Properties

Label 693.4.a.s.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.62357\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.62357 q^{2} +23.6246 q^{4} -7.12019 q^{5} -7.00000 q^{7} -87.8658 q^{8} +40.0409 q^{10} +11.0000 q^{11} -28.1697 q^{13} +39.3650 q^{14} +305.123 q^{16} -53.4303 q^{17} +154.054 q^{19} -168.211 q^{20} -61.8593 q^{22} +44.4801 q^{23} -74.3030 q^{25} +158.414 q^{26} -165.372 q^{28} +154.435 q^{29} +63.2765 q^{31} -1012.95 q^{32} +300.469 q^{34} +49.8413 q^{35} -137.541 q^{37} -866.336 q^{38} +625.621 q^{40} -442.195 q^{41} -48.2577 q^{43} +259.870 q^{44} -250.137 q^{46} +122.856 q^{47} +49.0000 q^{49} +417.848 q^{50} -665.496 q^{52} +298.159 q^{53} -78.3220 q^{55} +615.060 q^{56} -868.475 q^{58} +694.313 q^{59} -7.85696 q^{61} -355.840 q^{62} +3255.44 q^{64} +200.573 q^{65} +467.586 q^{67} -1262.27 q^{68} -280.286 q^{70} +984.767 q^{71} -128.695 q^{73} +773.474 q^{74} +3639.47 q^{76} -77.0000 q^{77} -1333.44 q^{79} -2172.53 q^{80} +2486.72 q^{82} +984.007 q^{83} +380.434 q^{85} +271.381 q^{86} -966.524 q^{88} -918.790 q^{89} +197.188 q^{91} +1050.82 q^{92} -690.889 q^{94} -1096.90 q^{95} -1539.96 q^{97} -275.555 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 30 q^{4} - 10 q^{5} - 56 q^{7} - 15 q^{8} - 13 q^{10} + 88 q^{11} - 148 q^{13} + 14 q^{14} + 266 q^{16} - 114 q^{17} + 58 q^{19} - 291 q^{20} - 22 q^{22} - 246 q^{23} + 244 q^{25} - 305 q^{26}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.62357 −1.98823 −0.994116 0.108318i \(-0.965454\pi\)
−0.994116 + 0.108318i \(0.965454\pi\)
\(3\) 0 0
\(4\) 23.6246 2.95307
\(5\) −7.12019 −0.636849 −0.318424 0.947948i \(-0.603154\pi\)
−0.318424 + 0.947948i \(0.603154\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −87.8658 −3.88316
\(9\) 0 0
\(10\) 40.0409 1.26620
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −28.1697 −0.600989 −0.300495 0.953783i \(-0.597152\pi\)
−0.300495 + 0.953783i \(0.597152\pi\)
\(14\) 39.3650 0.751481
\(15\) 0 0
\(16\) 305.123 4.76755
\(17\) −53.4303 −0.762280 −0.381140 0.924517i \(-0.624468\pi\)
−0.381140 + 0.924517i \(0.624468\pi\)
\(18\) 0 0
\(19\) 154.054 1.86013 0.930066 0.367391i \(-0.119749\pi\)
0.930066 + 0.367391i \(0.119749\pi\)
\(20\) −168.211 −1.88066
\(21\) 0 0
\(22\) −61.8593 −0.599475
\(23\) 44.4801 0.403250 0.201625 0.979463i \(-0.435378\pi\)
0.201625 + 0.979463i \(0.435378\pi\)
\(24\) 0 0
\(25\) −74.3030 −0.594424
\(26\) 158.414 1.19491
\(27\) 0 0
\(28\) −165.372 −1.11616
\(29\) 154.435 0.988890 0.494445 0.869209i \(-0.335371\pi\)
0.494445 + 0.869209i \(0.335371\pi\)
\(30\) 0 0
\(31\) 63.2765 0.366606 0.183303 0.983056i \(-0.441321\pi\)
0.183303 + 0.983056i \(0.441321\pi\)
\(32\) −1012.95 −5.59584
\(33\) 0 0
\(34\) 300.469 1.51559
\(35\) 49.8413 0.240706
\(36\) 0 0
\(37\) −137.541 −0.611126 −0.305563 0.952172i \(-0.598845\pi\)
−0.305563 + 0.952172i \(0.598845\pi\)
\(38\) −866.336 −3.69838
\(39\) 0 0
\(40\) 625.621 2.47298
\(41\) −442.195 −1.68437 −0.842186 0.539187i \(-0.818732\pi\)
−0.842186 + 0.539187i \(0.818732\pi\)
\(42\) 0 0
\(43\) −48.2577 −0.171145 −0.0855724 0.996332i \(-0.527272\pi\)
−0.0855724 + 0.996332i \(0.527272\pi\)
\(44\) 259.870 0.890384
\(45\) 0 0
\(46\) −250.137 −0.801755
\(47\) 122.856 0.381285 0.190642 0.981660i \(-0.438943\pi\)
0.190642 + 0.981660i \(0.438943\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 417.848 1.18185
\(51\) 0 0
\(52\) −665.496 −1.77476
\(53\) 298.159 0.772741 0.386370 0.922344i \(-0.373729\pi\)
0.386370 + 0.922344i \(0.373729\pi\)
\(54\) 0 0
\(55\) −78.3220 −0.192017
\(56\) 615.060 1.46769
\(57\) 0 0
\(58\) −868.475 −1.96614
\(59\) 694.313 1.53207 0.766033 0.642801i \(-0.222228\pi\)
0.766033 + 0.642801i \(0.222228\pi\)
\(60\) 0 0
\(61\) −7.85696 −0.0164915 −0.00824575 0.999966i \(-0.502625\pi\)
−0.00824575 + 0.999966i \(0.502625\pi\)
\(62\) −355.840 −0.728899
\(63\) 0 0
\(64\) 3255.44 6.35828
\(65\) 200.573 0.382739
\(66\) 0 0
\(67\) 467.586 0.852608 0.426304 0.904580i \(-0.359815\pi\)
0.426304 + 0.904580i \(0.359815\pi\)
\(68\) −1262.27 −2.25106
\(69\) 0 0
\(70\) −280.286 −0.478580
\(71\) 984.767 1.64606 0.823031 0.567997i \(-0.192281\pi\)
0.823031 + 0.567997i \(0.192281\pi\)
\(72\) 0 0
\(73\) −128.695 −0.206337 −0.103169 0.994664i \(-0.532898\pi\)
−0.103169 + 0.994664i \(0.532898\pi\)
\(74\) 773.474 1.21506
\(75\) 0 0
\(76\) 3639.47 5.49310
