.400177 + 0.916438i \(0.631051\pi\)
\(648\) 0 0
\(649\) −6153.27 −0.372168
\(650\) 14872.8 0.897477
\(651\) 0 0
\(652\) 23527.4 1.41320
\(653\) 13475.4 0.807555 0.403778 0.914857i \(-0.367697\pi\)
0.403778 + 0.914857i \(0.367697\pi\)
\(654\) 0 0
\(655\) −7217.08 −0.430526
\(656\) 30212.8 1.79819
\(657\) 0 0
\(658\) 8760.70 0.519039
\(659\) 15669.7 0.926261 0.463131 0.886290i \(-0.346726\pi\)
0.463131 + 0.886290i \(0.346726\pi\)
\(660\) 0 0
\(661\) 24770.3 1.45757 0.728784 0.684743i \(-0.240086\pi\)
0.728784 + 0.684743i \(0.240086\pi\)
\(662\) 57470.6 3.37411
\(663\) 0 0
\(664\) −30095.2 −1.75892
\(665\) 15155.6 0.883771
\(666\) 0 0
\(667\) 12064.8 0.700375
\(668\) −30657.4 −1.77570
\(669\) 0 0
\(670\) −25074.5 −1.44584
\(671\) 6630.51 0.381473
\(672\) 0 0
\(673\) −16808.7 −0.962748 −0.481374 0.876515i \(-0.659862\pi\)
−0.481374 + 0.876515i \(0.659862\pi\)
\(674\) 42576.2 2.43319
\(675\) 0 0
\(676\) −18842.7 −1.07207
\(677\) 8739.56 0.496142 0.248071 0.968742i \(-0.420203\pi\)
0.248071 + 0.968742i \(0.420203\pi\)
\(678\) 0 0
\(679\) −56.0969 −0.00317055
\(680\) 27534.9 1.55282
\(681\) 0 0
\(682\) 5757.67 0.323274
\(683\) 14225.9 0.796980 0.398490 0.917173i \(-0.369534\pi\)
0.398490 + 0.917173i \(0.369534\pi\)
\(684\) 0 0
\(685\) −6410.32 −0.357556
\(686\) 1692.40 0.0941926
\(687\) 0 0
\(688\) 4373.49 0.242351
\(689\) 20917.5 1.15660
\(690\) 0 0
\(691\) 11640.4 0.640842 0.320421 0.947275i \(-0.396176\pi\)
0.320421 + 0.947275i \(0.396176\pi\)
\(692\) 9425.84 0.517799
\(693\) 0 0
\(694\) −8649.52 −0.473100
\(695\) −9719.11 −0.530456
\(696\) 0 0
\(697\) −18884.6 −1.02627
\(698\) 56435.5 3.06033
\(699\) 0 0
\(700\) −10672.9 −0.576283
\(701\) −6420.66 −0.345942 −0.172971 0.984927i \(-0.555337\pi\)
−0.172971 + 0.984927i \(0.555337\pi\)
\(702\) 0 0
\(703\) −13786.9 −0.739665
\(704\) 4859.93 0.260178
\(705\) 0 0
\(706\) 1793.38 0.0956018
\(707\) −2589.78 −0.137764
\(708\) 0 0
\(709\) 4597.37 0.243523 0.121762 0.992559i \(-0.461146\pi\)
0.121762 + 0.992559i \(0.461146\pi\)
\(710\) 16395.0 0.866609
\(711\) 0 0
\(712\) 1803.17 0.0949110
\(713\) 16263.2 0.854223
\(714\) 0 0
\(715\) 5251.66 0.274686
\(716\) −22321.1 −1.16505
\(717\) 0 0
\(718\) 25086.7 1.30394
\(719\) 21320.2 1.10585 0.552926 0.833230i \(-0.313511\pi\)
0.552926 + 0.833230i \(0.313511\pi\)
\(720\) 0 0
\(721\) −9453.40 −0.488298
\(722\) −72117.4 −3.71736
\(723\) 0 0
\(724\) −23036.5 −1.18252
\(725\) 7340.86 0.376045
\(726\) 0 0
\(727\) −30010.9 −1.53101 −0.765504 0.643431i \(-0.777510\pi\)
−0.765504 + 0.643431i \(0.777510\pi\)
\(728\) −9314.38 −0.474195
\(729\) 0 0
\(730\) −76677.0 −3.88759
\(731\) −2733.66 −0.138315
\(732\) 0 0
\(733\) −33304.1 −1.67819 −0.839097 0.543982i \(-0.816916\pi\)
−0.839097 + 0.543982i \(0.816916\pi\)
\(734\) −18119.9 −0.911197
\(735\) 0 0
\(736\) −4271.30 −0.213916
\(737\) −3783.63 −0.189107
\(738\) 0 0
