Properties

Label 693.4.a.s.1.4
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.22364\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.22364 q^{2} -6.50270 q^{4} +11.7152 q^{5} -7.00000 q^{7} +17.7461 q^{8} +O(q^{10})\) \(q-1.22364 q^{2} -6.50270 q^{4} +11.7152 q^{5} -7.00000 q^{7} +17.7461 q^{8} -14.3353 q^{10} +11.0000 q^{11} -25.5594 q^{13} +8.56550 q^{14} +30.3067 q^{16} -16.3295 q^{17} -126.020 q^{19} -76.1807 q^{20} -13.4601 q^{22} +94.6529 q^{23} +12.2469 q^{25} +31.2756 q^{26} +45.5189 q^{28} +160.092 q^{29} -12.1160 q^{31} -179.054 q^{32} +19.9815 q^{34} -82.0067 q^{35} +436.954 q^{37} +154.204 q^{38} +207.900 q^{40} -264.689 q^{41} -171.820 q^{43} -71.5297 q^{44} -115.821 q^{46} -535.747 q^{47} +49.0000 q^{49} -14.9859 q^{50} +166.205 q^{52} +514.087 q^{53} +128.868 q^{55} -124.223 q^{56} -195.895 q^{58} -607.038 q^{59} +47.8997 q^{61} +14.8256 q^{62} -23.3557 q^{64} -299.435 q^{65} +1054.56 q^{67} +106.186 q^{68} +100.347 q^{70} -783.445 q^{71} -1103.40 q^{73} -534.676 q^{74} +819.473 q^{76} -77.0000 q^{77} -194.840 q^{79} +355.050 q^{80} +323.885 q^{82} -489.127 q^{83} -191.305 q^{85} +210.247 q^{86} +195.207 q^{88} -466.942 q^{89} +178.916 q^{91} -615.499 q^{92} +655.563 q^{94} -1476.36 q^{95} -429.704 q^{97} -59.9585 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 30 q^{4} - 10 q^{5} - 56 q^{7} - 15 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 30 q^{4} - 10 q^{5} - 56 q^{7} - 15 q^{8} - 13 q^{10} + 88 q^{11} - 148 q^{13} + 14 q^{14} + 266 q^{16} - 114 q^{17} + 58 q^{19} - 291 q^{20} - 22 q^{22} - 246 q^{23} + 244 q^{25} - 305 q^{26} - 210 q^{28} + 72 q^{29} + 252 q^{31} - 1272 q^{32} + 630 q^{34} + 70 q^{35} - 80 q^{37} - 1885 q^{38} - 342 q^{40} - 682 q^{41} - 106 q^{43} + 330 q^{44} + 120 q^{46} - 828 q^{47} + 392 q^{49} - 801 q^{50} - 1681 q^{52} - 462 q^{53} - 110 q^{55} + 105 q^{56} - 1087 q^{58} - 626 q^{59} - 854 q^{61} - 1350 q^{62} + 2997 q^{64} - 22 q^{65} + 130 q^{67} - 2202 q^{68} + 91 q^{70} - 326 q^{71} - 390 q^{73} + 359 q^{74} + 2041 q^{76} - 616 q^{77} - 508 q^{79} - 4391 q^{80} + 1528 q^{82} - 1596 q^{83} - 880 q^{85} + 414 q^{86} - 165 q^{88} - 4324 q^{89} + 1036 q^{91} - 2092 q^{92} - 1685 q^{94} - 1076 q^{95} - 964 q^{97} - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22364 −0.432623 −0.216312 0.976324i \(-0.569403\pi\)
−0.216312 + 0.976324i \(0.569403\pi\)
\(3\) 0 0
\(4\) −6.50270 −0.812837
\(5\) 11.7152 1.04784 0.523922 0.851766i \(-0.324468\pi\)
0.523922 + 0.851766i \(0.324468\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 17.7461 0.784275
\(9\) 0 0
\(10\) −14.3353 −0.453321
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −25.5594 −0.545301 −0.272650 0.962113i \(-0.587900\pi\)
−0.272650 + 0.962113i \(0.587900\pi\)
\(14\) 8.56550 0.163516
\(15\) 0 0
\(16\) 30.3067 0.473542
\(17\) −16.3295 −0.232970 −0.116485 0.993192i \(-0.537163\pi\)
−0.116485 + 0.993192i \(0.537163\pi\)
\(18\) 0 0
\(19\) −126.020 −1.52164 −0.760818 0.648965i \(-0.775202\pi\)
−0.760818 + 0.648965i \(0.775202\pi\)
\(20\) −76.1807 −0.851726
\(21\) 0 0
\(22\) −13.4601 −0.130441
\(23\) 94.6529 0.858108 0.429054 0.903279i \(-0.358847\pi\)
0.429054 + 0.903279i \(0.358847\pi\)
\(24\) 0 0
\(25\) 12.2469 0.0979756
\(26\) 31.2756 0.235910
\(27\) 0 0
\(28\) 45.5189 0.307224
\(29\) 160.092 1.02511 0.512557 0.858653i \(-0.328698\pi\)
0.512557 + 0.858653i \(0.328698\pi\)
\(30\) 0 0
\(31\) −12.1160 −0.0701966 −0.0350983 0.999384i \(-0.511174\pi\)
−0.0350983 + 0.999384i \(0.511174\pi\)
\(32\) −179.054 −0.989140
\(33\) 0 0
\(34\) 19.9815 0.100788
\(35\) −82.0067 −0.396048
\(36\) 0 0
\(37\) 436.954 1.94148 0.970742 0.240127i \(-0.0771890\pi\)
0.970742 + 0.240127i \(0.0771890\pi\)
\(38\) 154.204 0.658295
\(39\) 0 0
\(40\) 207.900 0.821798
\(41\) −264.689 −1.00823 −0.504116 0.863636i \(-0.668182\pi\)
−0.504116 + 0.863636i \(0.668182\pi\)
\(42\) 0 0
\(43\) −171.820 −0.609357 −0.304679 0.952455i \(-0.598549\pi\)
−0.304679 + 0.952455i \(0.598549\pi\)
\(44\) −71.5297 −0.245080
\(45\) 0 0
\(46\) −115.821 −0.371237
\(47\) −535.747 −1.66270 −0.831348 0.555752i \(-0.812431\pi\)
−0.831348 + 0.555752i \(0.812431\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −14.9859 −0.0423865
\(51\) 0 0
\(52\) 166.205 0.443241
\(53\) 514.087 1.33236 0.666182 0.745789i \(-0.267927\pi\)
0.666182 + 0.745789i \(0.267927\pi\)
\(54\) 0 0
\(55\) 128.868 0.315937
\(56\) −124.223 −0.296428
\(57\) 0 0
\(58\) −195.895 −0.443488
\(59\) −607.038 −1.33948 −0.669742 0.742594i \(-0.733595\pi\)
−0.669742 + 0.742594i \(0.733595\pi\)
