Properties

Label 693.4.a.r.1.5
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.778078\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.221922 q^{2} -7.95075 q^{4} -15.1615 q^{5} +7.00000 q^{7} +3.53982 q^{8} +O(q^{10})\) \(q-0.221922 q^{2} -7.95075 q^{4} -15.1615 q^{5} +7.00000 q^{7} +3.53982 q^{8} +3.36467 q^{10} -11.0000 q^{11} +37.8013 q^{13} -1.55345 q^{14} +62.8204 q^{16} +61.7617 q^{17} +54.5657 q^{19} +120.545 q^{20} +2.44114 q^{22} -24.4988 q^{23} +104.871 q^{25} -8.38893 q^{26} -55.6553 q^{28} +16.2692 q^{29} -190.027 q^{31} -42.2597 q^{32} -13.7063 q^{34} -106.131 q^{35} +170.813 q^{37} -12.1093 q^{38} -53.6690 q^{40} -78.0123 q^{41} +45.5205 q^{43} +87.4583 q^{44} +5.43681 q^{46} -273.595 q^{47} +49.0000 q^{49} -23.2732 q^{50} -300.549 q^{52} +163.247 q^{53} +166.777 q^{55} +24.7787 q^{56} -3.61049 q^{58} -650.249 q^{59} +257.506 q^{61} +42.1710 q^{62} -493.185 q^{64} -573.125 q^{65} -399.767 q^{67} -491.052 q^{68} +23.5527 q^{70} -198.479 q^{71} -226.479 q^{73} -37.9071 q^{74} -433.839 q^{76} -77.0000 q^{77} +138.641 q^{79} -952.453 q^{80} +17.3126 q^{82} -490.784 q^{83} -936.401 q^{85} -10.1020 q^{86} -38.9380 q^{88} -221.276 q^{89} +264.609 q^{91} +194.784 q^{92} +60.7167 q^{94} -827.299 q^{95} +1598.94 q^{97} -10.8742 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + 30 q^{4} - 10 q^{5} + 56 q^{7} - 81 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 6 q^{2} + 30 q^{4} - 10 q^{5} + 56 q^{7} - 81 q^{8} + 9 q^{10} - 88 q^{11} + 16 q^{13} - 42 q^{14} + 122 q^{16} - 90 q^{17} - 42 q^{19} - 291 q^{20} + 66 q^{22} - 338 q^{23} + 244 q^{25} - 209 q^{26} + 210 q^{28} - 496 q^{29} - 8 q^{31} - 524 q^{32} - 302 q^{34} - 70 q^{35} - 360 q^{37} - 45 q^{38} - 6 q^{40} - 242 q^{41} - 66 q^{43} - 330 q^{44} + 344 q^{46} - 540 q^{47} + 392 q^{49} - 1171 q^{50} + 465 q^{52} - 906 q^{53} + 110 q^{55} - 567 q^{56} + 977 q^{58} - 1242 q^{59} - 318 q^{61} + 110 q^{62} + 525 q^{64} - 1258 q^{65} + 522 q^{67} - 678 q^{68} + 63 q^{70} - 858 q^{71} - 78 q^{73} - 1651 q^{74} + 1775 q^{76} - 616 q^{77} + 516 q^{79} - 567 q^{80} - 1212 q^{82} - 3192 q^{83} + 720 q^{85} - 1322 q^{86} + 891 q^{88} - 2356 q^{89} + 112 q^{91} - 4504 q^{92} - 423 q^{94} - 3308 q^{95} - 1556 q^{97} - 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.221922 −0.0784611 −0.0392306 0.999230i \(-0.512491\pi\)
−0.0392306 + 0.999230i \(0.512491\pi\)
\(3\) 0 0
\(4\) −7.95075 −0.993844
\(5\) −15.1615 −1.35609 −0.678043 0.735022i \(-0.737172\pi\)