\(739\) 13024.7 0.648338 0.324169 0.945999i \(-0.394915\pi\)
0.324169 + 0.945999i \(0.394915\pi\)
\(740\) 22719.8 1.12864
\(741\) 0 0
\(742\) −22357.4 −1.10615
\(743\) −27910.3 −1.37810 −0.689051 0.724713i \(-0.741972\pi\)
−0.689051 + 0.724713i \(0.741972\pi\)
\(744\) 0 0
\(745\) 24716.5 1.21549
\(746\) −48735.1 −2.39185
\(747\) 0 0
\(748\) 8137.81 0.397791
\(749\) −11133.1 −0.543119
\(750\) 0 0
\(751\) 3762.49 0.182816 0.0914082 0.995814i \(-0.470863\pi\)
0.0914082 + 0.995814i \(0.470863\pi\)
\(752\) 18366.8 0.890647
\(753\) 0 0
\(754\) 12547.7 0.606049
\(755\) −25561.7 −1.23217
\(756\) 0 0
\(757\) −34217.1 −1.64286 −0.821429 0.570311i \(-0.806823\pi\)
−0.821429 + 0.570311i \(0.806823\pi\)
\(758\) 3977.07 0.190572
\(759\) 0 0
\(760\) 89152.5 4.25513
\(761\) 7946.81 0.378544 0.189272 0.981925i \(-0.439387\pi\)
0.189272 + 0.981925i \(0.439387\pi\)
\(762\) 0 0
\(763\) −15612.0 −0.740751
\(764\) 85175.2 4.03342
\(765\) 0 0
\(766\) −50814.2 −2.39686
\(767\) −18076.3 −0.850975
\(768\) 0 0
\(769\) 21908.8 1.02738 0.513688 0.857977i \(-0.328279\pi\)
0.513688 + 0.857977i \(0.328279\pi\)
\(770\) −5613.15 −0.262706
\(771\) 0 0
\(772\) −69243.1 −3.22813
\(773\) −1544.58 −0.0718688 −0.0359344 0.999354i \(-0.511441\pi\)
−0.0359344 + 0.999354i \(0.511441\pi\)
\(774\) 0 0
\(775\) 9895.39 0.458649
\(776\) −329.989 −0.0152654
\(777\) 0 0
\(778\) −1287.86 −0.0593470
\(779\) −61144.7 −2.81224
\(780\) 0 0
\(781\) 2473.93 0.113347
\(782\) 34236.3 1.56559
\(783\) 0 0
\(784\) 3548.11 0.161630
\(785\) 23740.5 1.07941
\(786\) 0 0
\(787\) −18156.3 −0.822366 −0.411183 0.911553i \(-0.634884\pi\)
−0.411183 + 0.911553i \(0.634884\pi\)
\(788\) 41425.9 1.87276
\(789\) 0 0
\(790\) 7492.59 0.337436
\(791\) 8020.23 0.360514
\(792\) 0 0
\(793\) 19478.3 0.872251
\(794\) −25743.6 −1.15064
\(795\) 0 0
\(796\) −24302.0 −1.08211
\(797\) −16596.1 −0.737598 −0.368799 0.929509i \(-0.620231\pi\)
−0.368799 + 0.929509i \(0.620231\pi\)
\(798\) 0 0
\(799\) −11480.2 −0.508311
\(800\) −2598.89 −0.114856
\(801\) 0 0
\(802\) −47288.5 −2.08207
\(803\) −11570.2 −0.508474
\(804\) 0 0
\(805\) −15855.0 −0.694179
\(806\) 16914.2 0.739177
\(807\) 0 0
\(808\) −15234.4 −0.663296
\(809\) −30953.6 −1.34520 −0.672602 0.740005i \(-0.734823\pi\)
−0.672602 + 0.740005i \(0.734823\pi\)
\(810\) 0 0
\(811\) −12176.8 −0.527232 −0.263616 0.964628i \(-0.584915\pi\)
−0.263616 + 0.964628i \(0.584915\pi\)
\(812\) −9004.39 −0.389153
\(813\) 0 0
\(814\) 5106.25 0.219870
\(815\) 21265.9 0.914002
\(816\) 0 0
\(817\) −8851.05 −0.379020
\(818\) −43561.9 −1.86199
\(819\) 0 0
\(820\) 100762. 4.29116
\(821\) −44485.3 −1.89105 −0.945523 0.325556i \(-0.894449\pi\)
−0.945523 + 0.325556i \(0.894449\pi\)
\(822\) 0 0
\(823\) −21772.2 −0.922151 −0.461075 0.887361i \(-0.652536\pi\)
−0.461075 + 0.887361i \(0.652536\pi\)
\(824\) −55609.5 −2.35103
\(825\) 0 0
\(826\) 19320.6 0.813861
