Properties

Label 693.4.a.s.1.3
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.21621\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.21621 q^{2} -3.08840 q^{4} -22.0394 q^{5} -7.00000 q^{7} +24.5743 q^{8} +O(q^{10})\) \(q-2.21621 q^{2} -3.08840 q^{4} -22.0394 q^{5} -7.00000 q^{7} +24.5743 q^{8} +48.8440 q^{10} +11.0000 q^{11} +2.76840 q^{13} +15.5135 q^{14} -29.7545 q^{16} -50.6354 q^{17} +56.5022 q^{19} +68.0666 q^{20} -24.3783 q^{22} -172.339 q^{23} +360.735 q^{25} -6.13535 q^{26} +21.6188 q^{28} +282.011 q^{29} +237.587 q^{31} -130.652 q^{32} +112.219 q^{34} +154.276 q^{35} +207.061 q^{37} -125.221 q^{38} -541.602 q^{40} +386.514 q^{41} -18.3909 q^{43} -33.9725 q^{44} +381.939 q^{46} -309.957 q^{47} +49.0000 q^{49} -799.465 q^{50} -8.54993 q^{52} -480.364 q^{53} -242.433 q^{55} -172.020 q^{56} -624.996 q^{58} +114.221 q^{59} +109.928 q^{61} -526.543 q^{62} +527.588 q^{64} -61.0138 q^{65} -567.534 q^{67} +156.383 q^{68} -341.908 q^{70} -780.713 q^{71} -605.836 q^{73} -458.891 q^{74} -174.502 q^{76} -77.0000 q^{77} +686.614 q^{79} +655.772 q^{80} -856.597 q^{82} +316.962 q^{83} +1115.97 q^{85} +40.7582 q^{86} +270.317 q^{88} -1611.41 q^{89} -19.3788 q^{91} +532.252 q^{92} +686.931 q^{94} -1245.27 q^{95} -1231.47 q^{97} -108.594 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 30 q^{4} - 10 q^{5} - 56 q^{7} - 15 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 30 q^{4} - 10 q^{5} - 56 q^{7} - 15 q^{8} - 13 q^{10} + 88 q^{11} - 148 q^{13} + 14 q^{14} + 266 q^{16} - 114 q^{17} + 58 q^{19} - 291 q^{20} - 22 q^{22} - 246 q^{23} + 244 q^{25} - 305 q^{26} - 210 q^{28} + 72 q^{29} + 252 q^{31} - 1272 q^{32} + 630 q^{34} + 70 q^{35} - 80 q^{37} - 1885 q^{38} - 342 q^{40} - 682 q^{41} - 106 q^{43} + 330 q^{44} + 120 q^{46} - 828 q^{47} + 392 q^{49} - 801 q^{50} - 1681 q^{52} - 462 q^{53} - 110 q^{55} + 105 q^{56} - 1087 q^{58} - 626 q^{59} - 854 q^{61} - 1350 q^{62} + 2997 q^{64} - 22 q^{65} + 130 q^{67} - 2202 q^{68} + 91 q^{70} - 326 q^{71} - 390 q^{73} + 359 q^{74} + 2041 q^{76} - 616 q^{77} - 508 q^{79} - 4391 q^{80} + 1528 q^{82} - 1596 q^{83} - 880 q^{85} + 414 q^{86} - 165 q^{88} - 4324 q^{89} + 1036 q^{91} - 2092 q^{92} - 1685 q^{94} - 1076 q^{95} - 964 q^{97} - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.21621 −0.783549 −0.391775 0.920061i \(-0.628139\pi\)
−0.391775 + 0.920061i \(0.628139\pi\)
\(3\) 0 0
\(4\) −3.08840 −0.386051
\(5\) −22.0394 −1.97126 −0.985632 0.168908i \(-0.945976\pi\)
−0.985632 + 0.168908i \(0.945976\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 24.5743 1.08604
\(9\) 0 0
\(10\) 48.8440 1.54458
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 2.76840 0.0590627 0.0295313 0.999564i \(-0.490599\pi\)
0.0295313 + 0.999564i \(0.490599\pi\)
\(14\) 15.5135 0.296154
\(15\) 0 0
\(16\) −29.7545 −0.464914
\(17\) −50.6354 −0.722405 −0.361203 0.932487i \(-0.617634\pi\)
−0.361203 + 0.932487i \(0.617634\pi\)
\(18\) 0 0
\(19\) 56.5022 0.682236 0.341118 0.940020i \(-0.389194\pi\)
0.341118 + 0.940020i \(0.389194\pi\)
\(20\) 68.0666 0.761007
\(21\) 0 0
\(22\) −24.3783 −0.236249
\(23\) −172.339 −1.56240 −0.781198 0.624283i \(-0.785391\pi\)
−0.781198 + 0.624283i \(0.785391\pi\)
\(24\) 0 0
\(25\) 360.735 2.88588
\(26\) −6.13535 −0.0462785
\(27\) 0 0
\(28\) 21.6188 0.145913
\(29\) 282.011 1.80580 0.902899 0.429853i \(-0.141434\pi\)
0.902899 + 0.429853i \(0.141434\pi\)
\(30\) 0 0
\(31\) 237.587 1.37651 0.688256 0.725468i \(-0.258377\pi\)
0.688256 + 0.725468i \(0.258377\pi\)
\(32\) −130.652 −0.721756
\(33\) 0 0
\(34\) 112.219 0.566040
\(35\) 154.276 0.745068
\(36\) 0 0
\(37\) 207.061 0.920017 0.460009 0.887914i \(-0.347846\pi\)
0.460009 + 0.887914i \(0.347846\pi\)
\(38\) −125.221 −0.534566
\(39\) 0 0
\(40\) −541.602 −2.14087
\(41\) 386.514 1.47228 0.736138 0.676831i \(-0.236647\pi\)
0.736138 + 0.676831i \(0.236647\pi\)
\(42\) 0 0
\(43\) −18.3909 −0.0652230 −0.0326115 0.999468i \(-0.510382\pi\)
−0.0326115 + 0.999468i \(0.510382\pi\)
\(44\) −33.9725 −0.116399
\(45\) 0 0
\(46\) 381.939 1.22421
\(47\) −309.957 −0.961955 −0.480978 0.876733i \(-0.659718\pi\)
−0.480978 + 0.876733i \(0.659718\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −799.465 −2.26123
\(51\) 0 0
\(52\) −8.54993 −0.0228012
\(53\) −480.364 −1.24496 −0.622482 0.782634i \(-0.713876\pi\)
−0.622482 + 0.782634i \(0.713876\pi\)
\(54\) 0 0
\(55\) −242.433 −0.594358
\(56\) −172.020 −0.410484
\(57\) 0 0
\(58\) −624.996 −1.41493
\(59\) 114.221 0.252039 0.126020 0.992028i \(-0.459780\pi\)