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −1333.44 −1.89904 −0.949520 0.313706i \(-0.898429\pi\)
−0.949520 + 0.313706i \(0.898429\pi\)
\(80\) −2172.53 −3.03621
\(81\) 0 0
\(82\) 2486.72 3.34892
\(83\) 984.007 1.30131 0.650655 0.759373i \(-0.274494\pi\)
0.650655 + 0.759373i \(0.274494\pi\)
\(84\) 0 0
\(85\) 380.434 0.485457
\(86\) 271.381 0.340276
\(87\) 0 0
\(88\) −966.524 −1.17082
\(89\) −918.790 −1.09429 −0.547143 0.837039i \(-0.684285\pi\)
−0.547143 + 0.837039i \(0.684285\pi\)
\(90\) 0 0
\(91\) 197.188 0.227153
\(92\) 1050.82 1.19082
\(93\) 0 0
\(94\) −690.889 −0.758083
\(95\) −1096.90 −1.18462
\(96\) 0 0
\(97\) −1539.96 −1.61195 −0.805975 0.591949i \(-0.798359\pi\)
−0.805975 + 0.591949i \(0.798359\pi\)
\(98\) −275.555 −0.284033
\(99\) 0 0
\(100\) −1755.37 −1.75537
\(101\) −1094.19 −1.07798 −0.538988 0.842313i \(-0.681193\pi\)
−0.538988 + 0.842313i \(0.681193\pi\)
\(102\) 0 0
\(103\) 866.791 0.829199 0.414599 0.910004i \(-0.363922\pi\)
0.414599 + 0.910004i \(0.363922\pi\)
\(104\) 2475.15 2.33374
\(105\) 0 0
\(106\) −1676.72 −1.53639
\(107\) −1232.70 −1.11373 −0.556865 0.830603i \(-0.687996\pi\)
−0.556865 + 0.830603i \(0.687996\pi\)
\(108\) 0 0
\(109\) 123.514 0.108537 0.0542685 0.998526i \(-0.482717\pi\)
0.0542685 + 0.998526i \(0.482717\pi\)
\(110\) 440.450 0.381775
\(111\) 0 0
\(112\) −2135.86 −1.80196
\(113\) −30.4112 −0.0253172 −0.0126586 0.999920i \(-0.504029\pi\)
−0.0126586 + 0.999920i \(0.504029\pi\)
\(114\) 0 0
\(115\) −316.707 −0.256809
\(116\) 3648.45 2.92026
\(117\) 0 0
\(118\) −3904.52 −3.04610
\(119\) 374.012 0.288115
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 44.1842 0.0327889
\(123\) 0 0
\(124\) 1494.88 1.08261
\(125\) 1419.07 1.01541
\(126\) 0 0
\(127\) −701.964 −0.490466 −0.245233 0.969464i \(-0.578865\pi\)
−0.245233 + 0.969464i \(0.578865\pi\)
\(128\) −10203.6 −7.04590
\(129\) 0 0
\(130\) −1127.94 −0.760975
\(131\) 216.835 0.144618 0.0723089 0.997382i \(-0.476963\pi\)
0.0723089 + 0.997382i \(0.476963\pi\)
\(132\) 0 0
\(133\) −1078.38 −0.703064
\(134\) −2629.50 −1.69518
\(135\) 0 0
\(136\) 4694.70 2.96005
\(137\) −1501.33 −0.936258 −0.468129 0.883660i \(-0.655072\pi\)
−0.468129 + 0.883660i \(0.655072\pi\)
\(138\) 0 0
\(139\) 1552.97 0.947633 0.473816 0.880624i \(-0.342876\pi\)
0.473816 + 0.880624i \(0.342876\pi\)
\(140\) 1177.48 0.710822
\(141\) 0 0
\(142\) −5537.91 −3.27275
\(143\) −309.866 −0.181205
\(144\) 0 0
\(145\) −1099.60 −0.629774
\(146\) 723.727 0.410247
\(147\) 0 0
\(148\) −3249.36 −1.80470
\(149\) −318.363 −0.175043 −0.0875213 0.996163i \(-0.527895\pi\)
−0.0875213 + 0.996163i \(0.527895\pi\)
\(150\) 0 0
\(151\) −2841.58 −1.53142 −0.765709 0.643187i \(-0.777612\pi\)
−0.765709 + 0.643187i \(0.777612\pi\)
\(152\) −13536.1 −7.22319
\(153\) 0 0
\(154\) 433.015 0.226580
\(155\) −450.540 −0.233473
\(156\) 0 0
\(157\) −2339.36 −1.18918 −0.594589 0.804030i \(-0.702685\pi\)
−0.594589 + 0.804030i \(0.702685\pi\)
\(158\) 7498.72 3.77573
\(159\) 0 0
\(160\) 7212.43 3.56370
\(161\) −311.361 −0.152414
\(162\) 0 0
\(163\) 2398.25 1.15242 0.576212 0.817300i \(-0.304530\pi\)
0.576212 + 0.817300i \(0.304530\pi\)
\(164\) −10446.7 −4.97407
\(165\) 0 0
\(166\) −5533.63 −2.58731
\(167\) −1855.95 −0.859984 −0.429992 0.902833i \(-0.641484\pi\)
−0.429992 + 0.902833i \(0.641484\pi\)
\(168\) 0 0
\(169\) −1403.47 −0.638812
\(170\) −2139.40 −0.965201
\(171\) 0 0
\(172\) −1140.07 −0.505403
\(173\) −992.101 −0.436000 −0.218000 0.975949i \(-0.569953\pi\)
−0.218000 + 0.975949i \(0.569953\pi\)
\(174\) 0 0
\(175\) 520.121 0.224671
\(176\) 3356.35 1.43747
\(177\) 0 0
\(178\) 5166.88 2.17570
\(179\) −1214.54 −0.507144 −0.253572 0.967316i \(-0.581606\pi\)
−0.253572 + 0.967316i \(0.581606\pi\)
\(180\) 0 0
\(181\) −3278.81 −1.34648 −0.673238 0.739426i \(-0.735097\pi\)
−0.673238 + 0.739426i \(0.735097\pi\)
\(182\) −1108.90 −0.451632
\(183\) 0 0
\(184\) −3908.28 −1.56588
\(185\) 979.321 0.389195
\(186\) 0 0
\(187\) −587.733 −0.229836
\(188\) 2902.42 1.12596
\(189\) 0 0
\(190\) 6168.48 2.35531
\(191\) 1497.12 0.567163 0.283582 0.958948i \(-0.408477\pi\)
0.283582 + 0.958948i \(0.408477\pi\)
\(192\) 0 0
\(193\) 2555.04 0.952931 0.476465 0.879193i \(-0.341918\pi\)
0.476465 + 0.879193i \(0.341918\pi\)
\(194\) 8660.07 3.20493
\(195\) 0 0
\(196\) 1157.60 0.421867
\(197\) 3509.36 1.26919 0.634597 0.772843i \(-0.281166\pi\)
0.634597 + 0.772843i \(0.281166\pi\)
\(198\) 0 0
\(199\) −4744.61 −1.69013 −0.845066 0.534662i \(-0.820439\pi\)