\(827\) −33239.7 −1.39765 −0.698826 0.715292i \(-0.746294\pi\)
−0.698826 + 0.715292i \(0.746294\pi\)
\(828\) 0 0
\(829\) 33230.5 1.39221 0.696105 0.717940i \(-0.254915\pi\)
0.696105 + 0.717940i \(0.254915\pi\)
\(830\) −53278.7 −2.22811
\(831\) 0 0
\(832\) 14276.9 0.594907
\(833\) −2217.76 −0.0922457
\(834\) 0 0
\(835\) −27710.5 −1.14846
\(836\) 26348.6 1.09005
\(837\) 0 0
\(838\) 41447.1 1.70855
\(839\) −25659.1 −1.05584 −0.527919 0.849294i \(-0.677028\pi\)
−0.527919 + 0.849294i \(0.677028\pi\)
\(840\) 0 0
\(841\) −18195.8 −0.746064
\(842\) −7299.32 −0.298754
\(843\) 0 0
\(844\) 72670.7 2.96378
\(845\) −17031.5 −0.693373
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −46872.1 −1.89811
\(849\) 0 0
\(850\) 20831.2 0.840594
\(851\) 14423.2 0.580987
\(852\) 0 0
\(853\) 44687.0 1.79373 0.896866 0.442303i \(-0.145838\pi\)
0.896866 + 0.442303i \(0.145838\pi\)
\(854\) −20819.1 −0.834209
\(855\) 0 0
\(856\) −65490.6 −2.61498
\(857\) −14194.9 −0.565798 −0.282899 0.959150i \(-0.591296\pi\)
−0.282899 + 0.959150i \(0.591296\pi\)
\(858\) 0 0
\(859\) −1277.85 −0.0507561 −0.0253781 0.999678i \(-0.508079\pi\)
−0.0253781 + 0.999678i \(0.508079\pi\)
\(860\) 14585.8 0.578340
\(861\) 0 0
\(862\) −28938.3 −1.14344
\(863\) 46845.2 1.84778 0.923888 0.382664i \(-0.124993\pi\)
0.923888 + 0.382664i \(0.124993\pi\)
\(864\) 0 0
\(865\) 8519.81 0.334893
\(866\) 20658.8 0.810639
\(867\) 0 0
\(868\) −12137.8 −0.474636
\(869\) 1130.60 0.0441346
\(870\) 0 0
\(871\) −11115.1 −0.432400
\(872\) −91837.6 −3.56653
\(873\) 0 0
\(874\) 110850. 4.29012
\(875\) 3280.50 0.126744
\(876\) 0 0
\(877\) 16116.7 0.620551 0.310275 0.950647i \(-0.399579\pi\)
0.310275 + 0.950647i \(0.399579\pi\)
\(878\) −23411.1 −0.899872
\(879\) 0 0
\(880\) −11767.9 −0.450792
\(881\) −12707.2 −0.485944 −0.242972 0.970033i \(-0.578122\pi\)
−0.242972 + 0.970033i \(0.578122\pi\)
\(882\) 0 0
\(883\) −7591.93 −0.289342 −0.144671 0.989480i \(-0.546212\pi\)
−0.144671 + 0.989480i \(0.546212\pi\)
\(884\) 23906.3 0.909564
\(885\) 0 0
\(886\) −32866.8 −1.24626
\(887\) −7953.37 −0.301069 −0.150534 0.988605i \(-0.548099\pi\)
−0.150534 + 0.988605i \(0.548099\pi\)
\(888\) 0 0
\(889\) −6417.60 −0.242114
\(890\) 3192.22 0.120229
\(891\) 0 0
\(892\) 82562.7 3.09911
\(893\) −37170.6 −1.39291
\(894\) 0 0
\(895\) −20175.5 −0.753512
\(896\) −16819.9 −0.627135
\(897\) 0 0
\(898\) 89240.8 3.31626
\(899\) 8348.42 0.309717
\(900\) 0 0
\(901\) 29297.6 1.08329
\(902\) 22646.1 0.835955
\(903\) 0 0
\(904\) 47178.9 1.73578
\(905\) −20822.2 −0.764811
\(906\) 0 0
\(907\) −2325.47 −0.0851335 −0.0425668 0.999094i \(-0.513554\pi\)
−0.0425668 + 0.999094i \(0.513554\pi\)
\(908\) 11345.6 0.414666
\(909\) 0 0
\(910\) −16489.6 −0.600687
\(911\) −12179.3 −0.442939 −0.221469 0.975167i \(-0.571085\pi\)
−0.221469 + 0.975167i \(0.571085\pi\)
\(912\) 0 0
\(913\) −8039.53 −0.291424
\(914\) −1991.31 −0.0720643