0.126020 + 0.992028i \(0.459780\pi\)
\(60\) 0 0
\(61\) 109.928 0.230734 0.115367 0.993323i \(-0.463196\pi\)
0.115367 + 0.993323i \(0.463196\pi\)
\(62\) −526.543 −1.07856
\(63\) 0 0
\(64\) 527.588 1.03045
\(65\) −61.0138 −0.116428
\(66\) 0 0
\(67\) −567.534 −1.03485 −0.517427 0.855727i \(-0.673110\pi\)
−0.517427 + 0.855727i \(0.673110\pi\)
\(68\) 156.383 0.278885
\(69\) 0 0
\(70\) −341.908 −0.583797
\(71\) −780.713 −1.30498 −0.652490 0.757797i \(-0.726276\pi\)
−0.652490 + 0.757797i \(0.726276\pi\)
\(72\) 0 0
\(73\) −605.836 −0.971340 −0.485670 0.874142i \(-0.661424\pi\)
−0.485670 + 0.874142i \(0.661424\pi\)
\(74\) −458.891 −0.720879
\(75\) 0 0
\(76\) −174.502 −0.263378
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 686.614 0.977850 0.488925 0.872326i \(-0.337389\pi\)
0.488925 + 0.872326i \(0.337389\pi\)
\(80\) 655.772 0.916469
\(81\) 0 0
\(82\) −856.597 −1.15360
\(83\) 316.962 0.419170 0.209585 0.977790i \(-0.432789\pi\)
0.209585 + 0.977790i \(0.432789\pi\)
\(84\) 0 0
\(85\) 1115.97 1.42405
\(86\) 40.7582 0.0511054
\(87\) 0 0
\(88\) 270.317 0.327453
\(89\) −1611.41 −1.91920 −0.959601 0.281365i \(-0.909213\pi\)
−0.959601 + 0.281365i \(0.909213\pi\)
\(90\) 0 0
\(91\) −19.3788 −0.0223236
\(92\) 532.252 0.603164
\(93\) 0 0
\(94\) 686.931 0.753739
\(95\) −1245.27 −1.34487
\(96\) 0 0
\(97\) −1231.47 −1.28904 −0.644520 0.764587i \(-0.722943\pi\)
−0.644520 + 0.764587i \(0.722943\pi\)
\(98\) −108.594 −0.111936
\(99\) 0 0
\(100\) −1114.10 −1.11410
\(101\) 1184.54 1.16699 0.583494 0.812117i \(-0.301685\pi\)
0.583494 + 0.812117i \(0.301685\pi\)
\(102\) 0 0
\(103\) −654.836 −0.626436 −0.313218 0.949681i \(-0.601407\pi\)
−0.313218 + 0.949681i \(0.601407\pi\)
\(104\) 68.0313 0.0641444
\(105\) 0 0
\(106\) 1064.59 0.975490
\(107\) −654.327 −0.591179 −0.295589 0.955315i \(-0.595516\pi\)
−0.295589 + 0.955315i \(0.595516\pi\)
\(108\) 0 0
\(109\) 1787.78 1.57099 0.785497 0.618866i \(-0.212408\pi\)
0.785497 + 0.618866i \(0.212408\pi\)
\(110\) 537.284 0.465709
\(111\) 0 0
\(112\) 208.282 0.175721
\(113\) 824.970 0.686784 0.343392 0.939192i \(-0.388424\pi\)
0.343392 + 0.939192i \(0.388424\pi\)
\(114\) 0 0
\(115\) 3798.24 3.07989
\(116\) −870.964 −0.697129
\(117\) 0 0
\(118\) −253.138 −0.197485
\(119\) 354.448 0.273043
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −243.623 −0.180792
\(123\) 0 0
\(124\) −733.764 −0.531403
\(125\) −5195.46 −3.71757
\(126\) 0 0
\(127\) 1754.34 1.22577 0.612885 0.790172i \(-0.290009\pi\)
0.612885 + 0.790172i \(0.290009\pi\)
\(128\) −124.033 −0.0856491
\(129\) 0 0
\(130\) 135.219 0.0912272
\(131\) −2065.18 −1.37737 −0.688687 0.725059i \(-0.741812\pi\)
−0.688687 + 0.725059i \(0.741812\pi\)
\(132\) 0 0
\(133\) −395.515 −0.257861
\(134\) 1257.77 0.810859
\(135\) 0 0
\(136\) −1244.33 −0.784560
\(137\) 658.269 0.410509 0.205255 0.978709i \(-0.434198\pi\)
0.205255 + 0.978709i \(0.434198\pi\)
\(138\) 0 0
\(139\) −704.321 −0.429782 −0.214891 0.976638i \(-0.568940\pi\)
−0.214891 + 0.976638i \(0.568940\pi\)
\(140\) −476.466 −0.287634
\(141\) 0 0
\(142\) 1730.22 1.02252
\(143\) 30.4524 0.0178081
\(144\) 0 0
\(145\) −6215.35 −3.55970
\(146\) 1342.66 0.761092
\(147\) 0 0
\(148\) −639.489 −0.355173
\(149\) 1246.54 0.685375 0.342687 0.939450i \(-0.388663\pi\)
0.342687 + 0.939450i \(0.388663\pi\)
\(150\) 0 0
\(151\) 1137.10 0.612818 0.306409 0.951900i \(-0.400872\pi\)
0.306409 + 0.951900i \(0.400872\pi\)
\(152\) 1388.50 0.740935
\(153\) 0 0
\(154\) 170.648 0.0892937
\(155\) −5236.27 −2.71347
\(156\) 0 0
\(157\) −130.308 −0.0662400 −0.0331200 0.999451i \(-0.510544\pi\)
−0.0331200 + 0.999451i \(0.510544\pi\)
\(158\) −1521.68 −0.766193
\(159\) 0 0
\(160\) 2879.49 1.42277
\(161\) 1206.37 0.590530
\(162\) 0 0
\(163\) −907.833 −0.436239 −0.218120 0.975922i \(-0.569992\pi\)
−0.218120 + 0.975922i \(0.569992\pi\)
\(164\) −1193.71 −0.568373
\(165\) 0 0
\(166\) −702.456 −0.328441
\(167\) 3709.74 1.71897 0.859486 0.511159i \(-0.170784\pi\)
0.859486 + 0.511159i \(0.170784\pi\)
\(168\) 0 0
\(169\) −2189.34 −0.996512
\(170\) −2473.23 −1.11581
\(171\) 0 0
\(172\) 56.7986 0.0251794
\(173\) −2172.32 −0.954673 −0.477336 0.878721i \(-0.658398\pi\)
−0.477336 + 0.878721i \(0.658398\pi\)
\(174\) 0 0
\(175\) −2525.15 −1.09076
\(176\) −327.300 −0.140177
\(177\) 0 0
\(178\) 3571.22 1.50379
\(179\) 2149.14 0.897398 0.448699 0.893683i \(-0.351888\pi\)
0.448699 + 0.893683i \(0.351888\pi\)
\(180\) 0 0
\(181\) −1083.16 −0.444810 −0.222405 0.974954i \(-0.571391\pi\)
−0.222405 + 0.974954i \(0.571391\pi\)
\(182\) 42.9475 0.0174916
\(183\) 0 0