−0.845066 + 0.534662i \(0.820439\pi\)
\(200\) 6528.69 2.30824
\(201\) 0 0
\(202\) 6153.23 2.14327
\(203\) −1081.04 −0.373765
\(204\) 0 0
\(205\) 3148.51 1.07269
\(206\) −4874.46 −1.64864
\(207\) 0 0
\(208\) −8595.22 −2.86525
\(209\) 1694.60 0.560851
\(210\) 0 0
\(211\) −1771.64 −0.578032 −0.289016 0.957324i \(-0.593328\pi\)
−0.289016 + 0.957324i \(0.593328\pi\)
\(212\) 7043.87 2.28196
\(213\) 0 0
\(214\) 6932.15 2.21436
\(215\) 343.604 0.108993
\(216\) 0 0
\(217\) −442.936 −0.138564
\(218\) −694.592 −0.215797
\(219\) 0 0
\(220\) −1850.32 −0.567040
\(221\) 1505.11 0.458122
\(222\) 0 0
\(223\) 4664.90 1.40083 0.700415 0.713736i \(-0.252998\pi\)
0.700415 + 0.713736i \(0.252998\pi\)
\(224\) 7090.68 2.11503
\(225\) 0 0
\(226\) 171.020 0.0503365
\(227\) −3817.04 −1.11606 −0.558031 0.829820i \(-0.688443\pi\)
−0.558031 + 0.829820i \(0.688443\pi\)
\(228\) 0 0
\(229\) −3450.88 −0.995810 −0.497905 0.867232i \(-0.665897\pi\)
−0.497905 + 0.867232i \(0.665897\pi\)
\(230\) 1781.02 0.510596
\(231\) 0 0
\(232\) −13569.5 −3.84002
\(233\) 600.780 0.168920 0.0844601 0.996427i \(-0.473083\pi\)
0.0844601 + 0.996427i \(0.473083\pi\)
\(234\) 0 0
\(235\) −874.757 −0.242821
\(236\) 16402.8 4.52430
\(237\) 0 0
\(238\) −2103.28 −0.572839
\(239\) 2809.33 0.760336 0.380168 0.924917i \(-0.375866\pi\)
0.380168 + 0.924917i \(0.375866\pi\)
\(240\) 0 0
\(241\) −6213.34 −1.66073 −0.830366 0.557218i \(-0.811869\pi\)
−0.830366 + 0.557218i \(0.811869\pi\)
\(242\) −680.452 −0.180748
\(243\) 0 0
\(244\) −185.617 −0.0487005
\(245\) −348.889 −0.0909784
\(246\) 0 0
\(247\) −4339.66 −1.11792
\(248\) −5559.84 −1.42359
\(249\) 0 0
\(250\) −7980.26 −2.01886
\(251\) −4102.72 −1.03172 −0.515860 0.856673i \(-0.672527\pi\)
−0.515860 + 0.856673i \(0.672527\pi\)
\(252\) 0 0
\(253\) 489.281 0.121584
\(254\) 3947.54 0.975161
\(255\) 0 0
\(256\) 31336.9 7.65061
\(257\) −3125.14 −0.758525 −0.379263 0.925289i \(-0.623822\pi\)
−0.379263 + 0.925289i \(0.623822\pi\)
\(258\) 0 0
\(259\) 962.790 0.230984
\(260\) 4738.45 1.13026
\(261\) 0 0
\(262\) −1219.39 −0.287534
\(263\) −5041.12 −1.18193 −0.590967 0.806695i \(-0.701254\pi\)
−0.590967 + 0.806695i \(0.701254\pi\)
\(264\) 0 0
\(265\) −2122.95 −0.492119
\(266\) 6064.35 1.39786
\(267\) 0 0
\(268\) 11046.5 2.51781
\(269\) −3461.31 −0.784535 −0.392267 0.919851i \(-0.628309\pi\)
−0.392267 + 0.919851i \(0.628309\pi\)
\(270\) 0 0
\(271\) −5994.89 −1.34378 −0.671889 0.740652i \(-0.734517\pi\)
−0.671889 + 0.740652i \(0.734517\pi\)
\(272\) −16302.8 −3.63421
\(273\) 0 0
\(274\) 8442.84 1.86150
\(275\) −817.333 −0.179225
\(276\) 0 0
\(277\) −6382.09 −1.38434 −0.692171 0.721734i \(-0.743345\pi\)
−0.692171 + 0.721734i \(0.743345\pi\)
\(278\) −8733.22 −1.88411
\(279\) 0 0
\(280\) −4379.34 −0.934700
\(281\) −1290.85 −0.274042 −0.137021 0.990568i \(-0.543753\pi\)
−0.137021 + 0.990568i \(0.543753\pi\)
\(282\) 0 0
\(283\) 4551.37 0.956009 0.478005 0.878357i \(-0.341360\pi\)
0.478005 + 0.878357i \(0.341360\pi\)
\(284\) 23264.7 4.86093
\(285\) 0 0
\(286\) 1742.56 0.360278
\(287\) 3095.37 0.636633
\(288\) 0 0
\(289\) −2058.20 −0.418930
\(290\) 6183.70 1.25214
\(291\) 0 0
\(292\) −3040.37 −0.609329
\(293\) 5990.36 1.19440 0.597202 0.802091i \(-0.296279\pi\)
0.597202 + 0.802091i \(0.296279\pi\)
\(294\) 0 0
\(295\) −4943.64 −0.975694
\(296\) 12085.2 2.37310
\(297\) 0 0
\(298\) 1790.34 0.348025
\(299\) −1252.99 −0.242349
\(300\) 0 0
\(301\) 337.804 0.0646867
\(302\) 15979.8 3.04482
\(303\) 0 0
\(304\) 47005.6 8.86827
\(305\) 55.9430 0.0105026
\(306\) 0 0
\(307\) −3165.24 −0.588435 −0.294218 0.955738i \(-0.595059\pi\)
−0.294218 + 0.955738i \(0.595059\pi\)
\(308\) −1819.09 −0.336533
\(309\) 0 0
\(310\) 2533.65 0.464198
\(311\) −7904.12 −1.44116 −0.720582 0.693370i \(-0.756125\pi\)
−0.720582 + 0.693370i \(0.756125\pi\)
\(312\) 0 0
\(313\) −906.983 −0.163788 −0.0818941 0.996641i \(-0.526097\pi\)
−0.0818941 + 0.996641i \(0.526097\pi\)
\(314\) 13155.5 2.36436
\(315\) 0 0
\(316\) −31502.0 −5.60800
\(317\) 3437.04 0.608970 0.304485 0.952517i \(-0.401516\pi\)
0.304485 + 0.952517i \(0.401516\pi\)
\(318\) 0 0
\(319\) 1698.78 0.298162
\(320\) −23179.3 −4.04926
\(321\) 0 0
\(322\) 1750.96 0.303035
\(323\) −8231.18 −1.41794
\(324\) 0 0
\(325\) 2093.09 0.357242
\(326\) −13486.7 −2.29129
\(327\) 0 0
\(328\) 38853.8 6.54068
\(329\) −859.992 −0.144112
\(330\) 0 0
\(331\) 6468.68 1.07417 0.537086 0.843528i \(-0.319525\pi\)