\(915\) 0 0
\(916\) 29283.1 1.05627
\(917\) 3419.42 0.123140
\(918\) 0 0
\(919\) −13972.9 −0.501550 −0.250775 0.968045i \(-0.580685\pi\)
−0.250775 + 0.968045i \(0.580685\pi\)
\(920\) −93266.7 −3.34229
\(921\) 0 0
\(922\) −63319.4 −2.26173
\(923\) 7267.61 0.259173
\(924\) 0 0
\(925\) 8775.83 0.311943
\(926\) 33207.6 1.17848
\(927\) 0 0
\(928\) −2192.60 −0.0775599
\(929\) −11612.8 −0.410123 −0.205062 0.978749i \(-0.565739\pi\)
−0.205062 + 0.978749i \(0.565739\pi\)
\(930\) 0 0
\(931\) −7180.65 −0.252778
\(932\) 68105.9 2.39365
\(933\) 0 0
\(934\) −58161.9 −2.03760
\(935\) 7355.59 0.257276
\(936\) 0 0
\(937\) −5811.23 −0.202609 −0.101305 0.994855i \(-0.532302\pi\)
−0.101305 + 0.994855i \(0.532302\pi\)
\(938\) 11880.2 0.413542
\(939\) 0 0
\(940\) 61254.2 2.12542
\(941\) 35047.0 1.21413 0.607067 0.794651i \(-0.292346\pi\)
0.607067 + 0.794651i \(0.292346\pi\)
\(942\) 0 0
\(943\) 63966.4 2.20894
\(944\) 40505.5 1.39655
\(945\) 0 0
\(946\) 3278.15 0.112666
\(947\) −24845.3 −0.852550 −0.426275 0.904594i \(-0.640174\pi\)
−0.426275 + 0.904594i \(0.640174\pi\)
\(948\) 0 0
\(949\) −33989.6 −1.16264
\(950\) 67447.3 2.30345
\(951\) 0 0
\(952\) −13045.9 −0.444140
\(953\) 26556.9 0.902688 0.451344 0.892350i \(-0.350945\pi\)
0.451344 + 0.892350i \(0.350945\pi\)
\(954\) 0 0
\(955\) 76988.0 2.60866
\(956\) −110977. −3.75444
\(957\) 0 0
\(958\) 40657.2 1.37116
\(959\) 3037.18 0.102269
\(960\) 0 0
\(961\) −18537.4 −0.622249
\(962\) 15000.5 0.502740
\(963\) 0 0
\(964\) −117203. −3.91582
\(965\) −62587.3 −2.08783
\(966\) 0 0
\(967\) −10813.2 −0.359596 −0.179798 0.983704i \(-0.557544\pi\)
−0.179798 + 0.983704i \(0.557544\pi\)
\(968\) −4982.47 −0.165437
\(969\) 0 0
\(970\) −584.193 −0.0193374
\(971\) 44816.6 1.48119 0.740595 0.671952i \(-0.234544\pi\)
0.740595 + 0.671952i \(0.234544\pi\)
\(972\) 0 0
\(973\) 4604.87 0.151722
\(974\) −72587.3 −2.38793
\(975\) 0 0
\(976\) −43647.1 −1.43146
\(977\) 23952.8 0.784359 0.392180 0.919889i \(-0.371721\pi\)
0.392180 + 0.919889i \(0.371721\pi\)
\(978\) 0 0
\(979\) 481.693 0.0157252
\(980\) 11833.1 0.385710
\(981\) 0 0
\(982\) −88278.1 −2.86870
\(983\) 35723.9 1.15912 0.579560 0.814930i \(-0.303224\pi\)
0.579560 + 0.814930i \(0.303224\pi\)
\(984\) 0 0
\(985\) 37444.0 1.21123
\(986\) 17574.6 0.567637
\(987\) 0 0
\(988\) 77403.6 2.49245
\(989\) 9259.51 0.297710
\(990\) 0 0
\(991\) 23977.0 0.768572 0.384286 0.923214i \(-0.374448\pi\)
0.384286 + 0.923214i \(0.374448\pi\)
\(992\) −2955.60 −0.0945971
\(993\) 0 0
\(994\) −7767.87 −0.247869
\(995\) −21966.1 −0.699871
\(996\) 0 0
\(997\) −43975.2 −1.39690 −0.698450 0.715659i \(-0.746126\pi\)
−0.698450 + 0.715659i \(0.746126\pi\)
\(998\) 32647.8 1.03552
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.t.1.1 yes 8
3.2 odd 2 693.4.a.s.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.8 8 3.2 odd 2
693.4.a.t.1.1 yes 8 1.1 even 1 trivial