−0.678043 + 0.735022i \(0.737172\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 3.53982 0.156439
\(9\) 0 0
\(10\) 3.36467 0.106400
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 37.8013 0.806477 0.403239 0.915095i \(-0.367884\pi\)
0.403239 + 0.915095i \(0.367884\pi\)
\(14\) −1.55345 −0.0296555
\(15\) 0 0
\(16\) 62.8204 0.981569
\(17\) 61.7617 0.881142 0.440571 0.897718i \(-0.354776\pi\)
0.440571 + 0.897718i \(0.354776\pi\)
\(18\) 0 0
\(19\) 54.5657 0.658855 0.329427 0.944181i \(-0.393144\pi\)
0.329427 + 0.944181i \(0.393144\pi\)
\(20\) 120.545 1.34774
\(21\) 0 0
\(22\) 2.44114 0.0236569
\(23\) −24.4988 −0.222102 −0.111051 0.993815i \(-0.535422\pi\)
−0.111051 + 0.993815i \(0.535422\pi\)
\(24\) 0 0
\(25\) 104.871 0.838972
\(26\) −8.38893 −0.0632771
\(27\) 0 0
\(28\) −55.6553 −0.375638
\(29\) 16.2692 0.104176 0.0520882 0.998642i \(-0.483412\pi\)
0.0520882 + 0.998642i \(0.483412\pi\)
\(30\) 0 0
\(31\) −190.027 −1.10096 −0.550481 0.834848i \(-0.685556\pi\)
−0.550481 + 0.834848i \(0.685556\pi\)
\(32\) −42.2597 −0.233454
\(33\) 0 0
\(34\) −13.7063 −0.0691354
\(35\) −106.131 −0.512553
\(36\) 0 0
\(37\) 170.813 0.758958 0.379479 0.925200i \(-0.376103\pi\)
0.379479 + 0.925200i \(0.376103\pi\)
\(38\) −12.1093 −0.0516945
\(39\) 0 0
\(40\) −53.6690 −0.212145
\(41\) −78.0123 −0.297158 −0.148579 0.988901i \(-0.547470\pi\)
−0.148579 + 0.988901i \(0.547470\pi\)
\(42\) 0 0
\(43\) 45.5205 0.161437 0.0807186 0.996737i \(-0.474278\pi\)
0.0807186 + 0.996737i \(0.474278\pi\)
\(44\) 87.4583 0.299655
\(45\) 0 0
\(46\) 5.43681 0.0174264
\(47\) −273.595 −0.849105 −0.424553 0.905403i \(-0.639569\pi\)
−0.424553 + 0.905403i \(0.639569\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −23.2732 −0.0658267
\(51\) 0 0
\(52\) −300.549 −0.801512
\(53\) 163.247 0.423088 0.211544 0.977368i \(-0.432151\pi\)
0.211544 + 0.977368i \(0.432151\pi\)
\(54\) 0 0
\(55\) 166.777 0.408876
\(56\) 24.7787 0.0591285
\(57\) 0 0
\(58\) −3.61049 −0.00817379
\(59\) −650.249 −1.43483 −0.717417 0.696644i \(-0.754676\pi\)
−0.717417 + 0.696644i \(0.754676\pi\)
\(60\) 0 0
\(61\) 257.506 0.540496 0.270248 0.962791i \(-0.412894\pi\)
0.270248 + 0.962791i \(0.412894\pi\)
\(62\) 42.1710 0.0863827
\(63\) 0 0
\(64\) −493.185 −0.963252
\(65\) −573.125 −1.09365
\(66\) 0 0
\(67\) −399.767 −0.728945 −0.364473 0.931214i \(-0.618751\pi\)
−0.364473 + 0.931214i \(0.618751\pi\)
\(68\) −491.052 −0.875717
\(69\) 0 0
\(70\) 23.5527 0.0402155