0.537086 + 0.843528i \(0.319525\pi\)
\(332\) 23246.7 3.84286
\(333\) 0 0
\(334\) 10437.0 1.70985
\(335\) −3329.30 −0.542982
\(336\) 0 0
\(337\) −771.467 −0.124702 −0.0623509 0.998054i \(-0.519860\pi\)
−0.0623509 + 0.998054i \(0.519860\pi\)
\(338\) 7892.51 1.27011
\(339\) 0 0
\(340\) 8987.58 1.43359
\(341\) 696.042 0.110536
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 4240.20 0.664582
\(345\) 0 0
\(346\) 5579.15 0.866870
\(347\) 599.893 0.0928067 0.0464033 0.998923i \(-0.485224\pi\)
0.0464033 + 0.998923i \(0.485224\pi\)
\(348\) 0 0
\(349\) 4214.06 0.646342 0.323171 0.946341i \(-0.395251\pi\)
0.323171 + 0.946341i \(0.395251\pi\)
\(350\) −2924.94 −0.446698
\(351\) 0 0
\(352\) −11142.5 −1.68721
\(353\) −8652.67 −1.30463 −0.652316 0.757947i \(-0.726203\pi\)
−0.652316 + 0.757947i \(0.726203\pi\)
\(354\) 0 0
\(355\) −7011.72 −1.04829
\(356\) −21706.0 −3.23150
\(357\) 0 0
\(358\) 6830.04 1.00832
\(359\) −7963.79 −1.17079 −0.585394 0.810749i \(-0.699060\pi\)
−0.585394 + 0.810749i \(0.699060\pi\)
\(360\) 0 0
\(361\) 16873.8 2.46009
\(362\) 18438.6 2.67711
\(363\) 0 0
\(364\) 4658.47 0.670797
\(365\) 916.334 0.131406
\(366\) 0 0
\(367\) 10230.5 1.45511 0.727557 0.686047i \(-0.240655\pi\)
0.727557 + 0.686047i \(0.240655\pi\)
\(368\) 13571.9 1.92251
\(369\) 0 0
\(370\) −5507.28 −0.773810
\(371\) −2087.11 −0.292069
\(372\) 0 0
\(373\) −8392.49 −1.16500 −0.582502 0.812829i \(-0.697926\pi\)
−0.582502 + 0.812829i \(0.697926\pi\)
\(374\) 3305.16 0.456967
\(375\) 0 0
\(376\) −10794.8 −1.48059
\(377\) −4350.38 −0.594313
\(378\) 0 0
\(379\) −668.982 −0.0906684 −0.0453342 0.998972i \(-0.514435\pi\)
−0.0453342 + 0.998972i \(0.514435\pi\)
\(380\) −25913.7 −3.49827
\(381\) 0 0
\(382\) −8419.19 −1.12765
\(383\) −7477.42 −0.997594 −0.498797 0.866719i \(-0.666225\pi\)
−0.498797 + 0.866719i \(0.666225\pi\)
\(384\) 0 0
\(385\) 548.254 0.0725756
\(386\) −14368.4 −1.89465
\(387\) 0 0
\(388\) −36380.9 −4.76020
\(389\) −11824.2 −1.54116 −0.770582 0.637341i \(-0.780034\pi\)
−0.770582 + 0.637341i \(0.780034\pi\)
\(390\) 0 0
\(391\) −2376.59 −0.307389
\(392\) −4305.42 −0.554737
\(393\) 0 0
\(394\) −19735.1 −2.52345
\(395\) 9494.37 1.20940
\(396\) 0 0
\(397\) 2724.20 0.344392 0.172196 0.985063i \(-0.444914\pi\)
0.172196 + 0.985063i \(0.444914\pi\)
\(398\) 26681.6 3.36037
\(399\) 0 0
\(400\) −22671.5 −2.83394
\(401\) −1287.20 −0.160298 −0.0801492 0.996783i \(-0.525540\pi\)
−0.0801492 + 0.996783i \(0.525540\pi\)
\(402\) 0 0
\(403\) −1782.48 −0.220327
\(404\) −25849.7 −3.18334
\(405\) 0 0
\(406\) 6079.33 0.743133
\(407\) −1512.96 −0.184262
\(408\) 0 0
\(409\) −3246.35 −0.392473 −0.196237 0.980557i \(-0.562872\pi\)
−0.196237 + 0.980557i \(0.562872\pi\)
\(410\) −17705.9 −2.13276
\(411\) 0 0
\(412\) 20477.5 2.44868
\(413\) −4860.19 −0.579067
\(414\) 0 0
\(415\) −7006.31 −0.828738
\(416\) 28534.6 3.36304
\(417\) 0 0
\(418\) −9529.70 −1.11510
\(419\) 6853.05 0.799030 0.399515 0.916727i \(-0.369179\pi\)
0.399515 + 0.916727i \(0.369179\pi\)
\(420\) 0 0
\(421\) 8735.11 1.01122 0.505610 0.862762i \(-0.331268\pi\)
0.505610 + 0.862762i \(0.331268\pi\)
\(422\) 9962.95 1.14926
\(423\) 0 0
\(424\) −26198.0 −3.00067
\(425\) 3970.03 0.453117
\(426\) 0 0
\(427\) 54.9988 0.00623320
\(428\) −29121.9 −3.28892
\(429\) 0 0
\(430\) −1932.28 −0.216704
\(431\) 12397.2 1.38550 0.692750 0.721178i \(-0.256399\pi\)
0.692750 + 0.721178i \(0.256399\pi\)
\(432\) 0 0
\(433\) 6950.88 0.771451 0.385725 0.922614i \(-0.373951\pi\)
0.385725 + 0.922614i \(0.373951\pi\)
\(434\) 2490.88 0.275498
\(435\) 0 0
\(436\) 2917.97 0.320517
\(437\) 6852.36 0.750098
\(438\) 0 0
\(439\) 10205.6 1.10954 0.554769 0.832005i \(-0.312807\pi\)
0.554769 + 0.832005i \(0.312807\pi\)
\(440\) 6881.83 0.745632
\(441\) 0 0
\(442\) −8464.12 −0.910853
\(443\) −919.299 −0.0985942 −0.0492971 0.998784i \(-0.515698\pi\)
−0.0492971 + 0.998784i \(0.515698\pi\)
\(444\) 0 0
\(445\) 6541.95 0.696895
\(446\) −26233.4 −2.78518
\(447\) 0 0
\(448\) −22788.1 −2.40320
\(449\) 1588.39 0.166951 0.0834753 0.996510i \(-0.473398\pi\)
0.0834753 + 0.996510i \(0.473398\pi\)
\(450\) 0 0
\(451\) −4864.15 −0.507857
\(452\) −718.451 −0.0747635
\(453\) 0 0
\(454\) 21465.4 2.21899
\(455\) −1404.01 −0.144662
\(456\) 0 0
\(457\) −19146.7 −1.95984 −0.979918 0.199399i \(-0.936101\pi\)
−0.979918 + 0.199399i \(0.936101\pi\)
\(458\) 19406.3 1.97990
\(459\) 0 0
\(460\) −7482.05 −0.758375
\(461\) −4034.54 −0.407608 −0.203804 0.979012i \(-0.565331\pi\)