\(60\) 0 0
\(61\) 47.8997 0.100540 0.0502699 0.998736i \(-0.483992\pi\)
0.0502699 + 0.998736i \(0.483992\pi\)
\(62\) 14.8256 0.0303687
\(63\) 0 0
\(64\) −23.3557 −0.0456167
\(65\) −299.435 −0.571390
\(66\) 0 0
\(67\) 1054.56 1.92291 0.961456 0.274958i \(-0.0886640\pi\)
0.961456 + 0.274958i \(0.0886640\pi\)
\(68\) 106.186 0.189367
\(69\) 0 0
\(70\) 100.347 0.171339
\(71\) −783.445 −1.30955 −0.654774 0.755825i \(-0.727236\pi\)
−0.654774 + 0.755825i \(0.727236\pi\)
\(72\) 0 0
\(73\) −1103.40 −1.76908 −0.884541 0.466462i \(-0.845529\pi\)
−0.884541 + 0.466462i \(0.845529\pi\)
\(74\) −534.676 −0.839930
\(75\) 0 0
\(76\) 819.473 1.23684
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −194.840 −0.277483 −0.138742 0.990329i \(-0.544306\pi\)
−0.138742 + 0.990329i \(0.544306\pi\)
\(80\) 355.050 0.496197
\(81\) 0 0
\(82\) 323.885 0.436185
\(83\) −489.127 −0.646851 −0.323425 0.946254i \(-0.604834\pi\)
−0.323425 + 0.946254i \(0.604834\pi\)
\(84\) 0 0
\(85\) −191.305 −0.244116
\(86\) 210.247 0.263622
\(87\) 0 0
\(88\) 195.207 0.236468
\(89\) −466.942 −0.556131 −0.278066 0.960562i \(-0.589693\pi\)
−0.278066 + 0.960562i \(0.589693\pi\)
\(90\) 0 0
\(91\) 178.916 0.206104
\(92\) −615.499 −0.697502
\(93\) 0 0
\(94\) 655.563 0.719321
\(95\) −1476.36 −1.59444
\(96\) 0 0
\(97\) −429.704 −0.449793 −0.224896 0.974383i \(-0.572204\pi\)
−0.224896 + 0.974383i \(0.572204\pi\)
\(98\) −59.9585 −0.0618033
\(99\) 0 0
\(100\) −79.6382 −0.0796382
\(101\) −163.645 −0.161221 −0.0806104 0.996746i \(-0.525687\pi\)
−0.0806104 + 0.996746i \(0.525687\pi\)
\(102\) 0 0
\(103\) −1695.99 −1.62244 −0.811220 0.584741i \(-0.801196\pi\)
−0.811220 + 0.584741i \(0.801196\pi\)
\(104\) −453.581 −0.427666
\(105\) 0 0
\(106\) −629.059 −0.576411
\(107\) 482.153 0.435622 0.217811 0.975991i \(-0.430108\pi\)
0.217811 + 0.975991i \(0.430108\pi\)
\(108\) 0 0
\(109\) −1387.58 −1.21932 −0.609660 0.792663i \(-0.708694\pi\)
−0.609660 + 0.792663i \(0.708694\pi\)
\(110\) −157.688 −0.136681
\(111\) 0 0
\(112\) −212.147 −0.178982
\(113\) −1881.83 −1.56662 −0.783309 0.621632i \(-0.786470\pi\)
−0.783309 + 0.621632i \(0.786470\pi\)
\(114\) 0 0
\(115\) 1108.88 0.899163
\(116\) −1041.03 −0.833250
\(117\) 0 0
\(118\) 742.797 0.579492
\(119\) 114.307 0.0880545
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −58.6121 −0.0434958
\(123\) 0 0
\(124\) 78.7866 0.0570584
\(125\) −1320.93 −0.945180
\(126\) 0 0
\(127\) −2591.48 −1.81068 −0.905342 0.424684i \(-0.860385\pi\)
−0.905342 + 0.424684i \(0.860385\pi\)
\(128\) 1461.01 1.00888
\(129\) 0 0
\(130\) 366.401 0.247196
\(131\) 2833.91 1.89008 0.945039 0.326958i \(-0.106023\pi\)
0.945039 + 0.326958i \(0.106023\pi\)
\(132\) 0 0
\(133\) 882.143 0.575124
\(134\) −1290.41 −0.831896
\(135\) 0 0
\(136\) −289.786 −0.182713
\(137\) 2480.55 1.54692 0.773458 0.633847i \(-0.218525\pi\)
0.773458 + 0.633847i \(0.218525\pi\)
\(138\) 0 0
\(139\) 1471.83 0.898119 0.449060 0.893502i \(-0.351759\pi\)
0.449060 + 0.893502i \(0.351759\pi\)
\(140\) 533.265 0.321922
\(141\) 0 0
\(142\) 958.657 0.566540
\(143\) −281.154 −0.164414
\(144\) 0 0
\(145\) 1875.51 1.07416
\(146\) 1350.17 0.765346
\(147\) 0 0
\(148\) −2841.38 −1.57811
\(149\) −2925.89 −1.60871 −0.804356 0.594148i \(-0.797489\pi\)
−0.804356 + 0.594148i \(0.797489\pi\)
\(150\) 0 0
\(151\) −1713.98 −0.923721 −0.461860 0.886953i \(-0.652818\pi\)
−0.461860 + 0.886953i \(0.652818\pi\)
\(152\) −2236.38 −1.19338
\(153\) 0 0
\(154\) 94.2205 0.0493020
\(155\) −141.942 −0.0735550
\(156\) 0 0
\(157\) −1419.24 −0.721448 −0.360724 0.932673i \(-0.617470\pi\)
−0.360724 + 0.932673i \(0.617470\pi\)
\(158\) 238.414 0.120046
\(159\) 0 0
\(160\) −2097.66 −1.03646
\(161\) −662.570 −0.324334
\(162\) 0 0
\(163\) −256.658 −0.123331 −0.0616656 0.998097i \(-0.519641\pi\)
−0.0616656 + 0.998097i \(0.519641\pi\)
\(164\) 1721.19 0.819529
\(165\) 0 0
\(166\) 598.516 0.279843
\(167\) −2122.63 −0.983555 −0.491778 0.870721i \(-0.663653\pi\)
−0.491778 + 0.870721i \(0.663653\pi\)
\(168\) 0 0
\(169\) −1543.72 −0.702647
\(170\) 234.089 0.105610
\(171\) 0 0
\(172\) 1117.30 0.495308
\(173\) −3533.40 −1.55283 −0.776414 0.630223i \(-0.782964\pi\)
−0.776414 + 0.630223i \(0.782964\pi\)
\(174\) 0 0
\(175\) −85.7286 −0.0370313
\(176\) 333.373 0.142778
\(177\) 0 0
\(178\) 571.370 0.240595
\(179\) −2331.73 −0.973642 −0.486821 0.873502i \(-0.661844\pi\)
−0.486821 + 0.873502i \(0.661844\pi\)
\(180\) 0 0
\(181\) 1102.06 0.452574 0.226287 0.974061i \(-0.427341\pi\)
0.226287 + 0.974061i \(0.427341\pi\)
\(182\) −218.929 −0.0891655