\(71\) −198.479 −0.331763 −0.165881 0.986146i \(-0.553047\pi\)
−0.165881 + 0.986146i \(0.553047\pi\)
\(72\) 0 0
\(73\) −226.479 −0.363114 −0.181557 0.983380i \(-0.558114\pi\)
−0.181557 + 0.983380i \(0.558114\pi\)
\(74\) −37.9071 −0.0595487
\(75\) 0 0
\(76\) −433.839 −0.654799
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 138.641 0.197447 0.0987234 0.995115i \(-0.468524\pi\)
0.0987234 + 0.995115i \(0.468524\pi\)
\(80\) −952.453 −1.33109
\(81\) 0 0
\(82\) 17.3126 0.0233154
\(83\) −490.784 −0.649043 −0.324521 0.945878i \(-0.605203\pi\)
−0.324521 + 0.945878i \(0.605203\pi\)
\(84\) 0 0
\(85\) −936.401 −1.19491
\(86\) −10.1020 −0.0126666
\(87\) 0 0
\(88\) −38.9380 −0.0471682
\(89\) −221.276 −0.263542 −0.131771 0.991280i \(-0.542066\pi\)
−0.131771 + 0.991280i \(0.542066\pi\)
\(90\) 0 0
\(91\) 264.609 0.304820
\(92\) 194.784 0.220735
\(93\) 0 0
\(94\) 60.7167 0.0666218
\(95\) −827.299 −0.893464
\(96\) 0 0
\(97\) 1598.94 1.67369 0.836846 0.547438i \(-0.184397\pi\)
0.836846 + 0.547438i \(0.184397\pi\)
\(98\) −10.8742 −0.0112087
\(99\) 0 0
\(100\) −833.807 −0.833807
\(101\) −1770.89 −1.74465 −0.872326 0.488924i \(-0.837389\pi\)
−0.872326 + 0.488924i \(0.837389\pi\)
\(102\) 0 0
\(103\) 1159.21 1.10893 0.554466 0.832206i \(-0.312923\pi\)
0.554466 + 0.832206i \(0.312923\pi\)
\(104\) 133.810 0.126165
\(105\) 0 0
\(106\) −36.2280 −0.0331960
\(107\) −1334.93 −1.20610 −0.603050 0.797703i \(-0.706048\pi\)
−0.603050 + 0.797703i \(0.706048\pi\)
\(108\) 0 0
\(109\) 382.778 0.336362 0.168181 0.985756i \(-0.446211\pi\)
0.168181 + 0.985756i \(0.446211\pi\)
\(110\) −37.0113 −0.0320808
\(111\) 0 0
\(112\) 439.743 0.370998
\(113\) −641.007 −0.533636 −0.266818 0.963747i \(-0.585972\pi\)
−0.266818 + 0.963747i \(0.585972\pi\)
\(114\) 0 0
\(115\) 371.438 0.301190
\(116\) −129.352 −0.103535
\(117\) 0 0
\(118\) 144.304 0.112579
\(119\) 432.332 0.333040
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −57.1462 −0.0424080
\(123\) 0 0
\(124\) 1510.86 1.09418
\(125\) 305.179 0.218368
\(126\) 0 0
\(127\) −574.823 −0.401632 −0.200816 0.979629i \(-0.564359\pi\)
−0.200816 + 0.979629i \(0.564359\pi\)
\(128\) 447.526 0.309032
\(129\) 0 0
\(130\) 127.189 0.0858093
\(131\) 733.130 0.488961 0.244480 0.969654i \(-0.421383\pi\)
0.244480 + 0.969654i \(0.421383\pi\)
\(132\) 0 0
\(133\) 381.960 0.249024
\(134\) 88.7170 0.0571939
\(135\) 0 0
\(136\) 218.625 0.137845
\(137\) 700.501 0.436846 0.218423 0.975854i \(-0.429909\pi\)
0.218423 + 0.975854i \(0.429909\pi\)