\(184\) −4235.10 −1.69682
\(185\) −4563.50 −1.81360
\(186\) 0 0
\(187\) −556.989 −0.217813
\(188\) 957.273 0.371363
\(189\) 0 0
\(190\) 2759.79 1.05377
\(191\) 2847.74 1.07882 0.539412 0.842042i \(-0.318647\pi\)
0.539412 + 0.842042i \(0.318647\pi\)
\(192\) 0 0
\(193\) −4265.96 −1.59104 −0.795519 0.605929i \(-0.792802\pi\)
−0.795519 + 0.605929i \(0.792802\pi\)
\(194\) 2729.20 1.01003
\(195\) 0 0
\(196\) −151.332 −0.0551501
\(197\) 3081.31 1.11439 0.557194 0.830382i \(-0.311878\pi\)
0.557194 + 0.830382i \(0.311878\pi\)
\(198\) 0 0
\(199\) −1880.41 −0.669843 −0.334921 0.942246i \(-0.608710\pi\)
−0.334921 + 0.942246i \(0.608710\pi\)
\(200\) 8864.79 3.13418
\(201\) 0 0
\(202\) −2625.18 −0.914392
\(203\) −1974.08 −0.682528
\(204\) 0 0
\(205\) −8518.54 −2.90225
\(206\) 1451.26 0.490844
\(207\) 0 0
\(208\) −82.3723 −0.0274591
\(209\) 621.524 0.205702
\(210\) 0 0
\(211\) −1383.75 −0.451475 −0.225738 0.974188i \(-0.572479\pi\)
−0.225738 + 0.974188i \(0.572479\pi\)
\(212\) 1483.56 0.480619
\(213\) 0 0
\(214\) 1450.13 0.463218
\(215\) 405.325 0.128572
\(216\) 0 0
\(217\) −1663.11 −0.520272
\(218\) −3962.10 −1.23095
\(219\) 0 0
\(220\) 748.732 0.229452
\(221\) −140.179 −0.0426672
\(222\) 0 0
\(223\) 1565.56 0.470123 0.235062 0.971980i \(-0.424471\pi\)
0.235062 + 0.971980i \(0.424471\pi\)
\(224\) 914.562 0.272798
\(225\) 0 0
\(226\) −1828.31 −0.538129
\(227\) −2467.42 −0.721448 −0.360724 0.932673i \(-0.617470\pi\)
−0.360724 + 0.932673i \(0.617470\pi\)
\(228\) 0 0
\(229\) −1294.61 −0.373581 −0.186791 0.982400i \(-0.559809\pi\)
−0.186791 + 0.982400i \(0.559809\pi\)
\(230\) −8417.71 −2.41325
\(231\) 0 0
\(232\) 6930.21 1.96117
\(233\) 5470.03 1.53800 0.768999 0.639249i \(-0.220755\pi\)
0.768999 + 0.639249i \(0.220755\pi\)
\(234\) 0 0
\(235\) 6831.27 1.89627
\(236\) −352.761 −0.0972999
\(237\) 0 0
\(238\) −785.531 −0.213943
\(239\) −370.090 −0.100164 −0.0500819 0.998745i \(-0.515948\pi\)
−0.0500819 + 0.998745i \(0.515948\pi\)
\(240\) 0 0
\(241\) −1364.30 −0.364658 −0.182329 0.983238i \(-0.558364\pi\)
−0.182329 + 0.983238i \(0.558364\pi\)
\(242\) −268.162 −0.0712317
\(243\) 0 0
\(244\) −339.501 −0.0890751
\(245\) −1079.93 −0.281609
\(246\) 0 0
\(247\) 156.420 0.0402947
\(248\) 5838.52 1.49495
\(249\) 0 0
\(250\) 11514.2 2.91290
\(251\) −3715.37 −0.934311 −0.467155 0.884175i \(-0.654721\pi\)
−0.467155 + 0.884175i \(0.654721\pi\)
\(252\) 0 0
\(253\) −1895.73 −0.471080
\(254\) −3888.00 −0.960451
\(255\) 0 0
\(256\) −3945.82 −0.963335
\(257\) 450.250 0.109283 0.0546417 0.998506i \(-0.482598\pi\)
0.0546417 + 0.998506i \(0.482598\pi\)
\(258\) 0 0
\(259\) −1449.43 −0.347734
\(260\) 188.435 0.0449471
\(261\) 0 0
\(262\) 4576.88 1.07924
\(263\) 1842.16 0.431910 0.215955 0.976403i \(-0.430714\pi\)
0.215955 + 0.976403i \(0.430714\pi\)
\(264\) 0 0
\(265\) 10586.9 2.45415
\(266\) 876.546 0.202047
\(267\) 0 0
\(268\) 1752.77 0.399506
\(269\) 2039.63 0.462298 0.231149 0.972918i \(-0.425751\pi\)
0.231149 + 0.972918i \(0.425751\pi\)
\(270\) 0 0
\(271\) 7810.34 1.75072 0.875359 0.483473i \(-0.160625\pi\)
0.875359 + 0.483473i \(0.160625\pi\)
\(272\) 1506.63 0.335857
\(273\) 0 0
\(274\) −1458.86 −0.321654
\(275\) 3968.09 0.870126
\(276\) 0 0
\(277\) 6066.15 1.31581 0.657905 0.753101i \(-0.271443\pi\)
0.657905 + 0.753101i \(0.271443\pi\)
\(278\) 1560.93 0.336756
\(279\) 0 0
\(280\) 3791.21 0.809172
\(281\) −4527.28 −0.961121 −0.480560 0.876962i \(-0.659567\pi\)
−0.480560 + 0.876962i \(0.659567\pi\)
\(282\) 0 0
\(283\) −3694.07 −0.775935 −0.387968 0.921673i \(-0.626823\pi\)
−0.387968 + 0.921673i \(0.626823\pi\)
\(284\) 2411.16 0.503788
\(285\) 0 0
\(286\) −67.4889 −0.0139535
\(287\) −2705.60 −0.556468
\(288\) 0 0
\(289\) −2349.06 −0.478131
\(290\) 13774.5 2.78920
\(291\) 0 0
\(292\) 1871.07 0.374986
\(293\) −902.927 −0.180033 −0.0900163 0.995940i \(-0.528692\pi\)
−0.0900163 + 0.995940i \(0.528692\pi\)
\(294\) 0 0
\(295\) −2517.36 −0.496836
\(296\) 5088.37 0.999175
\(297\) 0 0
\(298\) −2762.60 −0.537025
\(299\) −477.102 −0.0922793
\(300\) 0 0
\(301\) 128.736 0.0246520
\(302\) −2520.05 −0.480173
\(303\) 0 0
\(304\) −1681.20 −0.317181
\(305\) −2422.74 −0.454838
\(306\) 0 0
\(307\) −3119.31 −0.579898 −0.289949 0.957042i \(-0.593638\pi\)
−0.289949 + 0.957042i \(0.593638\pi\)
\(308\) 237.807 0.0439945
\(309\) 0 0
\(310\) 11604.7 2.12614
\(311\) 3520.52 0.641898 0.320949 0.947097i \(-0.395998\pi\)
0.320949 + 0.947097i \(0.395998\pi\)
\(312\) 0 0
\(313\) −10174.8 −1.83742 −0.918709 0.394935i \(-0.870767\pi\)
−0.918709 + 0.394935i \(0.870767\pi\)