−0.203804 + 0.979012i \(0.565331\pi\)
\(462\) 0 0
\(463\) 12370.4 1.24169 0.620844 0.783934i \(-0.286790\pi\)
0.620844 + 0.783934i \(0.286790\pi\)
\(464\) 47121.6 4.71458
\(465\) 0 0
\(466\) −3378.53 −0.335852
\(467\) −4367.91 −0.432811 −0.216405 0.976304i \(-0.569433\pi\)
−0.216405 + 0.976304i \(0.569433\pi\)
\(468\) 0 0
\(469\) −3273.10 −0.322255
\(470\) 4919.26 0.482784
\(471\) 0 0
\(472\) −61006.4 −5.94925
\(473\) −530.835 −0.0516021
\(474\) 0 0
\(475\) −11446.7 −1.10571
\(476\) 8835.87 0.850822
\(477\) 0 0
\(478\) −15798.5 −1.51172
\(479\) 3679.31 0.350964 0.175482 0.984483i \(-0.443852\pi\)
0.175482 + 0.984483i \(0.443852\pi\)
\(480\) 0 0
\(481\) 3874.50 0.367280
\(482\) 34941.2 3.30192
\(483\) 0 0
\(484\) 2858.57 0.268461
\(485\) 10964.8 1.02657
\(486\) 0 0
\(487\) 8515.80 0.792378 0.396189 0.918169i \(-0.370333\pi\)
0.396189 + 0.918169i \(0.370333\pi\)
\(488\) 690.358 0.0640390
\(489\) 0 0
\(490\) 1962.00 0.180886
\(491\) −11839.3 −1.08818 −0.544092 0.839025i \(-0.683126\pi\)
−0.544092 + 0.839025i \(0.683126\pi\)
\(492\) 0 0
\(493\) −8251.50 −0.753811
\(494\) 24404.4 2.22269
\(495\) 0 0
\(496\) 19307.1 1.74781
\(497\) −6893.37 −0.622153
\(498\) 0 0
\(499\) 12015.4 1.07792 0.538962 0.842330i \(-0.318817\pi\)
0.538962 + 0.842330i \(0.318817\pi\)
\(500\) 33525.0 2.99857
\(501\) 0 0
\(502\) 23071.9 2.05130
\(503\) −18060.7 −1.60097 −0.800485 0.599352i \(-0.795425\pi\)
−0.800485 + 0.599352i \(0.795425\pi\)
\(504\) 0 0
\(505\) 7790.81 0.686508
\(506\) −2751.51 −0.241738
\(507\) 0 0
\(508\) −16583.6 −1.44838
\(509\) 16258.9 1.41584 0.707920 0.706293i \(-0.249634\pi\)
0.707920 + 0.706293i \(0.249634\pi\)
\(510\) 0 0
\(511\) 900.866 0.0779882
\(512\) −94596.9 −8.16530
\(513\) 0 0
\(514\) 17574.5 1.50812
\(515\) −6171.71 −0.528074
\(516\) 0 0
\(517\) 1351.42 0.114962
\(518\) −5414.32 −0.459250
\(519\) 0 0
\(520\) −17623.5 −1.48624
\(521\) −15726.2 −1.32241 −0.661206 0.750204i \(-0.729955\pi\)
−0.661206 + 0.750204i \(0.729955\pi\)
\(522\) 0 0
\(523\) 18910.5 1.58107 0.790534 0.612418i \(-0.209803\pi\)
0.790534 + 0.612418i \(0.209803\pi\)
\(524\) 5122.62 0.427066
\(525\) 0 0
\(526\) 28349.1 2.34996
\(527\) −3380.88 −0.279457
\(528\) 0 0
\(529\) −10188.5 −0.837390
\(530\) 11938.5 0.978447
\(531\) 0 0
\(532\) −25476.3 −2.07620
\(533\) 12456.5 1.01229
\(534\) 0 0
\(535\) 8777.02 0.709278
\(536\) −41084.8 −3.31081
\(537\) 0 0
\(538\) 19464.9 1.55984
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 5082.93 0.403942 0.201971 0.979392i \(-0.435265\pi\)
0.201971 + 0.979392i \(0.435265\pi\)
\(542\) 33712.7 2.67174
\(543\) 0 0
\(544\) 54122.5 4.26559
\(545\) −879.445 −0.0691216
\(546\) 0 0
\(547\) −4228.16 −0.330500 −0.165250 0.986252i \(-0.552843\pi\)
−0.165250 + 0.986252i \(0.552843\pi\)
\(548\) −35468.3 −2.76484
\(549\) 0 0
\(550\) 4596.33 0.356342
\(551\) 23791.4 1.83947
\(552\) 0 0
\(553\) 9334.11 0.717770
\(554\) 35890.1 2.75239
\(555\) 0 0
\(556\) 36688.1 2.79842
\(557\) 4684.87 0.356381 0.178191 0.983996i \(-0.442976\pi\)
0.178191 + 0.983996i \(0.442976\pi\)
\(558\) 0 0
\(559\) 1359.40 0.102856
\(560\) 15207.7 1.14758
\(561\) 0 0
\(562\) 7259.20 0.544859
\(563\) 3563.28 0.266740 0.133370 0.991066i \(-0.457420\pi\)
0.133370 + 0.991066i \(0.457420\pi\)
\(564\) 0 0
\(565\) 216.533 0.0161232
\(566\) −25594.9 −1.90077
\(567\) 0 0
\(568\) −86527.3 −6.39191
\(569\) −10462.9 −0.770875 −0.385437 0.922734i \(-0.625949\pi\)
−0.385437 + 0.922734i \(0.625949\pi\)
\(570\) 0 0
\(571\) 12141.9 0.889884 0.444942 0.895559i \(-0.353224\pi\)
0.444942 + 0.895559i \(0.353224\pi\)
\(572\) −7320.46 −0.535111
\(573\) 0 0
\(574\) −17407.0 −1.26577
\(575\) −3305.00 −0.239701
\(576\) 0 0
\(577\) −10570.3 −0.762649 −0.381324 0.924441i \(-0.624532\pi\)
−0.381324 + 0.924441i \(0.624532\pi\)
\(578\) 11574.4 0.832930
\(579\) 0 0
\(580\) −25977.7 −1.85976
\(581\) −6888.05 −0.491849
\(582\) 0 0
\(583\) 3279.75 0.232990
\(584\) 11307.9 0.801240
\(585\) 0 0
\(586\) −33687.2 −2.37475
\(587\) −10148.2 −0.713560 −0.356780 0.934188i \(-0.616125\pi\)
−0.356780 + 0.934188i \(0.616125\pi\)
\(588\) 0 0
\(589\) 9748.03 0.681936
\(590\) 27800.9 1.93991
\(591\) 0 0
\(592\) −41967.1 −2.91357
\(593\) −8782.28 −0.608170 −0.304085 0.952645i \(-0.598351\pi\)
−0.304085 + 0.952645i \(0.598351\pi\)
\(594\) 0 0
\(595\) −2663.04 −0.183485
\(596\) −7521.19 −0.516913
\(597\) 0 0
\(598\) 7046.28 0.481846