\(138\) 0 0
\(139\) 619.481 0.378012 0.189006 0.981976i \(-0.439473\pi\)
0.189006 + 0.981976i \(0.439473\pi\)
\(140\) 843.818 0.509397
\(141\) 0 0
\(142\) 44.0469 0.0260305
\(143\) −415.815 −0.243162
\(144\) 0 0
\(145\) −246.666 −0.141272
\(146\) 50.2605 0.0284904
\(147\) 0 0
\(148\) −1358.09 −0.754286
\(149\) −2598.45 −1.42868 −0.714339 0.699800i \(-0.753273\pi\)
−0.714339 + 0.699800i \(0.753273\pi\)
\(150\) 0 0
\(151\) −2195.71 −1.18334 −0.591669 0.806181i \(-0.701531\pi\)
−0.591669 + 0.806181i \(0.701531\pi\)
\(152\) 193.153 0.103071
\(153\) 0 0
\(154\) 17.0880 0.00894148
\(155\) 2881.09 1.49300
\(156\) 0 0
\(157\) −1585.74 −0.806090 −0.403045 0.915180i \(-0.632048\pi\)
−0.403045 + 0.915180i \(0.632048\pi\)
\(158\) −30.7674 −0.0154919
\(159\) 0 0
\(160\) 640.722 0.316584
\(161\) −171.491 −0.0839467
\(162\) 0 0
\(163\) 2688.22 1.29176 0.645882 0.763437i \(-0.276490\pi\)
0.645882 + 0.763437i \(0.276490\pi\)
\(164\) 620.256 0.295329
\(165\) 0 0
\(166\) 108.916 0.0509246
\(167\) −2366.77 −1.09668 −0.548342 0.836254i \(-0.684741\pi\)
−0.548342 + 0.836254i \(0.684741\pi\)
\(168\) 0 0
\(169\) −768.059 −0.349594
\(170\) 207.808 0.0937536
\(171\) 0 0
\(172\) −361.922 −0.160443
\(173\) 960.924 0.422299 0.211149 0.977454i \(-0.432279\pi\)
0.211149 + 0.977454i \(0.432279\pi\)
\(174\) 0 0
\(175\) 734.100 0.317102
\(176\) −691.025 −0.295954
\(177\) 0 0
\(178\) 49.1060 0.0206778
\(179\) −1270.38 −0.530464 −0.265232 0.964185i \(-0.585448\pi\)
−0.265232 + 0.964185i \(0.585448\pi\)
\(180\) 0 0
\(181\) −1066.57 −0.437999 −0.218999 0.975725i \(-0.570279\pi\)
−0.218999 + 0.975725i \(0.570279\pi\)
\(182\) −58.7225 −0.0239165
\(183\) 0 0
\(184\) −86.7212 −0.0347455
\(185\) −2589.78 −1.02921
\(186\) 0 0
\(187\) −679.379 −0.265674
\(188\) 2175.29 0.843878
\(189\) 0 0
\(190\) 183.596 0.0701022
\(191\) 946.790 0.358677 0.179339 0.983787i \(-0.442604\pi\)
0.179339 + 0.983787i \(0.442604\pi\)
\(192\) 0 0
\(193\) −3405.75 −1.27022 −0.635108 0.772424i \(-0.719044\pi\)
−0.635108 + 0.772424i \(0.719044\pi\)
\(194\) −354.840 −0.131320
\(195\) 0 0
\(196\) −389.587 −0.141978
\(197\) 3923.90 1.41912 0.709558 0.704647i \(-0.248894\pi\)
0.709558 + 0.704647i \(0.248894\pi\)
\(198\) 0 0
\(199\) −2560.58 −0.912136 −0.456068 0.889945i \(-0.650743\pi\)
−0.456068 + 0.889945i \(0.650743\pi\)
\(200\) 371.226 0.131248
\(201\) 0 0
\(202\) 392.998 0.136887
\(203\) 113.884 0.0393749
\(204\) 0 0
\(205\) 1182.78 0.402972
\(206\) −257.253 −0.0870081
\(207\) 0 0
