Properties

Label 693.4.a.s
Level $693$
Weight $4$
Character orbit 693.a
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 4) q^{4} + ( - \beta_{5} - 1) q^{5} - 7 q^{7} + ( - \beta_{7} - \beta_{6} + \beta_{5} + \cdots - 1) q^{8} + (\beta_{7} + \beta_{6} + \beta_{5} + \cdots - 4) q^{10} + 11 q^{11}+ \cdots - 49 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 30 q^{4} - 10 q^{5} - 56 q^{7} - 15 q^{8} - 13 q^{10} + 88 q^{11} - 148 q^{13} + 14 q^{14} + 266 q^{16} - 114 q^{17} + 58 q^{19} - 291 q^{20} - 22 q^{22} - 246 q^{23} + 244 q^{25} - 305 q^{26}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} - 45x^{6} + 77x^{5} + 540x^{4} - 915x^{3} - 1452x^{2} + 2660x - 672 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -7\nu^{7} - 13\nu^{6} + 338\nu^{5} + 655\nu^{4} - 4289\nu^{3} - 6920\nu^{2} + 13644\nu + 8736 ) / 512 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5\nu^{7} - 9\nu^{6} - 278\nu^{5} + 483\nu^{4} + 4435\nu^{3} - 7528\nu^{2} - 17828\nu + 23456 ) / 512 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 17\nu^{7} - 5\nu^{6} - 766\nu^{5} + 55\nu^{4} + 8807\nu^{3} - 1864\nu^{2} - 22420\nu + 9504 ) / 512 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -15\nu^{7} + 27\nu^{6} + 706\nu^{5} - 937\nu^{4} - 8953\nu^{3} + 8632\nu^{2} + 23788\nu - 15072 ) / 512 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} - \nu^{6} - 46\nu^{5} + 31\nu^{4} + 571\nu^{3} - 344\nu^{2} - 1780\nu + 944 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_{5} + \beta_{2} + 21\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{6} + 2\beta_{5} + 2\beta_{4} + 2\beta_{3} + 30\beta_{2} + 11\beta _1 + 256 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 34\beta_{7} + 38\beta_{6} - 26\beta_{5} - 4\beta_{4} + 8\beta_{3} + 45\beta_{2} + 526\beta _1 + 182 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 7\beta_{7} + 103\beta_{6} + 81\beta_{5} + 84\beta_{4} + 68\beta_{3} + 863\beta_{2} + 653\beta _1 + 6463 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 1016\beta_{7} + 1218\beta_{6} - 606\beta_{5} - 162\beta_{4} + 374\beta_{3} + 1776\beta_{2} + 14297\beta _1 + 9512 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.62357
3.50363
2.21621
1.22364
0.315819
−2.09348
−3.85529
−4.93411
−5.62357 0 23.6246 −7.12019 0 −7.00000 −87.8658 0 40.0409
1.2 −3.50363 0 4.27544 15.3058 0 −7.00000 13.0495 0 −53.6258
1.3 −2.21621 0 −3.08840 −22.0394 0 −7.00000 24.5743 0 48.8440
1.4 −1.22364 0 −6.50270 11.7152 0 −7.00000 17.7461 0 −14.3353
1.5 −0.315819 0 −7.90026 −5.90817 0 −7.00000 5.02161 0 1.86591
1.6 2.09348 0 −3.61736 6.99302 0 −7.00000 −24.3207 0 14.6397
1.7 3.85529 0 6.86327 5.82801 0 −7.00000 −4.38244 0 22.4687
1.8 4.93411 0 16.3455 −14.7743 0 −7.00000 41.1774 0 −72.8980
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 693.4.a.s 8
3.b odd 2 1 693.4.a.t yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
693.4.a.s 8 1.a even 1 1 trivial
693.4.a.t yes 8 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(693))\):

\( T_{2}^{8} + 2T_{2}^{7} - 45T_{2}^{6} - 77T_{2}^{5} + 540T_{2}^{4} + 915T_{2}^{3} - 1452T_{2}^{2} - 2660T_{2} - 672 \) Copy content Toggle raw display
\( T_{5}^{8} + 10 T_{5}^{7} - 572 T_{5}^{6} - 3132 T_{5}^{5} + 100813 T_{5}^{4} + 218046 T_{5}^{3} + \cdots + 100101776 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 2 T^{7} + \cdots - 672 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 10 T^{7} + \cdots + 100101776 \) Copy content Toggle raw display
$7$ \( (T + 7)^{8} \) Copy content Toggle raw display
$11$ \( (T - 11)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 1312663328 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots - 97682010484736 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots - 11\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 33\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 39\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 87\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 85\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 65\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 51\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 17\!\cdots\!92 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots - 10\!\cdots\!12 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 38\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 91\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 51\!\cdots\!32 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 51\!\cdots\!32 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 50\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 99\!\cdots\!72 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 94\!\cdots\!88 \) Copy content Toggle raw display
show more
show less