\(314\) 288.789 0.0519023
\(315\) 0 0
\(316\) −2120.54 −0.377499
\(317\) 3907.40 0.692307 0.346153 0.938178i \(-0.387488\pi\)
0.346153 + 0.938178i \(0.387488\pi\)
\(318\) 0 0
\(319\) 3102.12 0.544469
\(320\) −11627.7 −2.03128
\(321\) 0 0
\(322\) −2673.57 −0.462710
\(323\) −2861.01 −0.492851
\(324\) 0 0
\(325\) 998.657 0.170448
\(326\) 2011.95 0.341815
\(327\) 0 0
\(328\) 9498.29 1.59895
\(329\) 2169.70 0.363585
\(330\) 0 0
\(331\) 9015.12 1.49703 0.748513 0.663120i \(-0.230768\pi\)
0.748513 + 0.663120i \(0.230768\pi\)
\(332\) −978.908 −0.161821
\(333\) 0 0
\(334\) −8221.57 −1.34690
\(335\) 12508.1 2.03997
\(336\) 0 0
\(337\) 2727.61 0.440898 0.220449 0.975399i \(-0.429248\pi\)
0.220449 + 0.975399i \(0.429248\pi\)
\(338\) 4852.03 0.780816
\(339\) 0 0
\(340\) −3446.58 −0.549756
\(341\) 2613.46 0.415034
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −451.943 −0.0708347
\(345\) 0 0
\(346\) 4814.32 0.748033
\(347\) −919.041 −0.142181 −0.0710903 0.997470i \(-0.522648\pi\)
−0.0710903 + 0.997470i \(0.522648\pi\)
\(348\) 0 0
\(349\) 1634.89 0.250755 0.125378 0.992109i \(-0.459986\pi\)
0.125378 + 0.992109i \(0.459986\pi\)
\(350\) 5596.26 0.854664
\(351\) 0 0
\(352\) −1437.17 −0.217618
\(353\) 4994.77 0.753101 0.376551 0.926396i \(-0.377110\pi\)
0.376551 + 0.926396i \(0.377110\pi\)
\(354\) 0 0
\(355\) 17206.4 2.57246
\(356\) 4976.68 0.740909
\(357\) 0 0
\(358\) −4762.95 −0.703156
\(359\) −9765.04 −1.43560 −0.717798 0.696251i \(-0.754850\pi\)
−0.717798 + 0.696251i \(0.754850\pi\)
\(360\) 0 0
\(361\) −3666.50 −0.534554
\(362\) 2400.51 0.348531
\(363\) 0 0
\(364\) 59.8495 0.00861804
\(365\) 13352.3 1.91477
\(366\) 0 0
\(367\) −9537.33 −1.35652 −0.678262 0.734820i \(-0.737267\pi\)
−0.678262 + 0.734820i \(0.737267\pi\)
\(368\) 5127.86 0.726380
\(369\) 0 0
\(370\) 10113.7 1.42104
\(371\) 3362.55 0.470552
\(372\) 0 0
\(373\) −8576.29 −1.19052 −0.595259 0.803534i \(-0.702951\pi\)
−0.595259 + 0.803534i \(0.702951\pi\)
\(374\) 1234.41 0.170667
\(375\) 0 0
\(376\) −7616.97 −1.04472
\(377\) 780.718 0.106655
\(378\) 0 0
\(379\) −13710.9 −1.85826 −0.929131 0.369752i \(-0.879443\pi\)
−0.929131 + 0.369752i \(0.879443\pi\)
\(380\) 3845.91 0.519187
\(381\) 0 0
\(382\) −6311.20 −0.845311
\(383\) −8428.82 −1.12452 −0.562262 0.826959i \(-0.690069\pi\)
−0.562262 + 0.826959i \(0.690069\pi\)
\(384\) 0 0
\(385\) 1697.03 0.224646
\(386\) 9454.26 1.24666
\(387\) 0 0
\(388\) 3803.28 0.497635
\(389\) −1757.23 −0.229036 −0.114518 0.993421i \(-0.536532\pi\)
−0.114518 + 0.993421i \(0.536532\pi\)
\(390\) 0 0
\(391\) 8726.44 1.12868
\(392\) 1204.14 0.155148
\(393\) 0 0
\(394\) −6828.84 −0.873178
\(395\) −15132.6 −1.92760
\(396\) 0 0
\(397\) 4018.53 0.508021 0.254010 0.967201i \(-0.418250\pi\)
0.254010 + 0.967201i \(0.418250\pi\)
\(398\) 4167.39 0.524855
\(399\) 0 0
\(400\) −10733.5 −1.34169
\(401\) 3344.16 0.416458 0.208229 0.978080i \(-0.433230\pi\)
0.208229 + 0.978080i \(0.433230\pi\)
\(402\) 0 0
\(403\) 657.734 0.0813005
\(404\) −3658.33 −0.450516
\(405\) 0 0
\(406\) 4374.97 0.534794
\(407\) 2277.67 0.277396
\(408\) 0 0
\(409\) −13540.8 −1.63704 −0.818521 0.574477i \(-0.805206\pi\)
−0.818521 + 0.574477i \(0.805206\pi\)
\(410\) 18878.9 2.27405
\(411\) 0 0
\(412\) 2022.40 0.241836
\(413\) −799.547 −0.0952619
\(414\) 0 0
\(415\) −6985.66 −0.826295
\(416\) −361.696 −0.0426288
\(417\) 0 0
\(418\) −1377.43 −0.161178
\(419\) −7286.55 −0.849573 −0.424786 0.905294i \(-0.639651\pi\)
−0.424786 + 0.905294i \(0.639651\pi\)
\(420\) 0 0
\(421\) −10778.5 −1.24777 −0.623886 0.781515i \(-0.714447\pi\)
−0.623886 + 0.781515i \(0.714447\pi\)
\(422\) 3066.68 0.353753
\(423\) 0 0
\(424\) −11804.6 −1.35208
\(425\) −18266.0 −2.08477
\(426\) 0 0
\(427\) −769.494 −0.0872094
\(428\) 2020.83 0.228225
\(429\) 0 0
\(430\) −898.285 −0.100742
\(431\) −8547.58 −0.955272 −0.477636 0.878558i \(-0.658506\pi\)
−0.477636 + 0.878558i \(0.658506\pi\)
\(432\) 0 0
\(433\) 7140.86 0.792535 0.396267 0.918135i \(-0.370305\pi\)
0.396267 + 0.918135i \(0.370305\pi\)
\(434\) 3685.80 0.407659
\(435\) 0 0
\(436\) −5521.39 −0.606483
\(437\) −9737.52 −1.06592
\(438\) 0 0
\(439\) −2411.65 −0.262191 −0.131095 0.991370i \(-0.541849\pi\)
−0.131095 + 0.991370i \(0.541849\pi\)
\(440\) −5957.62 −0.645496
\(441\) 0 0
\(442\) 310.666 0.0334318
\(443\) −12210.1 −1.30953 −0.654764 0.755834i \(-0.727232\pi\)
−0.654764 + 0.755834i \(0.727232\pi\)
\(444\) 0 0
\(445\) 35514.5 3.78325
\(446\) −3469.61 −0.368365
\(447\) 0 0
\(448\) −3693.12 −0.389472
\(449\) −4214.35 −0.442956 −0.221478 0.975165i \(-0.571088\pi\)