\(208\) 2374.70 0.791613
\(209\) −600.223 −0.198652
\(210\) 0 0
\(211\) −5739.00 −1.87246 −0.936230 0.351387i \(-0.885710\pi\)
−0.936230 + 0.351387i \(0.885710\pi\)
\(212\) −1297.93 −0.420483
\(213\) 0 0
\(214\) 296.250 0.0946321
\(215\) −690.159 −0.218923
\(216\) 0 0
\(217\) −1330.19 −0.416124
\(218\) −84.9468 −0.0263914
\(219\) 0 0
\(220\) −1326.00 −0.406359
\(221\) 2334.67 0.710621
\(222\) 0 0
\(223\) 2730.77 0.820025 0.410012 0.912080i \(-0.365524\pi\)
0.410012 + 0.912080i \(0.365524\pi\)
\(224\) −295.818 −0.0882374
\(225\) 0 0
\(226\) 142.253 0.0418697
\(227\) −2118.19 −0.619336 −0.309668 0.950845i \(-0.600218\pi\)
−0.309668 + 0.950845i \(0.600218\pi\)
\(228\) 0 0
\(229\) −2821.55 −0.814207 −0.407104 0.913382i \(-0.633461\pi\)
−0.407104 + 0.913382i \(0.633461\pi\)
\(230\) −82.4302 −0.0236317
\(231\) 0 0
\(232\) 57.5900 0.0162973
\(233\) −6838.94 −1.92289 −0.961445 0.274996i \(-0.911324\pi\)
−0.961445 + 0.274996i \(0.911324\pi\)
\(234\) 0 0
\(235\) 4148.12 1.15146
\(236\) 5169.96 1.42600
\(237\) 0 0
\(238\) −95.9438 −0.0261307
\(239\) −3473.80 −0.940174 −0.470087 0.882620i \(-0.655777\pi\)
−0.470087 + 0.882620i \(0.655777\pi\)
\(240\) 0 0
\(241\) 1672.96 0.447156 0.223578 0.974686i \(-0.428226\pi\)
0.223578 + 0.974686i \(0.428226\pi\)
\(242\) −26.8525 −0.00713283
\(243\) 0 0
\(244\) −2047.37 −0.537169
\(245\) −742.914 −0.193727
\(246\) 0 0
\(247\) 2062.66 0.531351
\(248\) −672.660 −0.172234
\(249\) 0 0
\(250\) −67.7258 −0.0171334
\(251\) 4468.56 1.12372 0.561859 0.827233i \(-0.310086\pi\)
0.561859 + 0.827233i \(0.310086\pi\)
\(252\) 0 0
\(253\) 269.487 0.0669663
\(254\) 127.566 0.0315125
\(255\) 0 0
\(256\) 3846.17 0.939005
\(257\) −643.728 −0.156244 −0.0781219 0.996944i \(-0.524892\pi\)
−0.0781219 + 0.996944i \(0.524892\pi\)
\(258\) 0 0
\(259\) 1195.69 0.286859
\(260\) 4556.78 1.08692
\(261\) 0 0
\(262\) −162.697 −0.0383644
\(263\) 4100.67 0.961438 0.480719 0.876875i \(-0.340376\pi\)
0.480719 + 0.876875i \(0.340376\pi\)
\(264\) 0 0
\(265\) −2475.07 −0.573744
\(266\) −84.7652 −0.0195387
\(267\) 0 0
\(268\) 3178.45 0.724458
\(269\) −1869.88 −0.423823 −0.211912 0.977289i \(-0.567969\pi\)
−0.211912 + 0.977289i \(0.567969\pi\)
\(270\) 0 0
\(271\) 5446.72 1.22090 0.610451 0.792054i \(-0.290988\pi\)
0.610451 + 0.792054i \(0.290988\pi\)
\(272\) 3879.90 0.864902
\(273\) 0 0
\(274\) −155.456 −0.0342754
\(275\) −1153.59 −0.252960
\(276\) 0 0
\(277\) −2570.87 −0.557648 −0.278824 0.960342i \(-0.589945\pi\)