\(599\) −4017.42 −0.274035 −0.137018 0.990569i \(-0.543752\pi\)
−0.137018 + 0.990569i \(0.543752\pi\)
\(600\) 0 0
\(601\) −4540.55 −0.308175 −0.154087 0.988057i \(-0.549244\pi\)
−0.154087 + 0.988057i \(0.549244\pi\)
\(602\) −1899.66 −0.128612
\(603\) 0 0
\(604\) −67131.0 −4.52239
\(605\) −861.542 −0.0578953
\(606\) 0 0
\(607\) 22149.3 1.48107 0.740537 0.672015i \(-0.234571\pi\)
0.740537 + 0.672015i \(0.234571\pi\)
\(608\) −156050. −10.4090
\(609\) 0 0
\(610\) −314.600 −0.0208816
\(611\) −3460.81 −0.229148
\(612\) 0 0
\(613\) 5443.93 0.358692 0.179346 0.983786i \(-0.442602\pi\)
0.179346 + 0.983786i \(0.442602\pi\)
\(614\) 17799.9 1.16995
\(615\) 0 0
\(616\) 6765.67 0.442527
\(617\) −15820.9 −1.03229 −0.516147 0.856500i \(-0.672634\pi\)
−0.516147 + 0.856500i \(0.672634\pi\)
\(618\) 0 0
\(619\) −16423.8 −1.06644 −0.533221 0.845976i \(-0.679019\pi\)
−0.533221 + 0.845976i \(0.679019\pi\)
\(620\) −10643.8 −0.689461
\(621\) 0 0
\(622\) 44449.4 2.86537
\(623\) 6431.53 0.413602
\(624\) 0 0
\(625\) −816.200 −0.0522368
\(626\) 5100.48 0.325649
\(627\) 0 0
\(628\) −55266.2 −3.51172
\(629\) 7348.88 0.465849
\(630\) 0 0
\(631\) 11789.7 0.743803 0.371901 0.928272i \(-0.378706\pi\)
0.371901 + 0.928272i \(0.378706\pi\)
\(632\) 117164. 7.37427
\(633\) 0 0
\(634\) −19328.5 −1.21077
\(635\) 4998.11 0.312353
\(636\) 0 0
\(637\) −1380.31 −0.0858556
\(638\) −9553.23 −0.592815
\(639\) 0 0
\(640\) 72651.2 4.48717
\(641\) −1837.09 −0.113199 −0.0565995 0.998397i \(-0.518026\pi\)
−0.0565995 + 0.998397i \(0.518026\pi\)
\(642\) 0 0
\(643\) −764.066 −0.0468613 −0.0234306 0.999725i \(-0.507459\pi\)
−0.0234306 + 0.999725i \(0.507459\pi\)
\(644\) −7355.76 −0.450089
\(645\) 0 0
\(646\) 46288.6 2.81920
\(647\) 7504.93 0.456027 0.228013 0.973658i \(-0.426777\pi\)
0.228013 + 0.973658i \(0.426777\pi\)
\(648\) 0 0
\(649\) 7637.45 0.461935
\(650\) −11770.6 −0.710281
\(651\) 0 0
\(652\) 56657.5 3.40319
\(653\) 28325.2 1.69747 0.848736 0.528817i \(-0.177364\pi\)
0.848736 + 0.528817i \(0.177364\pi\)
\(654\) 0 0
\(655\) −1543.90 −0.0920997
\(656\) −134924. −8.03033
\(657\) 0 0
\(658\) 4836.22 0.286528
\(659\) 20098.9 1.18808 0.594038 0.804437i \(-0.297533\pi\)
0.594038 + 0.804437i \(0.297533\pi\)
\(660\) 0 0
\(661\) −8508.04 −0.500642 −0.250321 0.968163i \(-0.580536\pi\)
−0.250321 + 0.968163i \(0.580536\pi\)
\(662\) −36377.1 −2.13570
\(663\) 0 0
\(664\) −86460.6 −5.05319
\(665\) 7678.28 0.447746
\(666\) 0 0
\(667\) 6869.28 0.398770
\(668\) −43845.9 −2.53959
\(669\) 0 0
\(670\) 18722.5 1.07957
\(671\) −86.4266 −0.00497237
\(672\) 0 0
\(673\) −2658.98 −0.152297 −0.0761486 0.997096i \(-0.524262\pi\)
−0.0761486 + 0.997096i \(0.524262\pi\)
\(674\) 4338.40 0.247936
\(675\) 0 0
\(676\) −33156.3 −1.88646
\(677\) −12080.0 −0.685780 −0.342890 0.939376i \(-0.611406\pi\)
−0.342890 + 0.939376i \(0.611406\pi\)
\(678\) 0 0
\(679\) 10779.7 0.609260
\(680\) −33427.1 −1.88510
\(681\) 0 0
\(682\) −3914.24 −0.219771
\(683\) −35043.6 −1.96326 −0.981629 0.190798i \(-0.938893\pi\)
−0.981629 + 0.190798i \(0.938893\pi\)
\(684\) 0 0
\(685\) 10689.8 0.596255
\(686\) 1928.88 0.107354
\(687\) 0 0
\(688\) −14724.5 −0.815941
\(689\) −8399.04 −0.464409
\(690\) 0 0
\(691\) −17131.1 −0.943123 −0.471561 0.881833i \(-0.656309\pi\)
−0.471561 + 0.881833i \(0.656309\pi\)
\(692\) −23438.0 −1.28754
\(693\) 0 0
\(694\) −3373.54 −0.184521
\(695\) −11057.4 −0.603499
\(696\) 0 0
\(697\) 23626.6 1.28396
\(698\) −23698.0 −1.28508
\(699\) 0 0
\(700\) 12287.6 0.663469
\(701\) 4893.69 0.263669 0.131835 0.991272i \(-0.457913\pi\)
0.131835 + 0.991272i \(0.457913\pi\)
\(702\) 0 0
\(703\) −21188.9 −1.13678
\(704\) 35809.8 1.91709
\(705\) 0 0
\(706\) 48658.9 2.59391
\(707\) 7659.30 0.407437
\(708\) 0 0
\(709\) 21196.6 1.12279 0.561393 0.827549i \(-0.310266\pi\)
0.561393 + 0.827549i \(0.310266\pi\)
\(710\) 39430.9 2.08425
\(711\) 0 0
\(712\) 80730.2 4.24929
\(713\) 2814.55 0.147834
\(714\) 0 0
\(715\) 2206.31 0.115400
\(716\) −28692.9 −1.49763
\(717\) 0 0
\(718\) 44784.9 2.32780
\(719\) 35267.5 1.82929 0.914643 0.404262i \(-0.132472\pi\)
0.914643 + 0.404262i \(0.132472\pi\)
\(720\) 0 0
\(721\) −6067.54 −0.313408
\(722\) −94890.9 −4.89124
\(723\) 0 0
\(724\) −77460.4 −3.97623
\(725\) −11475.0 −0.587820
\(726\) 0 0
\(727\) 27284.4 1.39191 0.695957 0.718084i \(-0.254981\pi\)
0.695957 + 0.718084i \(0.254981\pi\)
\(728\) −17326.1 −0.882069
\(729\) 0 0
\(730\) −5153.07 −0.261265
\(731\) 2578.42 0.130460
\(732\) 0 0