−0.221478 + 0.975165i \(0.571088\pi\)
\(450\) 0 0
\(451\) 4251.65 0.443908
\(452\) −2547.84 −0.265134
\(453\) 0 0
\(454\) 5468.33 0.565290
\(455\) 427.096 0.0440057
\(456\) 0 0
\(457\) 169.614 0.0173615 0.00868075 0.999962i \(-0.497237\pi\)
0.00868075 + 0.999962i \(0.497237\pi\)
\(458\) 2869.13 0.292719
\(459\) 0 0
\(460\) −11730.5 −1.18900
\(461\) −813.238 −0.0821611 −0.0410805 0.999156i \(-0.513080\pi\)
−0.0410805 + 0.999156i \(0.513080\pi\)
\(462\) 0 0
\(463\) −12681.2 −1.27289 −0.636443 0.771324i \(-0.719595\pi\)
−0.636443 + 0.771324i \(0.719595\pi\)
\(464\) −8391.10 −0.839541
\(465\) 0 0
\(466\) −12122.8 −1.20510
\(467\) −7297.16 −0.723067 −0.361534 0.932359i \(-0.617747\pi\)
−0.361534 + 0.932359i \(0.617747\pi\)
\(468\) 0 0
\(469\) 3972.73 0.391138
\(470\) −15139.5 −1.48582
\(471\) 0 0
\(472\) 2806.90 0.273724
\(473\) −202.300 −0.0196655
\(474\) 0 0
\(475\) 20382.3 1.96885
\(476\) −1094.68 −0.105409
\(477\) 0 0
\(478\) 820.199 0.0784833
\(479\) 9874.50 0.941915 0.470958 0.882156i \(-0.343908\pi\)
0.470958 + 0.882156i \(0.343908\pi\)
\(480\) 0 0
\(481\) 573.227 0.0543387
\(482\) 3023.59 0.285727
\(483\) 0 0
\(484\) −373.697 −0.0350955
\(485\) 27140.9 2.54104
\(486\) 0 0
\(487\) 4995.82 0.464851 0.232425 0.972614i \(-0.425334\pi\)
0.232425 + 0.972614i \(0.425334\pi\)
\(488\) 2701.39 0.250586
\(489\) 0 0
\(490\) 2393.35 0.220655
\(491\) 900.456 0.0827638 0.0413819 0.999143i \(-0.486824\pi\)
0.0413819 + 0.999143i \(0.486824\pi\)
\(492\) 0 0
\(493\) −14279.7 −1.30452
\(494\) −346.661 −0.0315729
\(495\) 0 0
\(496\) −7069.28 −0.639960
\(497\) 5464.99 0.493236
\(498\) 0 0
\(499\) 11471.6 1.02914 0.514568 0.857450i \(-0.327952\pi\)
0.514568 + 0.857450i \(0.327952\pi\)
\(500\) 16045.7 1.43517
\(501\) 0 0
\(502\) 8234.04 0.732078
\(503\) −4206.65 −0.372893 −0.186447 0.982465i \(-0.559697\pi\)
−0.186447 + 0.982465i \(0.559697\pi\)
\(504\) 0 0
\(505\) −26106.5 −2.30044
\(506\) 4201.33 0.369114
\(507\) 0 0
\(508\) −5418.12 −0.473209
\(509\) −16162.9 −1.40748 −0.703742 0.710456i \(-0.748489\pi\)
−0.703742 + 0.710456i \(0.748489\pi\)
\(510\) 0 0
\(511\) 4240.85 0.367132
\(512\) 9737.04 0.840470
\(513\) 0 0
\(514\) −997.849 −0.0856289
\(515\) 14432.2 1.23487
\(516\) 0 0
\(517\) −3409.53 −0.290040
\(518\) 3212.24 0.272467
\(519\) 0 0
\(520\) −1499.37 −0.126445
\(521\) 11332.7 0.952964 0.476482 0.879184i \(-0.341912\pi\)
0.476482 + 0.879184i \(0.341912\pi\)
\(522\) 0 0
\(523\) 14087.3 1.17781 0.588904 0.808203i \(-0.299560\pi\)
0.588904 + 0.808203i \(0.299560\pi\)
\(524\) 6378.12 0.531736
\(525\) 0 0
\(526\) −4082.61 −0.338423
\(527\) −12030.3 −0.994399
\(528\) 0 0
\(529\) 17533.6 1.44108
\(530\) −23462.9 −1.92295
\(531\) 0 0
\(532\) 1221.51 0.0995474
\(533\) 1070.02 0.0869566
\(534\) 0 0
\(535\) 14421.0 1.16537
\(536\) −13946.7 −1.12389
\(537\) 0 0
\(538\) −4520.25 −0.362234
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −6339.91 −0.503833 −0.251917 0.967749i \(-0.581061\pi\)
−0.251917 + 0.967749i \(0.581061\pi\)
\(542\) −17309.4 −1.37177
\(543\) 0 0
\(544\) 6615.60 0.521400
\(545\) −39401.6 −3.09684
\(546\) 0 0
\(547\) 959.649 0.0750121 0.0375061 0.999296i \(-0.488059\pi\)
0.0375061 + 0.999296i \(0.488059\pi\)
\(548\) −2033.00 −0.158477
\(549\) 0 0
\(550\) −8794.12 −0.681786
\(551\) 15934.2 1.23198
\(552\) 0 0
\(553\) −4806.30 −0.369592
\(554\) −13443.9 −1.03100
\(555\) 0 0
\(556\) 2175.23 0.165918
\(557\) −17184.0 −1.30720 −0.653598 0.756842i \(-0.726741\pi\)
−0.653598 + 0.756842i \(0.726741\pi\)
\(558\) 0 0
\(559\) −50.9133 −0.00385224
\(560\) −4590.40 −0.346393
\(561\) 0 0
\(562\) 10033.4 0.753086
\(563\) 6598.36 0.493939 0.246969 0.969023i \(-0.420565\pi\)
0.246969 + 0.969023i \(0.420565\pi\)
\(564\) 0 0
\(565\) −18181.8 −1.35383
\(566\) 8186.84 0.607984
\(567\) 0 0
\(568\) −19185.4 −1.41726
\(569\) 17565.4 1.29416 0.647081 0.762422i \(-0.275990\pi\)
0.647081 + 0.762422i \(0.275990\pi\)
\(570\) 0 0
\(571\) −10179.7 −0.746074 −0.373037 0.927817i \(-0.621684\pi\)
−0.373037 + 0.927817i \(0.621684\pi\)
\(572\) −94.0492 −0.00687482
\(573\) 0 0
\(574\) 5996.18 0.436020
\(575\) −62168.6 −4.50889
\(576\) 0 0
\(577\) 6287.76 0.453662 0.226831 0.973934i \(-0.427164\pi\)
0.226831 + 0.973934i \(0.427164\pi\)
\(578\) 5206.01 0.374639
\(579\) 0 0
\(580\) 19195.5 1.37423
\(581\) −2218.74 −0.158432
\(582\) 0 0
\(583\) −5284.01 −0.375371
\(584\) −14888.0 −1.05491
\(585\) 0 0
\(586\) 2001.08 0.141064
\(587\) 18601.0 1.30791 0.653957 0.756532i \(-0.273108\pi\)
0.653957 + 0.756532i \(0.273108\pi\)
\(588\) 0 0