−0.278824 + 0.960342i \(0.589945\pi\)
\(278\) −137.476 −0.0296593
\(279\) 0 0
\(280\) −375.683 −0.0801834
\(281\) 6127.68 1.30088 0.650439 0.759559i \(-0.274585\pi\)
0.650439 + 0.759559i \(0.274585\pi\)
\(282\) 0 0
\(283\) −1634.83 −0.343395 −0.171698 0.985150i \(-0.554925\pi\)
−0.171698 + 0.985150i \(0.554925\pi\)
\(284\) 1578.06 0.329720
\(285\) 0 0
\(286\) 92.2783 0.0190788
\(287\) −546.086 −0.112315
\(288\) 0 0
\(289\) −1098.49 −0.223589
\(290\) 54.7404 0.0110844
\(291\) 0 0
\(292\) 1800.68 0.360879
\(293\) 5802.05 1.15686 0.578429 0.815733i \(-0.303666\pi\)
0.578429 + 0.815733i \(0.303666\pi\)
\(294\) 0 0
\(295\) 9858.75 1.94576
\(296\) 604.646 0.118731
\(297\) 0 0
\(298\) 576.652 0.112096
\(299\) −926.086 −0.179120
\(300\) 0 0
\(301\) 318.643 0.0610176
\(302\) 487.275 0.0928461
\(303\) 0 0
\(304\) 3427.84 0.646712
\(305\) −3904.18 −0.732960
\(306\) 0 0
\(307\) 1012.73 0.188273 0.0941365 0.995559i \(-0.469991\pi\)
0.0941365 + 0.995559i \(0.469991\pi\)
\(308\) 612.208 0.113259
\(309\) 0 0
\(310\) −639.377 −0.117142
\(311\) −5612.02 −1.02324 −0.511621 0.859211i \(-0.670955\pi\)
−0.511621 + 0.859211i \(0.670955\pi\)
\(312\) 0 0
\(313\) −9363.85 −1.69098 −0.845489 0.533994i \(-0.820691\pi\)
−0.845489 + 0.533994i \(0.820691\pi\)
\(314\) 351.911 0.0632467
\(315\) 0 0
\(316\) −1102.30 −0.196231
\(317\) 7870.51 1.39449 0.697243 0.716835i \(-0.254410\pi\)
0.697243 + 0.716835i \(0.254410\pi\)
\(318\) 0 0
\(319\) −178.961 −0.0314103
\(320\) 7477.43 1.30625
\(321\) 0 0
\(322\) 38.0577 0.00658655
\(323\) 3370.07 0.580544
\(324\) 0 0
\(325\) 3964.28 0.676612
\(326\) −596.574 −0.101353
\(327\) 0 0
\(328\) −276.149 −0.0464872
\(329\) −1915.17 −0.320932
\(330\) 0 0
\(331\) −9672.26 −1.60615 −0.803075 0.595878i \(-0.796804\pi\)
−0.803075 + 0.595878i \(0.796804\pi\)
\(332\) 3902.10 0.645047
\(333\) 0 0
\(334\) 525.238 0.0860471
\(335\) 6061.08 0.988513
\(336\) 0 0
\(337\) 3705.97 0.599042 0.299521 0.954090i \(-0.403173\pi\)
0.299521 + 0.954090i \(0.403173\pi\)
\(338\) 170.449 0.0274296
\(339\) 0 0
\(340\) 7445.09 1.18755
\(341\) 2090.29 0.331952
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 161.134 0.0252551
\(345\) 0 0
\(346\) −213.250 −0.0331340
\(347\) −4360.40 −0.674578 −0.337289 0.941401i \(-0.609510\pi\)
−0.337289 + 0.941401i \(0.609510\pi\)
\(348\) 0 0
\(349\) −5327.66 −0.817144 −0.408572 0.912726i \(-0.633973\pi\)
−0.408572 + 0.912726i \(0.633973\pi\)
\(350\) −162.913 −0.0248802
\(351\) 0 0
\(352\) 464.857 0.0703891