\(183\) 0 0
\(184\) 1679.72 0.672993
\(185\) 5119.03 2.03437
\(186\) 0 0
\(187\) −179.625 −0.0702432
\(188\) 3483.80 1.35150
\(189\) 0 0
\(190\) 1806.54 0.689790
\(191\) 2221.20 0.841468 0.420734 0.907184i \(-0.361773\pi\)
0.420734 + 0.907184i \(0.361773\pi\)
\(192\) 0 0
\(193\) 3176.73 1.18480 0.592399 0.805645i \(-0.298181\pi\)
0.592399 + 0.805645i \(0.298181\pi\)
\(194\) 525.805 0.194591
\(195\) 0 0
\(196\) −318.632 −0.116120
\(197\) −728.736 −0.263555 −0.131777 0.991279i \(-0.542068\pi\)
−0.131777 + 0.991279i \(0.542068\pi\)
\(198\) 0 0
\(199\) −3316.74 −1.18149 −0.590747 0.806857i \(-0.701167\pi\)
−0.590747 + 0.806857i \(0.701167\pi\)
\(200\) 217.336 0.0768398
\(201\) 0 0
\(202\) 200.243 0.0697478
\(203\) −1120.64 −0.387456
\(204\) 0 0
\(205\) −3100.90 −1.05647
\(206\) 2075.29 0.701905
\(207\) 0 0
\(208\) −774.621 −0.258223
\(209\) −1386.23 −0.458790
\(210\) 0 0
\(211\) 1005.81 0.328165 0.164083 0.986447i \(-0.447534\pi\)
0.164083 + 0.986447i \(0.447534\pi\)
\(212\) −3342.95 −1.08299
\(213\) 0 0
\(214\) −589.984 −0.188460
\(215\) −2012.92 −0.638511
\(216\) 0 0
\(217\) 84.8119 0.0265318
\(218\) 1697.90 0.527506
\(219\) 0 0
\(220\) −837.988 −0.256805
\(221\) 417.374 0.127039
\(222\) 0 0
\(223\) 4528.06 1.35974 0.679869 0.733334i \(-0.262037\pi\)
0.679869 + 0.733334i \(0.262037\pi\)
\(224\) 1253.37 0.373860
\(225\) 0 0
\(226\) 2302.69 0.677755
\(227\) 2221.82 0.649635 0.324818 0.945777i \(-0.394697\pi\)
0.324818 + 0.945777i \(0.394697\pi\)
\(228\) 0 0
\(229\) 2923.23 0.843548 0.421774 0.906701i \(-0.361408\pi\)
0.421774 + 0.906701i \(0.361408\pi\)
\(230\) −1356.88 −0.388999
\(231\) 0 0
\(232\) 2841.01 0.803971
\(233\) 3905.86 1.09820 0.549102 0.835755i \(-0.314970\pi\)
0.549102 + 0.835755i \(0.314970\pi\)
\(234\) 0 0
\(235\) −6276.41 −1.74225
\(236\) 3947.38 1.08878
\(237\) 0 0
\(238\) −139.871 −0.0380944
\(239\) −1684.06 −0.455785 −0.227893 0.973686i \(-0.573184\pi\)
−0.227893 + 0.973686i \(0.573184\pi\)
\(240\) 0 0
\(241\) 2753.98 0.736096 0.368048 0.929807i \(-0.380026\pi\)
0.368048 + 0.929807i \(0.380026\pi\)
\(242\) −148.061 −0.0393294
\(243\) 0 0
\(244\) −311.477 −0.0817225
\(245\) 574.047 0.149692
\(246\) 0 0
\(247\) 3221.01 0.829749
\(248\) −215.012 −0.0550534
\(249\) 0 0
\(250\) 1616.35 0.408907
\(251\) −5315.23 −1.33663 −0.668316 0.743878i \(-0.732984\pi\)
−0.668316 + 0.743878i \(0.732984\pi\)
\(252\) 0 0
\(253\) 1041.18 0.258729
\(254\) 3171.05 0.783343
\(255\) 0 0
\(256\) −1600.91 −0.390846
\(257\) −2536.26 −0.615594 −0.307797 0.951452i \(-0.599592\pi\)
−0.307797 + 0.951452i \(0.599592\pi\)
\(258\) 0 0
\(259\) −3058.68 −0.733812
\(260\) 1947.13 0.464447
\(261\) 0 0
\(262\) −3467.70 −0.817691
\(263\) −1555.04 −0.364593 −0.182297 0.983244i \(-0.558353\pi\)
−0.182297 + 0.983244i \(0.558353\pi\)
\(264\) 0 0
\(265\) 6022.65 1.39611
\(266\) −1079.43 −0.248812
\(267\) 0 0
\(268\) −6857.49 −1.56301
\(269\) 848.803 0.192388 0.0961941 0.995363i \(-0.469333\pi\)
0.0961941 + 0.995363i \(0.469333\pi\)
\(270\) 0 0
\(271\) −3319.30 −0.744034 −0.372017 0.928226i \(-0.621334\pi\)
−0.372017 + 0.928226i \(0.621334\pi\)
\(272\) −494.894 −0.110321
\(273\) 0 0
\(274\) −3035.31 −0.669232
\(275\) 134.716 0.0295407
\(276\) 0 0
\(277\) 1783.43 0.386843 0.193422 0.981116i \(-0.438041\pi\)
0.193422 + 0.981116i \(0.438041\pi\)
\(278\) −1800.99 −0.388547
\(279\) 0 0
\(280\) −1455.30 −0.310610
\(281\) 72.4269 0.0153759 0.00768795 0.999970i \(-0.497553\pi\)
0.00768795 + 0.999970i \(0.497553\pi\)
\(282\) 0 0
\(283\) 7993.56 1.67904 0.839519 0.543330i \(-0.182837\pi\)
0.839519 + 0.543330i \(0.182837\pi\)
\(284\) 5094.51 1.06445
\(285\) 0 0
\(286\) 344.032 0.0711294
\(287\) 1852.82 0.381076
\(288\) 0 0
\(289\) −4646.35 −0.945725
\(290\) −2294.96 −0.464706
\(291\) 0 0
\(292\) 7175.07 1.43798
\(293\) −1165.36 −0.232358 −0.116179 0.993228i \(-0.537065\pi\)
−0.116179 + 0.993228i \(0.537065\pi\)
\(294\) 0 0
\(295\) −7111.59 −1.40357
\(296\) 7754.25 1.52266
\(297\) 0 0
\(298\) 3580.24 0.695966
\(299\) −2419.27 −0.467927
\(300\) 0 0
\(301\) 1202.74 0.230315
\(302\) 2097.30 0.399623
\(303\) 0 0
\(304\) −3819.26 −0.720558
\(305\) 561.157 0.105350
\(306\) 0 0
\(307\) −459.180 −0.0853640 −0.0426820 0.999089i \(-0.513590\pi\)
−0.0426820 + 0.999089i \(0.513590\pi\)
\(308\) 500.708 0.0926314
\(309\) 0 0
\(310\) 173.686 0.0318216
\(311\) 3247.07 0.592040 0.296020 0.955182i \(-0.404340\pi\)
0.296020 + 0.955182i \(0.404340\pi\)
\(312\) 0 0
\(313\) −3263.89 −0.589412 −0.294706 0.955588i \(-0.595222\pi\)
−0.294706 + 0.955588i \(0.595222\pi\)