\(733\) −10568.0 −0.532521 −0.266261 0.963901i \(-0.585788\pi\)
−0.266261 + 0.963901i \(0.585788\pi\)
\(734\) −57531.9 −2.89311
\(735\) 0 0
\(736\) −45056.4 −2.25652
\(737\) 5143.44 0.257071
\(738\) 0 0
\(739\) 37217.1 1.85257 0.926287 0.376820i \(-0.122982\pi\)
0.926287 + 0.376820i \(0.122982\pi\)
\(740\) 23136.0 1.14932
\(741\) 0 0
\(742\) 11737.0 0.580700
\(743\) 18389.8 0.908017 0.454009 0.890997i \(-0.349994\pi\)
0.454009 + 0.890997i \(0.349994\pi\)
\(744\) 0 0
\(745\) 2266.81 0.111476
\(746\) 47195.7 2.31630
\(747\) 0 0
\(748\) −13884.9 −0.678722
\(749\) 8628.87 0.420951
\(750\) 0 0
\(751\) −23345.7 −1.13435 −0.567175 0.823597i \(-0.691964\pi\)
−0.567175 + 0.823597i \(0.691964\pi\)
\(752\) 37486.2 1.81779
\(753\) 0 0
\(754\) 24464.7 1.18163
\(755\) 20232.6 0.975282
\(756\) 0 0
\(757\) 21304.9 1.02291 0.511454 0.859311i \(-0.329107\pi\)
0.511454 + 0.859311i \(0.329107\pi\)
\(758\) 3762.07 0.180270
\(759\) 0 0
\(760\) 96379.7 4.60008
\(761\) 29063.1 1.38441 0.692205 0.721701i \(-0.256639\pi\)
0.692205 + 0.721701i \(0.256639\pi\)
\(762\) 0 0
\(763\) −864.600 −0.0410231
\(764\) 35368.9 1.67487
\(765\) 0 0
\(766\) 42049.8 1.98345
\(767\) −19558.6 −0.920756
\(768\) 0 0
\(769\) 31525.6 1.47834 0.739168 0.673521i \(-0.235219\pi\)
0.739168 + 0.673521i \(0.235219\pi\)
\(770\) −3083.15 −0.144297
\(771\) 0 0
\(772\) 60361.6 2.81407
\(773\) −31560.1 −1.46848 −0.734242 0.678887i \(-0.762462\pi\)
−0.734242 + 0.678887i \(0.762462\pi\)
\(774\) 0 0
\(775\) −4701.63 −0.217919
\(776\) 135310. 6.25946
\(777\) 0 0
\(778\) 66494.5 3.06419
\(779\) −68122.1 −3.13316
\(780\) 0 0
\(781\) 10832.4 0.496306
\(782\) 13364.9 0.611161
\(783\) 0 0
\(784\) 14951.0 0.681078
\(785\) 16656.6 0.757326
\(786\) 0 0
\(787\) −23463.6 −1.06275 −0.531377 0.847135i \(-0.678325\pi\)
−0.531377 + 0.847135i \(0.678325\pi\)
\(788\) 82907.0 3.74802
\(789\) 0 0
\(790\) −53392.3 −2.40457
\(791\) 212.878 0.00956901
\(792\) 0 0
\(793\) 221.328 0.00991121
\(794\) −15319.7 −0.684732
\(795\) 0 0
\(796\) −112089. −4.99108
\(797\) −15372.1 −0.683195 −0.341597 0.939846i \(-0.610968\pi\)
−0.341597 + 0.939846i \(0.610968\pi\)
\(798\) 0 0
\(799\) −6564.23 −0.290646
\(800\) 75265.6 3.32630
\(801\) 0 0
\(802\) 7238.66 0.318711
\(803\) −1415.65 −0.0622131
\(804\) 0 0
\(805\) 2216.95 0.0970647
\(806\) 10023.9 0.438060
\(807\) 0 0
\(808\) 96141.5 4.18595
\(809\) 36115.6 1.56954 0.784769 0.619789i \(-0.212782\pi\)
0.784769 + 0.619789i \(0.212782\pi\)
\(810\) 0 0
\(811\) −11277.4 −0.488291 −0.244146 0.969739i \(-0.578508\pi\)
−0.244146 + 0.969739i \(0.578508\pi\)
\(812\) −25539.2 −1.10376
\(813\) 0 0
\(814\) 8508.21 0.366355
\(815\) −17076.0 −0.733920
\(816\) 0 0
\(817\) −7434.31 −0.318352
\(818\) 18256.1 0.780328
\(819\) 0 0
\(820\) 74382.2 3.16773
\(821\) 622.509 0.0264625 0.0132313 0.999912i \(-0.495788\pi\)
0.0132313 + 0.999912i \(0.495788\pi\)
\(822\) 0 0
\(823\) −17003.4 −0.720170 −0.360085 0.932919i \(-0.617252\pi\)
−0.360085 + 0.932919i \(0.617252\pi\)
\(824\) −76161.3 −3.21991
\(825\) 0 0
\(826\) 27331.6 1.15132
\(827\) −15759.0 −0.662630 −0.331315 0.943520i \(-0.607492\pi\)
−0.331315 + 0.943520i \(0.607492\pi\)
\(828\) 0 0
\(829\) −26620.5 −1.11528 −0.557640 0.830083i \(-0.688293\pi\)
−0.557640 + 0.830083i \(0.688293\pi\)
\(830\) 39400.5 1.64772
\(831\) 0 0
\(832\) −91704.7 −3.82126
\(833\) −2618.09 −0.108897
\(834\) 0 0
\(835\) 13214.7 0.547680
\(836\) 40034.2 1.65623
\(837\) 0 0
\(838\) −38538.6 −1.58866
\(839\) −21158.9 −0.870664 −0.435332 0.900270i \(-0.643369\pi\)
−0.435332 + 0.900270i \(0.643369\pi\)
\(840\) 0 0
\(841\) −538.896 −0.0220959
\(842\) −49122.5 −2.01054
\(843\) 0 0
\(844\) −41854.2 −1.70697
\(845\) 9992.96 0.406826
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 90975.1 3.68408
\(849\) 0 0
\(850\) −22325.8 −0.900902
\(851\) −6117.86 −0.246437
\(852\) 0 0
\(853\) 1655.46 0.0664499 0.0332250 0.999448i \(-0.489422\pi\)
0.0332250 + 0.999448i \(0.489422\pi\)
\(854\) −309.289 −0.0123931
\(855\) 0 0
\(856\) 108312. 4.32479
\(857\) 41597.7 1.65805 0.829027 0.559209i \(-0.188895\pi\)
0.829027 + 0.559209i \(0.188895\pi\)
\(858\) 0 0
\(859\) −18953.4 −0.752832 −0.376416 0.926451i \(-0.622844\pi\)
−0.376416 + 0.926451i \(0.622844\pi\)
\(860\) 8117.48 0.321865
\(861\) 0 0
\(862\) −69716.4 −2.75470
\(863\) −9701.17 −0.382655 −0.191328 0.981526i \(-0.561279\pi\)
−0.191328 + 0.981526i \(0.561279\pi\)
\(864\) 0 0
\(865\) 7063.95 0.277666