\(589\) 13424.2 0.939106
\(590\) 5579.01 0.389295
\(591\) 0 0
\(592\) −6161.00 −0.427729
\(593\) −6362.24 −0.440583 −0.220292 0.975434i \(-0.570701\pi\)
−0.220292 + 0.975434i \(0.570701\pi\)
\(594\) 0 0
\(595\) −7811.82 −0.538241
\(596\) −3849.83 −0.264589
\(597\) 0 0
\(598\) 1057.36 0.0723054
\(599\) 12238.1 0.834787 0.417393 0.908726i \(-0.362944\pi\)
0.417393 + 0.908726i \(0.362944\pi\)
\(600\) 0 0
\(601\) −25394.1 −1.72354 −0.861770 0.507300i \(-0.830644\pi\)
−0.861770 + 0.507300i \(0.830644\pi\)
\(602\) −285.307 −0.0193160
\(603\) 0 0
\(604\) −3511.81 −0.236579
\(605\) −2666.77 −0.179206
\(606\) 0 0
\(607\) 5680.37 0.379834 0.189917 0.981800i \(-0.439178\pi\)
0.189917 + 0.981800i \(0.439178\pi\)
\(608\) −7382.11 −0.492408
\(609\) 0 0
\(610\) 5369.30 0.356388
\(611\) −858.084 −0.0568157
\(612\) 0 0
\(613\) 682.502 0.0449690 0.0224845 0.999747i \(-0.492842\pi\)
0.0224845 + 0.999747i \(0.492842\pi\)
\(614\) 6913.06 0.454378
\(615\) 0 0
\(616\) −1892.22 −0.123766
\(617\) −4304.44 −0.280859 −0.140430 0.990091i \(-0.544848\pi\)
−0.140430 + 0.990091i \(0.544848\pi\)
\(618\) 0 0
\(619\) −13022.7 −0.845602 −0.422801 0.906223i \(-0.638953\pi\)
−0.422801 + 0.906223i \(0.638953\pi\)
\(620\) 16171.7 1.04754
\(621\) 0 0
\(622\) −7802.21 −0.502958
\(623\) 11279.9 0.725390
\(624\) 0 0
\(625\) 69412.9 4.44242
\(626\) 22549.4 1.43971
\(627\) 0 0
\(628\) 402.443 0.0255720
\(629\) −10484.6 −0.664625
\(630\) 0 0
\(631\) 18156.4 1.14548 0.572739 0.819738i \(-0.305881\pi\)
0.572739 + 0.819738i \(0.305881\pi\)
\(632\) 16873.0 1.06198
\(633\) 0 0
\(634\) −8659.62 −0.542456
\(635\) −38664.7 −2.41632
\(636\) 0 0
\(637\) 135.651 0.00843753
\(638\) −6874.96 −0.426618
\(639\) 0 0
\(640\) 2733.62 0.168837
\(641\) 10368.7 0.638905 0.319452 0.947602i \(-0.396501\pi\)
0.319452 + 0.947602i \(0.396501\pi\)
\(642\) 0 0
\(643\) −17679.6 −1.08431 −0.542157 0.840277i \(-0.682392\pi\)
−0.542157 + 0.840277i \(0.682392\pi\)
\(644\) −3725.76 −0.227975
\(645\) 0 0
\(646\) 6340.61 0.386173
\(647\) −1774.38 −0.107817 −0.0539087 0.998546i \(-0.517168\pi\)
−0.0539087 + 0.998546i \(0.517168\pi\)
\(648\) 0 0
\(649\) 1256.43 0.0759927
\(650\) −2213.24 −0.133554
\(651\) 0 0
\(652\) 2803.76 0.168410
\(653\) −25514.1 −1.52901 −0.764506 0.644616i \(-0.777017\pi\)
−0.764506 + 0.644616i \(0.777017\pi\)
\(654\) 0 0
\(655\) 45515.4 2.71517
\(656\) −11500.5 −0.684483
\(657\) 0 0
\(658\) −4808.52 −0.284887
\(659\) −557.327 −0.0329444 −0.0164722 0.999864i \(-0.505244\pi\)
−0.0164722 + 0.999864i \(0.505244\pi\)
\(660\) 0 0
\(661\) 11263.2 0.662768 0.331384 0.943496i \(-0.392484\pi\)
0.331384 + 0.943496i \(0.392484\pi\)
\(662\) −19979.4 −1.17299
\(663\) 0 0
\(664\) 7789.11 0.455235
\(665\) 8716.92 0.508312
\(666\) 0 0
\(667\) −48601.4 −2.82137
\(668\) −11457.2 −0.663610
\(669\) 0 0
\(670\) −27720.6 −1.59842
\(671\) 1209.20 0.0695690
\(672\) 0 0
\(673\) −3615.18 −0.207065 −0.103533 0.994626i \(-0.533015\pi\)
−0.103533 + 0.994626i \(0.533015\pi\)
\(674\) −6044.97 −0.345465
\(675\) 0 0
\(676\) 6761.56 0.384704
\(677\) −23421.6 −1.32964 −0.664820 0.747004i \(-0.731492\pi\)
−0.664820 + 0.747004i \(0.731492\pi\)
\(678\) 0 0
\(679\) 8620.30 0.487212
\(680\) 27424.2 1.54657
\(681\) 0 0
\(682\) −5791.97 −0.325199
\(683\) 29364.9 1.64512 0.822559 0.568679i \(-0.192545\pi\)
0.822559 + 0.568679i \(0.192545\pi\)
\(684\) 0 0
\(685\) −14507.9 −0.809222
\(686\) 760.161 0.0423077
\(687\) 0 0
\(688\) 547.213 0.0303231
\(689\) −1329.84 −0.0735309
\(690\) 0 0
\(691\) −20430.9 −1.12479 −0.562394 0.826869i \(-0.690120\pi\)
−0.562394 + 0.826869i \(0.690120\pi\)
\(692\) 6709.00 0.368552
\(693\) 0 0
\(694\) 2036.79 0.111406
\(695\) 15522.8 0.847215
\(696\) 0 0
\(697\) −19571.3 −1.06358
\(698\) −3623.26 −0.196479
\(699\) 0 0
\(700\) 7798.67 0.421089
\(701\) −6673.16 −0.359546 −0.179773 0.983708i \(-0.557536\pi\)
−0.179773 + 0.983708i \(0.557536\pi\)
\(702\) 0 0
\(703\) 11699.4 0.627669
\(704\) 5803.47 0.310691
\(705\) 0 0
\(706\) −11069.5 −0.590092
\(707\) −8291.75 −0.441080
\(708\) 0 0
\(709\) −14706.4 −0.778999 −0.389500 0.921027i \(-0.627352\pi\)
−0.389500 + 0.921027i \(0.627352\pi\)
\(710\) −38133.1 −2.01565
\(711\) 0 0
\(712\) −39599.2 −2.08433
\(713\) −40945.4 −2.15066
\(714\) 0 0
\(715\) −671.152 −0.0351044
\(716\) −6637.41 −0.346441
\(717\) 0 0
\(718\) 21641.4 1.12486
\(719\) −35481.4 −1.84038 −0.920189 0.391473i \(-0.871965\pi\)
−0.920189 + 0.391473i \(0.871965\pi\)
\(720\) 0 0
\(721\) 4583.85 0.236771
\(722\) 8125.75 0.418849
\(723\) 0 0
\(724\) 3345.24 0.171719
\(725\) 101731. 5.21132