\(314\) 1736.64 0.312115
\(315\) 0 0
\(316\) 1266.98 0.225549
\(317\) 6820.40 1.20843 0.604214 0.796822i \(-0.293487\pi\)
0.604214 + 0.796822i \(0.293487\pi\)
\(318\) 0 0
\(319\) 1761.01 0.309083
\(320\) −273.618 −0.0477991
\(321\) 0 0
\(322\) 810.749 0.140315
\(323\) 2057.86 0.354496
\(324\) 0 0
\(325\) −313.025 −0.0534261
\(326\) 314.057 0.0533559
\(327\) 0 0
\(328\) −4697.21 −0.790732
\(329\) 3750.23 0.628440
\(330\) 0 0
\(331\) 25.5296 0.00423938 0.00211969 0.999998i \(-0.499325\pi\)
0.00211969 + 0.999998i \(0.499325\pi\)
\(332\) 3180.64 0.525784
\(333\) 0 0
\(334\) 2597.34 0.425509
\(335\) 12354.4 2.01491
\(336\) 0 0
\(337\) 847.626 0.137012 0.0685061 0.997651i \(-0.478177\pi\)
0.0685061 + 0.997651i \(0.478177\pi\)
\(338\) 1888.96 0.303981
\(339\) 0 0
\(340\) 1244.00 0.198427
\(341\) −133.276 −0.0211651
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −3049.15 −0.477904
\(345\) 0 0
\(346\) 4323.62 0.671790
\(347\) 5389.78 0.833828 0.416914 0.908946i \(-0.363112\pi\)
0.416914 + 0.908946i \(0.363112\pi\)
\(348\) 0 0
\(349\) 5693.81 0.873302 0.436651 0.899631i \(-0.356164\pi\)
0.436651 + 0.899631i \(0.356164\pi\)
\(350\) 104.901 0.0160206
\(351\) 0 0
\(352\) −1969.59 −0.298237
\(353\) 5227.14 0.788138 0.394069 0.919081i \(-0.371067\pi\)
0.394069 + 0.919081i \(0.371067\pi\)
\(354\) 0 0
\(355\) −9178.25 −1.37220
\(356\) 3036.38 0.452044
\(357\) 0 0
\(358\) 2853.21 0.421220
\(359\) −3789.54 −0.557115 −0.278557 0.960420i \(-0.589856\pi\)
−0.278557 + 0.960420i \(0.589856\pi\)
\(360\) 0 0
\(361\) 9022.16 1.31538
\(362\) −1348.53 −0.195794
\(363\) 0 0
\(364\) −1163.44 −0.167529
\(365\) −12926.6 −1.85372
\(366\) 0 0
\(367\) 1680.96 0.239089 0.119544 0.992829i \(-0.461857\pi\)
0.119544 + 0.992829i \(0.461857\pi\)
\(368\) 2868.61 0.406350
\(369\) 0 0
\(370\) −6263.86 −0.880116
\(371\) −3598.61 −0.503586
\(372\) 0 0
\(373\) −9682.93 −1.34414 −0.672068 0.740489i \(-0.734594\pi\)
−0.672068 + 0.740489i \(0.734594\pi\)
\(374\) 219.797 0.0303888
\(375\) 0 0
\(376\) −9507.43 −1.30401
\(377\) −4091.85 −0.558995
\(378\) 0 0
\(379\) 10765.6 1.45908 0.729539 0.683939i \(-0.239735\pi\)
0.729539 + 0.683939i \(0.239735\pi\)
\(380\) 9600.33 1.29602
\(381\) 0 0
\(382\) −2717.95 −0.364038
\(383\) −4404.20 −0.587582 −0.293791 0.955870i \(-0.594917\pi\)
−0.293791 + 0.955870i \(0.594917\pi\)
\(384\) 0 0
\(385\) −902.074 −0.119413
\(386\) −3887.18 −0.512571
\(387\) 0 0
\(388\) 2794.24 0.365608
\(389\) 13109.8 1.70872 0.854359 0.519684i \(-0.173950\pi\)
0.854359 + 0.519684i \(0.173950\pi\)
\(390\) 0 0
\(391\) −1545.64 −0.199914
\(392\) 869.560 0.112039
\(393\) 0 0
\(394\) 891.712 0.114020
\(395\) −2282.59 −0.290759
\(396\) 0 0
\(397\) 9725.94 1.22955 0.614775 0.788703i \(-0.289247\pi\)
0.614775 + 0.788703i \(0.289247\pi\)
\(398\) 4058.50 0.511141
\(399\) 0 0
\(400\) 371.164 0.0463955
\(401\) −171.626 −0.0213731 −0.0106865 0.999943i \(-0.503402\pi\)
−0.0106865 + 0.999943i \(0.503402\pi\)
\(402\) 0 0
\(403\) 309.677 0.0382782
\(404\) 1064.13 0.131046
\(405\) 0 0
\(406\) 1371.27 0.167623
\(407\) 4806.50 0.585379
\(408\) 0 0
\(409\) 6111.86 0.738905 0.369453 0.929250i \(-0.379545\pi\)
0.369453 + 0.929250i \(0.379545\pi\)
\(410\) 3794.39 0.457053
\(411\) 0 0
\(412\) 11028.5 1.31878
\(413\) 4249.26 0.506277
\(414\) 0 0
\(415\) −5730.24 −0.677798
\(416\) 4576.50 0.539379
\(417\) 0 0
\(418\) 1696.24 0.198483
\(419\) −1032.33 −0.120365 −0.0601824 0.998187i \(-0.519168\pi\)
−0.0601824 + 0.998187i \(0.519168\pi\)
\(420\) 0 0
\(421\) 11648.9 1.34853 0.674266 0.738489i \(-0.264460\pi\)
0.674266 + 0.738489i \(0.264460\pi\)
\(422\) −1230.75 −0.141972
\(423\) 0 0
\(424\) 9123.05 1.04494
\(425\) −199.987 −0.0228254
\(426\) 0 0
\(427\) −335.298 −0.0380005
\(428\) −3135.30 −0.354090
\(429\) 0 0
\(430\) 2463.09 0.276235
\(431\) 3012.71 0.336699 0.168349 0.985727i \(-0.446156\pi\)
0.168349 + 0.985727i \(0.446156\pi\)
\(432\) 0 0
\(433\) −2094.06 −0.232411 −0.116206 0.993225i \(-0.537073\pi\)
−0.116206 + 0.993225i \(0.537073\pi\)
\(434\) −103.779 −0.0114783
\(435\) 0 0
\(436\) 9023.00 0.991109
\(437\) −11928.2 −1.30573
\(438\) 0 0
\(439\) −8438.17 −0.917385 −0.458692 0.888595i \(-0.651682\pi\)
−0.458692 + 0.888595i \(0.651682\pi\)
\(440\) 2286.90 0.247781
\(441\) 0 0
\(442\) −510.716 −0.0549600
\(443\) −1796.37 −0.192660 −0.0963298 0.995349i \(-0.530710\pi\)
−0.0963298 + 0.995349i \(0.530710\pi\)
\(444\) 0 0
\(445\) −5470.33 −0.582739
\(446\) −5540.73 −0.588254
\(447\) 0 0
\(448\) 163.490 0.0172415
\(449\) 6300.70 0.662245 0.331123 0.943588i \(-0.392573\pi\)