\(866\) −39088.8 −1.53382
\(867\) 0 0
\(868\) −10464.2 −0.409190
\(869\) −14667.9 −0.572582
\(870\) 0 0
\(871\) −13171.7 −0.512408
\(872\) −10852.7 −0.421466
\(873\) 0 0
\(874\) −38534.7 −1.49137
\(875\) −9933.52 −0.383788
\(876\) 0 0
\(877\) 17359.2 0.668390 0.334195 0.942504i \(-0.391536\pi\)
0.334195 + 0.942504i \(0.391536\pi\)
\(878\) −57391.9 −2.20602
\(879\) 0 0
\(880\) −23897.9 −0.915451
\(881\) 47705.2 1.82432 0.912162 0.409830i \(-0.134412\pi\)
0.912162 + 0.409830i \(0.134412\pi\)
\(882\) 0 0
\(883\) −49223.3 −1.87598 −0.937992 0.346656i \(-0.887317\pi\)
−0.937992 + 0.346656i \(0.887317\pi\)
\(884\) 35557.7 1.35287
\(885\) 0 0
\(886\) 5169.75 0.196028
\(887\) −14818.3 −0.560934 −0.280467 0.959864i \(-0.590489\pi\)
−0.280467 + 0.959864i \(0.590489\pi\)
\(888\) 0 0
\(889\) 4913.75 0.185379
\(890\) −36789.1 −1.38559
\(891\) 0 0
\(892\) 110206. 4.13675
\(893\) 18926.5 0.709240
\(894\) 0 0
\(895\) 8647.73 0.322974
\(896\) 71424.9 2.66310
\(897\) 0 0
\(898\) −8932.43 −0.331937
\(899\) 9772.09 0.362533
\(900\) 0 0
\(901\) −15930.7 −0.589045
\(902\) 27353.9 1.00974
\(903\) 0 0
\(904\) 2672.10 0.0983107
\(905\) 23345.7 0.857501
\(906\) 0 0
\(907\) 7365.25 0.269635 0.134818 0.990870i \(-0.456955\pi\)
0.134818 + 0.990870i \(0.456955\pi\)
\(908\) −90176.0 −3.29581
\(909\) 0 0
\(910\) 7895.57 0.287621
\(911\) −18318.8 −0.666223 −0.333111 0.942888i \(-0.608098\pi\)
−0.333111 + 0.942888i \(0.608098\pi\)
\(912\) 0 0
\(913\) 10824.1 0.392360
\(914\) 107673. 3.89661
\(915\) 0 0
\(916\) −81525.5 −2.94070
\(917\) −1517.84 −0.0546604
\(918\) 0 0
\(919\) −8776.63 −0.315032 −0.157516 0.987516i \(-0.550349\pi\)
−0.157516 + 0.987516i \(0.550349\pi\)
\(920\) 27827.7 0.997230
\(921\) 0 0
\(922\) 22688.5 0.810419
\(923\) −27740.6 −0.989265
\(924\) 0 0
\(925\) 10219.7 0.363268
\(926\) −69565.9 −2.46876
\(927\) 0 0
\(928\) −156435. −5.53367
\(929\) −23450.2 −0.828176 −0.414088 0.910237i \(-0.635899\pi\)
−0.414088 + 0.910237i \(0.635899\pi\)
\(930\) 0 0
\(931\) 7548.67 0.265733
\(932\) 14193.2 0.498833
\(933\) 0 0
\(934\) 24563.2 0.860529
\(935\) 4184.77 0.146371
\(936\) 0 0
\(937\) −30682.7 −1.06975 −0.534877 0.844930i \(-0.679642\pi\)
−0.534877 + 0.844930i \(0.679642\pi\)
\(938\) 18406.5 0.640719
\(939\) 0 0
\(940\) −20665.7 −0.717066
\(941\) −3051.86 −0.105726 −0.0528628 0.998602i \(-0.516835\pi\)
−0.0528628 + 0.998602i \(0.516835\pi\)
\(942\) 0 0
\(943\) −19668.9 −0.679223
\(944\) 211851. 7.30420
\(945\) 0 0
\(946\) 2985.19 0.102597
\(947\) 15859.5 0.544209 0.272104 0.962268i \(-0.412280\pi\)
0.272104 + 0.962268i \(0.412280\pi\)
\(948\) 0 0
\(949\) 3625.30 0.124007
\(950\) 64371.4 2.19840
\(951\) 0 0
\(952\) −32862.9 −1.11879
\(953\) −13989.8 −0.475524 −0.237762 0.971323i \(-0.576414\pi\)
−0.237762 + 0.971323i \(0.576414\pi\)
\(954\) 0 0
\(955\) −10659.8 −0.361197
\(956\) 66369.1 2.24532
\(957\) 0 0
\(958\) −20690.8 −0.697798
\(959\) 10509.3 0.353872
\(960\) 0 0
\(961\) −25787.1 −0.865600
\(962\) −21788.5 −0.730239
\(963\) 0 0
\(964\) −146787. −4.90426
\(965\) −18192.3 −0.606873
\(966\) 0 0
\(967\) 55411.1 1.84271 0.921355 0.388723i \(-0.127084\pi\)
0.921355 + 0.388723i \(0.127084\pi\)
\(968\) −10631.8 −0.353014
\(969\) 0 0
\(970\) −61661.3 −2.04106
\(971\) 9133.50 0.301862 0.150931 0.988544i \(-0.451773\pi\)
0.150931 + 0.988544i \(0.451773\pi\)
\(972\) 0 0
\(973\) −10870.8 −0.358171
\(974\) −47889.2 −1.57543
\(975\) 0 0
\(976\) −2397.34 −0.0786240
\(977\) −45379.9 −1.48601 −0.743005 0.669286i \(-0.766600\pi\)
−0.743005 + 0.669286i \(0.766600\pi\)
\(978\) 0 0
\(979\) −10106.7 −0.329940
\(980\) −8242.35 −0.268665
\(981\) 0 0
\(982\) 66579.0 2.16356
\(983\) 14931.3 0.484469 0.242235 0.970218i \(-0.422120\pi\)
0.242235 + 0.970218i \(0.422120\pi\)
\(984\) 0 0
\(985\) −24987.3 −0.808285
\(986\) 46402.9 1.49875
\(987\) 0 0
\(988\) −102523. −3.30130
\(989\) −2146.51 −0.0690141
\(990\) 0 0
\(991\) 33062.1 1.05979 0.529895 0.848063i \(-0.322231\pi\)
0.529895 + 0.848063i \(0.322231\pi\)
\(992\) −64096.3 −2.05147
\(993\) 0 0
\(994\) 38765.4 1.23698
\(995\) 33782.5 1.07636
\(996\) 0 0
\(997\) 535.694 0.0170167 0.00850833 0.999964i \(-0.497292\pi\)
0.00850833 + 0.999964i \(0.497292\pi\)
\(998\) −67569.5 −2.14316
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.s.1.1 8
3.2 odd 2 693.4.a.t.1.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.s.1.1 8 1.1 even 1 trivial
693.4.a.t.1.8 yes 8 3.2 odd 2