\(726\) 0 0
\(727\) 8818.93 0.449898 0.224949 0.974371i \(-0.427778\pi\)
0.224949 + 0.974371i \(0.427778\pi\)
\(728\) −476.219 −0.0242443
\(729\) 0 0
\(730\) −29591.5 −1.50031
\(731\) 931.231 0.0471174
\(732\) 0 0
\(733\) −645.865 −0.0325451 −0.0162726 0.999868i \(-0.505180\pi\)
−0.0162726 + 0.999868i \(0.505180\pi\)
\(734\) 21136.7 1.06290
\(735\) 0 0
\(736\) 22516.4 1.12767
\(737\) −6242.87 −0.312020
\(738\) 0 0
\(739\) 6264.49 0.311831 0.155915 0.987770i \(-0.450167\pi\)
0.155915 + 0.987770i \(0.450167\pi\)
\(740\) 14093.9 0.700140
\(741\) 0 0
\(742\) −7452.12 −0.368701
\(743\) 4320.14 0.213312 0.106656 0.994296i \(-0.465986\pi\)
0.106656 + 0.994296i \(0.465986\pi\)
\(744\) 0 0
\(745\) −27473.1 −1.35105
\(746\) 19006.9 0.932830
\(747\) 0 0
\(748\) 1720.21 0.0840870
\(749\) 4580.29 0.223445
\(750\) 0 0
\(751\) 32107.5 1.56008 0.780041 0.625729i \(-0.215198\pi\)
0.780041 + 0.625729i \(0.215198\pi\)
\(752\) 9222.63 0.447227
\(753\) 0 0
\(754\) −1730.24 −0.0835697
\(755\) −25060.9 −1.20803
\(756\) 0 0
\(757\) 25385.0 1.21880 0.609401 0.792862i \(-0.291410\pi\)
0.609401 + 0.792862i \(0.291410\pi\)
\(758\) 30386.2 1.45604
\(759\) 0 0
\(760\) −30601.7 −1.46058
\(761\) 5092.57 0.242583 0.121291 0.992617i \(-0.461296\pi\)
0.121291 + 0.992617i \(0.461296\pi\)
\(762\) 0 0
\(763\) −12514.5 −0.593780
\(764\) −8794.98 −0.416480
\(765\) 0 0
\(766\) 18680.0 0.881119
\(767\) 316.209 0.0148861
\(768\) 0 0
\(769\) 10162.4 0.476547 0.238273 0.971198i \(-0.423419\pi\)
0.238273 + 0.971198i \(0.423419\pi\)
\(770\) −3760.99 −0.176021
\(771\) 0 0
\(772\) 13175.0 0.614221
\(773\) −14229.8 −0.662108 −0.331054 0.943612i \(-0.607404\pi\)
−0.331054 + 0.943612i \(0.607404\pi\)
\(774\) 0 0
\(775\) 85705.9 3.97245
\(776\) −30262.5 −1.39995
\(777\) 0 0
\(778\) 3894.40 0.179461
\(779\) 21838.9 1.00444
\(780\) 0 0
\(781\) −8587.84 −0.393466
\(782\) −19339.6 −0.884379
\(783\) 0 0
\(784\) −1457.97 −0.0664163
\(785\) 2871.90 0.130576
\(786\) 0 0
\(787\) 13391.2 0.606537 0.303269 0.952905i \(-0.401922\pi\)
0.303269 + 0.952905i \(0.401922\pi\)
\(788\) −9516.34 −0.430210
\(789\) 0 0
\(790\) 33537.0 1.51037
\(791\) −5774.79 −0.259580
\(792\) 0 0
\(793\) 304.323 0.0136278
\(794\) −8905.91 −0.398059
\(795\) 0 0
\(796\) 5807.46 0.258593
\(797\) 8830.58 0.392466 0.196233 0.980557i \(-0.437129\pi\)
0.196233 + 0.980557i \(0.437129\pi\)
\(798\) 0 0
\(799\) 15694.8 0.694922
\(800\) −47130.7 −2.08290
\(801\) 0 0
\(802\) −7411.38 −0.326315
\(803\) −6664.20 −0.292870
\(804\) 0 0
\(805\) −26587.7 −1.16409
\(806\) −1457.68 −0.0637029
\(807\) 0 0
\(808\) 29109.1 1.26739
\(809\) −44283.6 −1.92451 −0.962255 0.272149i \(-0.912266\pi\)
−0.962255 + 0.272149i \(0.912266\pi\)
\(810\) 0 0
\(811\) −42502.7 −1.84029 −0.920143 0.391582i \(-0.871928\pi\)
−0.920143 + 0.391582i \(0.871928\pi\)
\(812\) 6096.75 0.263490
\(813\) 0 0
\(814\) −5047.81 −0.217353
\(815\) 20008.1 0.859942
\(816\) 0 0
\(817\) −1039.13 −0.0444975
\(818\) 30009.3 1.28270
\(819\) 0 0
\(820\) 26308.7 1.12041
\(821\) 20018.3 0.850968 0.425484 0.904966i \(-0.360104\pi\)
0.425484 + 0.904966i \(0.360104\pi\)
\(822\) 0 0
\(823\) −31778.1 −1.34595 −0.672973 0.739667i \(-0.734983\pi\)
−0.672973 + 0.739667i \(0.734983\pi\)
\(824\) −16092.1 −0.680334
\(825\) 0 0
\(826\) 1771.97 0.0746424
\(827\) −9416.88 −0.395958 −0.197979 0.980206i \(-0.563438\pi\)
−0.197979 + 0.980206i \(0.563438\pi\)
\(828\) 0 0
\(829\) −30106.3 −1.26132 −0.630661 0.776058i \(-0.717216\pi\)
−0.630661 + 0.776058i \(0.717216\pi\)
\(830\) 15481.7 0.647443
\(831\) 0 0
\(832\) 1460.57 0.0608609
\(833\) −2481.13 −0.103201
\(834\) 0 0
\(835\) −81760.4 −3.38855
\(836\) −1919.52 −0.0794114
\(837\) 0 0
\(838\) 16148.5 0.665682
\(839\) −45186.6 −1.85937 −0.929687 0.368350i \(-0.879923\pi\)
−0.929687 + 0.368350i \(0.879923\pi\)
\(840\) 0 0
\(841\) 55141.3 2.26091
\(842\) 23887.4 0.977691
\(843\) 0 0
\(844\) 4273.58 0.174292
\(845\) 48251.6 1.96439
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 14293.0 0.578802
\(849\) 0 0
\(850\) 40481.2 1.63352
\(851\) −35684.7 −1.43743
\(852\) 0 0
\(853\) −2401.55 −0.0963980 −0.0481990 0.998838i \(-0.515348\pi\)
−0.0481990 + 0.998838i \(0.515348\pi\)
\(854\) 1705.36 0.0683328
\(855\) 0 0
\(856\) −16079.6 −0.642043
\(857\) −4218.83 −0.168159 −0.0840797 0.996459i \(-0.526795\pi\)
−0.0840797 + 0.996459i \(0.526795\pi\)
\(858\) 0 0
\(859\) −15508.3 −0.615992 −0.307996 0.951388i \(-0.599658\pi\)
−0.307996 + 0.951388i \(0.599658\pi\)
\(860\) −1251.81 −0.0496352
\(861\) 0 0
\(862\) 18943.2 0.748503