0.331123 + 0.943588i \(0.392573\pi\)
\(450\) 0 0
\(451\) −2911.58 −0.303993
\(452\) 12237.0 1.27341
\(453\) 0 0
\(454\) −2718.71 −0.281047
\(455\) 2096.04 0.215965
\(456\) 0 0
\(457\) 5760.46 0.589634 0.294817 0.955554i \(-0.404741\pi\)
0.294817 + 0.955554i \(0.404741\pi\)
\(458\) −3576.99 −0.364939
\(459\) 0 0
\(460\) −7210.72 −0.730873
\(461\) −74.6854 −0.00754543 −0.00377272 0.999993i \(-0.501201\pi\)
−0.00377272 + 0.999993i \(0.501201\pi\)
\(462\) 0 0
\(463\) −3485.88 −0.349898 −0.174949 0.984578i \(-0.555976\pi\)
−0.174949 + 0.984578i \(0.555976\pi\)
\(464\) 4851.85 0.485434
\(465\) 0 0
\(466\) −4779.38 −0.475109
\(467\) −19514.4 −1.93366 −0.966828 0.255427i \(-0.917784\pi\)
−0.966828 + 0.255427i \(0.917784\pi\)
\(468\) 0 0
\(469\) −7381.93 −0.726793
\(470\) 7680.08 0.753736
\(471\) 0 0
\(472\) −10772.6 −1.05052
\(473\) −1890.02 −0.183728
\(474\) 0 0
\(475\) −1543.37 −0.149083
\(476\) −743.303 −0.0715740
\(477\) 0 0
\(478\) 2060.69 0.197183
\(479\) −17061.5 −1.62748 −0.813738 0.581231i \(-0.802571\pi\)
−0.813738 + 0.581231i \(0.802571\pi\)
\(480\) 0 0
\(481\) −11168.3 −1.05869
\(482\) −3369.88 −0.318452
\(483\) 0 0
\(484\) −786.826 −0.0738943
\(485\) −5034.09 −0.471312
\(486\) 0 0
\(487\) −9161.83 −0.852489 −0.426245 0.904608i \(-0.640164\pi\)
−0.426245 + 0.904608i \(0.640164\pi\)
\(488\) 850.034 0.0788509
\(489\) 0 0
\(490\) −702.429 −0.0647602
\(491\) −16122.5 −1.48187 −0.740936 0.671575i \(-0.765618\pi\)
−0.740936 + 0.671575i \(0.765618\pi\)
\(492\) 0 0
\(493\) −2614.23 −0.238821
\(494\) −3941.37 −0.358969
\(495\) 0 0
\(496\) −367.195 −0.0332410
\(497\) 5484.12 0.494962
\(498\) 0 0
\(499\) −7773.19 −0.697346 −0.348673 0.937244i \(-0.613368\pi\)
−0.348673 + 0.937244i \(0.613368\pi\)
\(500\) 8589.61 0.768278
\(501\) 0 0
\(502\) 6503.95 0.578258
\(503\) −11111.5 −0.984966 −0.492483 0.870322i \(-0.663911\pi\)
−0.492483 + 0.870322i \(0.663911\pi\)
\(504\) 0 0
\(505\) −1917.14 −0.168934
\(506\) −1274.03 −0.111932
\(507\) 0 0
\(508\) 16851.6 1.47179
\(509\) −15251.2 −1.32809 −0.664045 0.747692i \(-0.731162\pi\)
−0.664045 + 0.747692i \(0.731162\pi\)
\(510\) 0 0
\(511\) 7723.79 0.668650
\(512\) −9729.12 −0.839786
\(513\) 0 0
\(514\) 3103.48 0.266320
\(515\) −19869.0 −1.70006
\(516\) 0 0
\(517\) −5893.22 −0.501322
\(518\) 3742.73 0.317464
\(519\) 0 0
\(520\) −5313.81 −0.448127
\(521\) 8258.80 0.694481 0.347241 0.937776i \(-0.387119\pi\)
0.347241 + 0.937776i \(0.387119\pi\)
\(522\) 0 0
\(523\) −14442.7 −1.20752 −0.603762 0.797165i \(-0.706332\pi\)
−0.603762 + 0.797165i \(0.706332\pi\)
\(524\) −18428.1 −1.53633
\(525\) 0 0
\(526\) 1902.82 0.157731
\(527\) 197.848 0.0163537
\(528\) 0 0
\(529\) −3207.83 −0.263650
\(530\) −7369.58 −0.603989
\(531\) 0 0
\(532\) −5736.31 −0.467482
\(533\) 6765.30 0.549790
\(534\) 0 0
\(535\) 5648.54 0.456463
\(536\) 18714.4 1.50809
\(537\) 0 0
\(538\) −1038.63 −0.0832316
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −3078.16 −0.244622 −0.122311 0.992492i \(-0.539031\pi\)
−0.122311 + 0.992492i \(0.539031\pi\)
\(542\) 4061.64 0.321886
\(543\) 0 0
\(544\) 2923.86 0.230440
\(545\) −16255.8 −1.27766
\(546\) 0 0
\(547\) 525.331 0.0410631 0.0205316 0.999789i \(-0.493464\pi\)
0.0205316 + 0.999789i \(0.493464\pi\)
\(548\) −16130.3 −1.25739
\(549\) 0 0
\(550\) −164.845 −0.0127800
\(551\) −20174.8 −1.55985
\(552\) 0 0
\(553\) 1363.88 0.104879
\(554\) −2182.28 −0.167357
\(555\) 0 0
\(556\) −9570.83 −0.730025
\(557\) 19741.0 1.50171 0.750855 0.660467i \(-0.229642\pi\)
0.750855 + 0.660467i \(0.229642\pi\)
\(558\) 0 0
\(559\) 4391.63 0.332283
\(560\) −2485.35 −0.187545
\(561\) 0 0
\(562\) −88.6247 −0.00665197
\(563\) 11977.6 0.896621 0.448310 0.893878i \(-0.352026\pi\)
0.448310 + 0.893878i \(0.352026\pi\)
\(564\) 0 0
\(565\) −22046.1 −1.64157
\(566\) −9781.26 −0.726391
\(567\) 0 0
\(568\) −13903.1 −1.02705
\(569\) −6601.66 −0.486390 −0.243195 0.969977i \(-0.578195\pi\)
−0.243195 + 0.969977i \(0.578195\pi\)
\(570\) 0 0
\(571\) −7394.46 −0.541942 −0.270971 0.962588i \(-0.587345\pi\)
−0.270971 + 0.962588i \(0.587345\pi\)
\(572\) 1828.26 0.133642
\(573\) 0 0
\(574\) −2267.20 −0.164862
\(575\) 1159.21 0.0840736
\(576\) 0 0
\(577\) 3298.51 0.237988 0.118994 0.992895i \(-0.462033\pi\)
0.118994 + 0.992895i \(0.462033\pi\)
\(578\) 5685.47 0.409142
\(579\) 0 0
\(580\) −12195.9 −0.873116
\(581\) 3423.89 0.244487
\(582\) 0 0
\(583\) 5654.96 0.401723
\(584\) −19581.0 −1.38745
\(585\) 0 0
\(586\) 1425.98 0.100523
\(587\) 2250.87 0.158268 0.0791339 0.996864i \(-0.474785\pi\)
0.0791339 + 0.996864i \(0.474785\pi\)
\(588\) 0 0
\(589\) 1526.86 0.106814
\(590\) 8702.05 0.607217
\(591\) 0 0
\(592\) 13242.6 0.919373
\(593\) −25955.6 −1.79742 −0.898710 0.438544i \(-0.855494\pi\)
−0.898710 + 0.438544i \(0.855494\pi\)
\(594\) 0 0
\(595\) 1339.13 0.0922673
\(596\) 19026.2 1.30762
\(597\) 0 0
\(598\) 2960.33 0.202436
\(599\) 10200.8 0.695819 0.347909 0.937528i \(-0.386892\pi\)
0.347909 + 0.937528i \(0.386892\pi\)
\(600\) 0 0
\(601\) 5563.68 0.377616 0.188808 0.982014i \(-0.439538\pi\)
0.188808 + 0.982014i \(0.439538\pi\)
\(602\) −1471.73 −0.0996398
\(603\) 0 0
\(604\) 11145.5 0.750835
\(605\) 1417.54 0.0952585
\(606\) 0 0
\(607\) 12109.8 0.809758 0.404879 0.914370i \(-0.367314\pi\)
0.404879 + 0.914370i \(0.367314\pi\)
\(608\) 22564.4 1.50511
\(609\) 0 0
\(610\) −686.655 −0.0455768
\(611\) 13693.4 0.906669
\(612\) 0 0
\(613\) −2026.27 −0.133508 −0.0667540 0.997769i \(-0.521264\pi\)
−0.0667540 + 0.997769i \(0.521264\pi\)
\(614\) 561.872 0.0369305
\(615\) 0 0
\(616\) −1366.45 −0.0893765
\(617\) −9471.18 −0.617983 −0.308991 0.951065i \(-0.599991\pi\)
−0.308991 + 0.951065i \(0.599991\pi\)
\(618\) 0 0
\(619\) 21610.6 1.40324 0.701619 0.712552i \(-0.252461\pi\)
0.701619 + 0.712552i \(0.252461\pi\)
\(620\) 923.004 0.0597883
\(621\) 0 0
\(622\) −3973.26 −0.256130
\(623\) 3268.59 0.210198
\(624\) 0 0
\(625\) −17005.9 −1.08838
\(626\) 3993.84 0.254993
\(627\) 0 0
\(628\) 9228.86 0.586420
\(629\) −7135.27 −0.452308
\(630\) 0 0
\(631\) −13483.4 −0.850659 −0.425330 0.905038i \(-0.639842\pi\)
−0.425330 + 0.905038i \(0.639842\pi\)
\(632\) −3457.65 −0.217623
\(633\) 0 0
\(634\) −8345.73 −0.522794
\(635\) −30359.8 −1.89731
\(636\) 0 0
\(637\) −1252.41 −0.0779001
\(638\) −2154.85 −0.133717
\(639\) 0 0
\(640\) 17116.1 1.05714
\(641\) 6064.55 0.373690 0.186845 0.982389i \(-0.440174\pi\)
0.186845 + 0.982389i \(0.440174\pi\)
\(642\) 0 0
\(643\) 9981.12 0.612157 0.306079 0.952006i \(-0.400983\pi\)
0.306079 + 0.952006i \(0.400983\pi\)
\(644\) 4308.49 0.263631
\(645\) 0 0
\(646\) −2518.08 −0.153363
\(647\) −19235.0 −1.16879 −0.584395 0.811469i \(-0.698668\pi\)
−0.584395 + 0.811469i \(0.698668\pi\)
\(648\) 0 0
\(649\) −6677.41 −0.403870
\(650\) 383.031 0.0231134
\(651\) 0 0
\(652\) 1668.97 0.100248
\(653\) −7626.96 −0.457069 −0.228534 0.973536i \(-0.573393\pi\)
−0.228534 + 0.973536i \(0.573393\pi\)
\(654\) 0 0
\(655\) 33200.0 1.98051
\(656\) −8021.85 −0.477440
\(657\) 0 0
\(658\) −4588.94 −0.271878
\(659\) −17527.8 −1.03609 −0.518046 0.855353i \(-0.673341\pi\)
−0.518046 + 0.855353i \(0.673341\pi\)
\(660\) 0 0
\(661\) 33122.0 1.94901 0.974507 0.224357i \(-0.0720281\pi\)
0.974507 + 0.224357i \(0.0720281\pi\)
\(662\) −31.2391 −0.00183405
\(663\) 0 0
\(664\) −8680.10 −0.507309
\(665\) 10334.5 0.602640
\(666\) 0 0
\(667\) 15153.1 0.879658
\(668\) 13802.8 0.799470
\(669\) 0 0
\(670\) −15117.4 −0.871697
\(671\) 526.897 0.0303139
\(672\) 0 0
\(673\) 18913.2 1.08328 0.541641 0.840610i \(-0.317803\pi\)
0.541641 + 0.840610i \(0.317803\pi\)
\(674\) −1037.19 −0.0592746
\(675\) 0 0
\(676\) 10038.3 0.571138
\(677\) 12615.3 0.716168 0.358084 0.933689i \(-0.383430\pi\)
0.358084 + 0.933689i \(0.383430\pi\)
\(678\) 0 0
\(679\) 3007.93 0.170006
\(680\) −3394.92 −0.191455
\(681\) 0 0
\(682\) 163.082 0.00915650
\(683\) −22131.1 −1.23986 −0.619929 0.784658i \(-0.712839\pi\)
−0.619929 + 0.784658i \(0.712839\pi\)
\(684\) 0 0
\(685\) 29060.2 1.62093
\(686\) 419.710 0.0233595
\(687\) 0 0
\(688\) −5207.30 −0.288556
\(689\) −13139.8 −0.726539
\(690\) 0 0
\(691\) 29230.2 1.60921 0.804607 0.593807i \(-0.202376\pi\)
0.804607 + 0.593807i \(0.202376\pi\)
\(692\) 22976.6 1.26220
\(693\) 0 0
\(694\) −6595.16 −0.360733
\(695\) 17242.8 0.941088
\(696\) 0 0
\(697\) 4322.26 0.234888
\(698\) −6967.19 −0.377811
\(699\) 0 0
\(700\) 557.467 0.0301004
\(701\) −26085.9 −1.40549 −0.702746 0.711441i \(-0.748043\pi\)
−0.702746 + 0.711441i \(0.748043\pi\)
\(702\) 0 0
\(703\) −55065.2 −2.95423
\(704\) −256.913 −0.0137539
\(705\) 0 0
\(706\) −6396.16 −0.340967
\(707\) 1145.52 0.0609357
\(708\) 0 0
\(709\) 14446.3 0.765223 0.382612 0.923909i \(-0.375025\pi\)
0.382612 + 0.923909i \(0.375025\pi\)
\(710\) 11230.9 0.593646
\(711\) 0 0
\(712\) −8286.40 −0.436160
\(713\) −1146.81 −0.0602363
\(714\) 0 0
\(715\) −3293.78 −0.172280
\(716\) 15162.6 0.791412
\(717\) 0 0
\(718\) 4637.04 0.241021
\(719\) −17315.1 −0.898116 −0.449058 0.893502i \(-0.648240\pi\)
−0.449058 + 0.893502i \(0.648240\pi\)
\(720\) 0 0
\(721\) 11872.0 0.613225
\(722\) −11039.9 −0.569062
\(723\) 0 0
\(724\) −7166.40 −0.367869
\(725\) 1960.63 0.100436