\(863\) 18753.2 0.739706 0.369853 0.929090i \(-0.379408\pi\)
0.369853 + 0.929090i \(0.379408\pi\)
\(864\) 0 0
\(865\) 47876.6 1.88191
\(866\) −15825.6 −0.620990
\(867\) 0 0
\(868\) 5136.35 0.200851
\(869\) 7552.75 0.294833
\(870\) 0 0
\(871\) −1571.16 −0.0611213
\(872\) 43933.4 1.70616
\(873\) 0 0
\(874\) 21580.4 0.835203
\(875\) 36368.2 1.40511
\(876\) 0 0
\(877\) 45435.5 1.74943 0.874713 0.484641i \(-0.161050\pi\)
0.874713 + 0.484641i \(0.161050\pi\)
\(878\) 5344.73 0.205439
\(879\) 0 0
\(880\) 7213.49 0.276326
\(881\) 20328.9 0.777410 0.388705 0.921362i \(-0.372922\pi\)
0.388705 + 0.921362i \(0.372922\pi\)
\(882\) 0 0
\(883\) 18438.6 0.702728 0.351364 0.936239i \(-0.385718\pi\)
0.351364 + 0.936239i \(0.385718\pi\)
\(884\) 432.929 0.0164717
\(885\) 0 0
\(886\) 27060.2 1.02608
\(887\) −35240.4 −1.33400 −0.667000 0.745058i \(-0.732422\pi\)
−0.667000 + 0.745058i \(0.732422\pi\)
\(888\) 0 0
\(889\) −12280.4 −0.463298
\(890\) −78707.6 −2.96436
\(891\) 0 0
\(892\) −4835.08 −0.181491
\(893\) −17513.3 −0.656281
\(894\) 0 0
\(895\) −47365.7 −1.76901
\(896\) 868.232 0.0323723
\(897\) 0 0
\(898\) 9339.89 0.347078
\(899\) 67002.1 2.48570
\(900\) 0 0
\(901\) 24323.4 0.899368
\(902\) −9422.57 −0.347824
\(903\) 0 0
\(904\) 20273.0 0.745875
\(905\) 23872.2 0.876839
\(906\) 0 0
\(907\) −27735.7 −1.01538 −0.507690 0.861540i \(-0.669500\pi\)
−0.507690 + 0.861540i \(0.669500\pi\)
\(908\) 7620.40 0.278515
\(909\) 0 0
\(910\) −946.536 −0.0344806
\(911\) −12663.6 −0.460554 −0.230277 0.973125i \(-0.573963\pi\)
−0.230277 + 0.973125i \(0.573963\pi\)
\(912\) 0 0
\(913\) 3486.59 0.126385
\(914\) −375.901 −0.0136036
\(915\) 0 0
\(916\) 3998.28 0.144221
\(917\) 14456.3 0.520598
\(918\) 0 0
\(919\) −16398.4 −0.588612 −0.294306 0.955711i \(-0.595088\pi\)
−0.294306 + 0.955711i \(0.595088\pi\)
\(920\) 93339.0 3.34489
\(921\) 0 0
\(922\) 1802.31 0.0643773
\(923\) −2161.32 −0.0770756
\(924\) 0 0
\(925\) 74694.2 2.65506
\(926\) 28104.3 0.997369
\(927\) 0 0
\(928\) −36845.2 −1.30335
\(929\) 42073.8 1.48589 0.742947 0.669350i \(-0.233427\pi\)
0.742947 + 0.669350i \(0.233427\pi\)
\(930\) 0 0
\(931\) 2768.61 0.0974623
\(932\) −16893.7 −0.593745
\(933\) 0 0
\(934\) 16172.1 0.566559
\(935\) 12275.7 0.429368
\(936\) 0 0
\(937\) 11771.2 0.410402 0.205201 0.978720i \(-0.434215\pi\)
0.205201 + 0.978720i \(0.434215\pi\)
\(938\) −8804.42 −0.306476
\(939\) 0 0
\(940\) −21097.7 −0.732055
\(941\) −6056.53 −0.209817 −0.104908 0.994482i \(-0.533455\pi\)
−0.104908 + 0.994482i \(0.533455\pi\)
\(942\) 0 0
\(943\) −66611.3 −2.30028
\(944\) −3398.59 −0.117177
\(945\) 0 0
\(946\) 448.340 0.0154089
\(947\) 2545.73 0.0873551 0.0436775 0.999046i \(-0.486093\pi\)
0.0436775 + 0.999046i \(0.486093\pi\)
\(948\) 0 0
\(949\) −1677.19 −0.0573699
\(950\) −45171.5 −1.54269
\(951\) 0 0
\(952\) 8710.29 0.296536
\(953\) 17699.0 0.601602 0.300801 0.953687i \(-0.402746\pi\)
0.300801 + 0.953687i \(0.402746\pi\)
\(954\) 0 0
\(955\) −62762.5 −2.12665
\(956\) 1142.99 0.0386683
\(957\) 0 0
\(958\) −21884.0 −0.738037
\(959\) −4607.89 −0.155158
\(960\) 0 0
\(961\) 26656.5 0.894784
\(962\) −1270.39 −0.0425770
\(963\) 0 0
\(964\) 4213.52 0.140776
\(965\) 94019.1 3.13635
\(966\) 0 0
\(967\) −48183.5 −1.60235 −0.801177 0.598427i \(-0.795793\pi\)
−0.801177 + 0.598427i \(0.795793\pi\)
\(968\) 2973.48 0.0987308
\(969\) 0 0
\(970\) −60149.9 −1.99103
\(971\) −9670.55 −0.319612 −0.159806 0.987148i \(-0.551087\pi\)
−0.159806 + 0.987148i \(0.551087\pi\)
\(972\) 0 0
\(973\) 4930.25 0.162443
\(974\) −11071.8 −0.364234
\(975\) 0 0
\(976\) −3270.84 −0.107272
\(977\) −14624.6 −0.478897 −0.239449 0.970909i \(-0.576967\pi\)
−0.239449 + 0.970909i \(0.576967\pi\)
\(978\) 0 0
\(979\) −17725.5 −0.578661
\(980\) 3335.26 0.108715
\(981\) 0 0
\(982\) −1995.60 −0.0648495
\(983\) −11183.6 −0.362871 −0.181436 0.983403i \(-0.558074\pi\)
−0.181436 + 0.983403i \(0.558074\pi\)
\(984\) 0 0
\(985\) −67910.3 −2.19675
\(986\) 31646.9 1.02215
\(987\) 0 0
\(988\) −483.090 −0.0155558
\(989\) 3169.47 0.101904
\(990\) 0 0
\(991\) 18858.3 0.604493 0.302247 0.953230i \(-0.402263\pi\)
0.302247 + 0.953230i \(0.402263\pi\)
\(992\) −31041.1 −0.993505
\(993\) 0 0
\(994\) −12111.6 −0.386475
\(995\) 41443.1 1.32044
\(996\) 0 0
\(997\) 156.252 0.00496345 0.00248172 0.999997i \(-0.499210\pi\)
0.00248172 + 0.999997i \(0.499210\pi\)
\(998\) −25423.5 −0.806379
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.s.1.3 8
3.2 odd 2 693.4.a.t.1.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.3 8 1.1 even 1 trivial
693.4.a.t.1.6 yes 8 3.2 odd 2