\(726\) 0 0
\(727\) 4864.75 0.248176 0.124088 0.992271i \(-0.460400\pi\)
0.124088 + 0.992271i \(0.460400\pi\)
\(728\) 3175.06 0.161642
\(729\) 0 0
\(730\) 15817.5 0.801963
\(731\) 2805.75 0.141962
\(732\) 0 0
\(733\) 26051.3 1.31272 0.656362 0.754447i \(-0.272095\pi\)
0.656362 + 0.754447i \(0.272095\pi\)
\(734\) −2056.90 −0.103435
\(735\) 0 0
\(736\) −16947.9 −0.848790
\(737\) 11600.2 0.579780
\(738\) 0 0
\(739\) −29680.2 −1.47741 −0.738703 0.674031i \(-0.764562\pi\)
−0.738703 + 0.674031i \(0.764562\pi\)
\(740\) −33287.5 −1.65361
\(741\) 0 0
\(742\) 4403.41 0.217863
\(743\) 6957.44 0.343531 0.171766 0.985138i \(-0.445053\pi\)
0.171766 + 0.985138i \(0.445053\pi\)
\(744\) 0 0
\(745\) −34277.5 −1.68568
\(746\) 11848.4 0.581505
\(747\) 0 0
\(748\) 1168.05 0.0570963
\(749\) −3375.07 −0.164650
\(750\) 0 0
\(751\) 9769.17 0.474676 0.237338 0.971427i \(-0.423725\pi\)
0.237338 + 0.971427i \(0.423725\pi\)
\(752\) −16236.7 −0.787356
\(753\) 0 0
\(754\) 5006.97 0.241834
\(755\) −20079.7 −0.967915
\(756\) 0 0
\(757\) −7310.67 −0.351005 −0.175503 0.984479i \(-0.556155\pi\)
−0.175503 + 0.984479i \(0.556155\pi\)
\(758\) −13173.2 −0.631231
\(759\) 0 0
\(760\) −26199.7 −1.25048
\(761\) 33724.1 1.60643 0.803217 0.595686i \(-0.203120\pi\)
0.803217 + 0.595686i \(0.203120\pi\)
\(762\) 0 0
\(763\) 9713.05 0.460860
\(764\) −14443.8 −0.683976
\(765\) 0 0
\(766\) 5389.17 0.254202
\(767\) 15515.5 0.730421
\(768\) 0 0
\(769\) −6968.29 −0.326766 −0.163383 0.986563i \(-0.552241\pi\)
−0.163383 + 0.986563i \(0.552241\pi\)
\(770\) 1103.82 0.0516607
\(771\) 0 0
\(772\) −20657.3 −0.963047
\(773\) 20407.7 0.949567 0.474783 0.880103i \(-0.342526\pi\)
0.474783 + 0.880103i \(0.342526\pi\)
\(774\) 0 0
\(775\) −148.384 −0.00687755
\(776\) −7625.59 −0.352761
\(777\) 0 0
\(778\) −16041.7 −0.739231
\(779\) 33356.3 1.53416
\(780\) 0 0
\(781\) −8617.90 −0.394843
\(782\) 1891.31 0.0864873
\(783\) 0 0
\(784\) 1485.03 0.0676488
\(785\) −16626.7 −0.755964
\(786\) 0 0
\(787\) 13319.7 0.603297 0.301648 0.953419i \(-0.402463\pi\)
0.301648 + 0.953419i \(0.402463\pi\)
\(788\) 4738.75 0.214227
\(789\) 0 0
\(790\) 2793.08 0.125789
\(791\) 13172.8 0.592126
\(792\) 0 0
\(793\) −1224.29 −0.0548244
\(794\) −11901.1 −0.531931
\(795\) 0 0
\(796\) 21567.7 0.960362
\(797\) −11122.9 −0.494344 −0.247172 0.968972i \(-0.579501\pi\)
−0.247172 + 0.968972i \(0.579501\pi\)
\(798\) 0 0
\(799\) 8748.51 0.387359
\(800\) −2192.86 −0.0969116
\(801\) 0 0
\(802\) 210.009 0.00924649
\(803\) −12137.4 −0.533399
\(804\) 0 0
\(805\) −7762.17 −0.339852
\(806\) −378.935 −0.0165600
\(807\) 0 0
\(808\) −2904.07 −0.126441
\(809\) −35906.0 −1.56043 −0.780215 0.625511i \(-0.784891\pi\)
−0.780215 + 0.625511i \(0.784891\pi\)
\(810\) 0 0
\(811\) −4084.08 −0.176833 −0.0884164 0.996084i \(-0.528181\pi\)
−0.0884164 + 0.996084i \(0.528181\pi\)
\(812\) 7287.20 0.314939
\(813\) 0 0
\(814\) −5881.44 −0.253249
\(815\) −3006.81 −0.129232
\(816\) 0 0
\(817\) 21652.9 0.927220
\(818\) −7478.74 −0.319668
\(819\) 0 0
\(820\) 20164.2 0.858738
\(821\) 29147.1 1.23903 0.619514 0.784986i \(-0.287330\pi\)
0.619514 + 0.784986i \(0.287330\pi\)
\(822\) 0 0
\(823\) −14387.7 −0.609387 −0.304693 0.952450i \(-0.598554\pi\)
−0.304693 + 0.952450i \(0.598554\pi\)
\(824\) −30097.3 −1.27244
\(825\) 0 0
\(826\) −5199.58 −0.219027
\(827\) −6056.48 −0.254661 −0.127330 0.991860i \(-0.540641\pi\)
−0.127330 + 0.991860i \(0.540641\pi\)
\(828\) 0 0
\(829\) −3167.61 −0.132709 −0.0663545 0.997796i \(-0.521137\pi\)
−0.0663545 + 0.997796i \(0.521137\pi\)
\(830\) 7011.76 0.293231
\(831\) 0 0
\(832\) 596.959 0.0248748
\(833\) −800.148 −0.0332815
\(834\) 0 0
\(835\) −24867.1 −1.03061
\(836\) 9014.20 0.372922
\(837\) 0 0
\(838\) 1263.21 0.0520726
\(839\) 24152.2 0.993833 0.496916 0.867798i \(-0.334466\pi\)
0.496916 + 0.867798i \(0.334466\pi\)
\(840\) 0 0
\(841\) 1240.37 0.0508576
\(842\) −14254.1 −0.583406
\(843\) 0 0
\(844\) −6540.48 −0.266745
\(845\) −18085.0 −0.736264
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 15580.3 0.630930
\(849\) 0 0
\(850\) 244.713 0.00987480
\(851\) 41359.0 1.66600
\(852\) 0 0
\(853\) 11497.2 0.461496 0.230748 0.973013i \(-0.425883\pi\)
0.230748 + 0.973013i \(0.425883\pi\)
\(854\) 410.285 0.0164399
\(855\) 0 0
\(856\) 8556.35 0.341647
\(857\) 25002.9 0.996595 0.498298 0.867006i \(-0.333959\pi\)
0.498298 + 0.867006i \(0.333959\pi\)
\(858\) 0 0
\(859\) 36363.8 1.44437 0.722187 0.691698i \(-0.243137\pi\)
0.722187 + 0.691698i \(0.243137\pi\)
\(860\) 13089.4 0.519006
\(861\) 0 0
\(862\) −3686.48 −0.145664
\(863\) 28922.4 1.14082 0.570410 0.821360i \(-0.306784\pi\)
0.570410 + 0.821360i \(0.306784\pi\)
\(864\) 0 0
\(865\) −41394.6 −1.62712
\(866\) 2562.38 0.100547
\(867\) 0 0
\(868\) −551.506 −0.0215660
\(869\) −2143.24 −0.0836644
\(870\) 0 0
\(871\) −26954.0 −1.04857
\(872\) −24624.1 −0.956283
\(873\) 0 0
\(874\) 14595.9 0.564888
\(875\) 9246.51 0.357245
\(876\) 0 0
\(877\) −8749.24 −0.336877 −0.168438 0.985712i \(-0.553872\pi\)
−0.168438 + 0.985712i \(0.553872\pi\)
\(878\) 10325.3 0.396882
\(879\) 0 0
\(880\) 3905.55 0.149609
\(881\) −32477.1 −1.24198 −0.620988 0.783820i \(-0.713269\pi\)
−0.620988 + 0.783820i \(0.713269\pi\)
\(882\) 0 0
\(883\) 41807.7 1.59337 0.796683 0.604397i \(-0.206586\pi\)
0.796683 + 0.604397i \(0.206586\pi\)
\(884\) −2714.06 −0.103262
\(885\) 0 0
\(886\) 2198.12 0.0833490
\(887\) −17267.0 −0.653631 −0.326815 0.945088i \(-0.605976\pi\)
−0.326815 + 0.945088i \(0.605976\pi\)
\(888\) 0 0
\(889\) 18140.4 0.684374
\(890\) 6693.74 0.252106
\(891\) 0 0
\(892\) −29444.6 −1.10525
\(893\) 67515.1 2.53002
\(894\) 0 0
\(895\) −27316.8 −1.02022
\(896\) −10227.1 −0.381319
\(897\) 0 0
\(898\) −7709.80 −0.286503
\(899\) −1939.67 −0.0719595
\(900\) 0 0
\(901\) −8394.81 −0.310401
\(902\) 3562.74 0.131515
\(903\) 0 0
\(904\) −33395.2 −1.22866
\(905\) 12911.0 0.474226
\(906\) 0 0
\(907\) 24132.0 0.883452 0.441726 0.897150i \(-0.354366\pi\)
0.441726 + 0.897150i \(0.354366\pi\)
\(908\) −14447.8 −0.528048
\(909\) 0 0
\(910\) −2564.81 −0.0934314
\(911\) 9391.82 0.341564 0.170782 0.985309i \(-0.445371\pi\)
0.170782 + 0.985309i \(0.445371\pi\)
\(912\) 0 0
\(913\) −5380.39 −0.195033
\(914\) −7048.74 −0.255089
\(915\) 0 0
\(916\) −19008.9 −0.685668
\(917\) −19837.4 −0.714382
\(918\) 0 0
\(919\) 46124.1 1.65560 0.827798 0.561026i \(-0.189593\pi\)
0.827798 + 0.561026i \(0.189593\pi\)
\(920\) 19678.4 0.705191
\(921\) 0 0
\(922\) 91.3882 0.00326433
\(923\) 20024.4 0.714097
\(924\) 0 0
\(925\) 5351.36 0.190218
\(926\) 4265.47 0.151374
\(927\) 0 0
\(928\) −28665.0 −1.01398
\(929\) −10411.9 −0.367709 −0.183855 0.982953i \(-0.558858\pi\)
−0.183855 + 0.982953i \(0.558858\pi\)
\(930\) 0 0
\(931\) −6175.00 −0.217377
\(932\) −25398.7 −0.892662
\(933\) 0 0
\(934\) 23878.6 0.836545
\(935\) −2104.35 −0.0736039
\(936\) 0 0
\(937\) 11415.2 0.397992 0.198996 0.980000i \(-0.436232\pi\)
0.198996 + 0.980000i \(0.436232\pi\)
\(938\) 9032.84 0.314427
\(939\) 0 0
\(940\) 40813.6 1.41616
\(941\) 36890.1 1.27798 0.638992 0.769213i \(-0.279351\pi\)
0.638992 + 0.769213i \(0.279351\pi\)
\(942\) 0 0
\(943\) −25053.6 −0.865172
\(944\) −18397.3 −0.634302
\(945\) 0 0
\(946\) 2312.72 0.0794851
\(947\) −1002.01 −0.0343832 −0.0171916 0.999852i \(-0.505473\pi\)
−0.0171916 + 0.999852i \(0.505473\pi\)
\(948\) 0 0
\(949\) 28202.2 0.964682
\(950\) 1888.53 0.0644968
\(951\) 0 0
\(952\) 2028.50 0.0690590
\(953\) 33037.6 1.12297 0.561486 0.827486i \(-0.310230\pi\)
0.561486 + 0.827486i \(0.310230\pi\)
\(954\) 0 0
\(955\) 26021.9 0.881726
\(956\) 10950.9 0.370479
\(957\) 0 0
\(958\) 20877.2 0.704084
\(959\) −17363.8 −0.584679
\(960\) 0 0
\(961\) −29644.2 −0.995072
\(962\) 13666.0 0.458015
\(963\) 0 0
\(964\) −17908.3 −0.598326
\(965\) 37216.1 1.24148
\(966\) 0 0
\(967\) −37338.7 −1.24171 −0.620855 0.783926i \(-0.713214\pi\)
−0.620855 + 0.783926i \(0.713214\pi\)
\(968\) 2147.28 0.0712978
\(969\) 0 0
\(970\) 6159.93 0.203901
\(971\) 3258.01 0.107677 0.0538386 0.998550i \(-0.482854\pi\)
0.0538386 + 0.998550i \(0.482854\pi\)
\(972\) 0 0
\(973\) −10302.8 −0.339457
\(974\) 11210.8 0.368807
\(975\) 0 0
\(976\) 1451.68 0.0476098
\(977\) −2513.84 −0.0823183 −0.0411591 0.999153i \(-0.513105\pi\)
−0.0411591 + 0.999153i \(0.513105\pi\)
\(978\) 0 0
\(979\) −5136.36 −0.167680
\(980\) −3732.85 −0.121675
\(981\) 0 0
\(982\) 19728.2 0.641092
\(983\) 50258.4 1.63072 0.815358 0.578957i \(-0.196540\pi\)
0.815358 + 0.578957i \(0.196540\pi\)
\(984\) 0 0
\(985\) −8537.32 −0.276164
\(986\) 3198.88 0.103320
\(987\) 0 0
\(988\) −20945.3 −0.674451
\(989\) −16263.3 −0.522895
\(990\) 0 0
\(991\) 23304.6 0.747019 0.373510 0.927626i \(-0.378154\pi\)
0.373510 + 0.927626i \(0.378154\pi\)
\(992\) 2169.41 0.0694343
\(993\) 0 0
\(994\) −6710.60 −0.214132
\(995\) −38856.4 −1.23802
\(996\) 0 0
\(997\) −36576.0 −1.16186 −0.580929 0.813954i \(-0.697311\pi\)
−0.580929 + 0.813954i \(0.697311\pi\)
\(998\) 9511.60 0.301688
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.s.1.4 8
3.2 odd 2 693.4.a.t.1.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.4 8 1.1 even 1 trivial
693.4.a.t.1.5 yes 8 3.2 odd 2