\(353\) 8697.75 1.31143 0.655715 0.755009i \(-0.272367\pi\)
0.655715 + 0.755009i \(0.272367\pi\)
\(354\) 0 0
\(355\) 3009.25 0.449899
\(356\) 1759.31 0.261920
\(357\) 0 0
\(358\) 281.926 0.0416208
\(359\) −1904.47 −0.279984 −0.139992 0.990153i \(-0.544708\pi\)
−0.139992 + 0.990153i \(0.544708\pi\)
\(360\) 0 0
\(361\) −3881.58 −0.565910
\(362\) 236.696 0.0343659
\(363\) 0 0
\(364\) −2103.84 −0.302943
\(365\) 3433.76 0.492414
\(366\) 0 0
\(367\) 11523.2 1.63898 0.819492 0.573090i \(-0.194256\pi\)
0.819492 + 0.573090i \(0.194256\pi\)
\(368\) −1539.02 −0.218009
\(369\) 0 0
\(370\) 574.729 0.0807533
\(371\) 1142.73 0.159912
\(372\) 0 0
\(373\) −8410.72 −1.16753 −0.583767 0.811921i \(-0.698422\pi\)
−0.583767 + 0.811921i \(0.698422\pi\)
\(374\) 150.769 0.0208451
\(375\) 0 0
\(376\) −968.477 −0.132833
\(377\) 614.997 0.0840158
\(378\) 0 0
\(379\) −1474.83 −0.199886 −0.0999429 0.994993i \(-0.531866\pi\)
−0.0999429 + 0.994993i \(0.531866\pi\)
\(380\) 6577.65 0.887964
\(381\) 0 0
\(382\) −210.113 −0.0281422
\(383\) 14807.8 1.97558 0.987788 0.155805i \(-0.0497970\pi\)
0.987788 + 0.155805i \(0.0497970\pi\)
\(384\) 0 0
\(385\) 1167.44 0.154540
\(386\) 755.811 0.0996625
\(387\) 0 0
\(388\) −12712.8 −1.66339
\(389\) −7886.38 −1.02791 −0.513953 0.857818i \(-0.671819\pi\)
−0.513953 + 0.857818i \(0.671819\pi\)
\(390\) 0 0
\(391\) −1513.09 −0.195703
\(392\) 173.451 0.0223485
\(393\) 0 0
\(394\) −870.797 −0.111346
\(395\) −2102.00 −0.267755
\(396\) 0 0
\(397\) −9140.36 −1.15552 −0.577760 0.816207i \(-0.696073\pi\)
−0.577760 + 0.816207i \(0.696073\pi\)
\(398\) 568.249 0.0715672
\(399\) 0 0
\(400\) 6588.07 0.823509
\(401\) −3110.82 −0.387399 −0.193700 0.981061i \(-0.562049\pi\)
−0.193700 + 0.981061i \(0.562049\pi\)
\(402\) 0 0
\(403\) −7183.27 −0.887901
\(404\) 14079.9 1.73391
\(405\) 0 0
\(406\) −25.2734 −0.00308940
\(407\) −1878.94 −0.228835
\(408\) 0 0
\(409\) 4395.82 0.531441 0.265721 0.964050i \(-0.414390\pi\)
0.265721 + 0.964050i \(0.414390\pi\)
\(410\) −262.485 −0.0316176
\(411\) 0 0
\(412\) −9216.56 −1.10211
\(413\) −4551.74 −0.542316
\(414\) 0 0
\(415\) 7441.03 0.880158
\(416\) −1597.48 −0.188276
\(417\) 0 0
\(418\) 133.202 0.0155865
\(419\) −13680.4 −1.59506 −0.797532 0.603277i \(-0.793861\pi\)
−0.797532 + 0.603277i \(0.793861\pi\)
\(420\) 0 0
\(421\) 4972.96 0.575694 0.287847 0.957676i \(-0.407060\pi\)
0.287847 + 0.957676i \(0.407060\pi\)
\(422\) 1273.61 0.146915
\(423\) 0 0
\(424\) 577.863 0.0661876
\(425\) 6477.04 0.739253
\(426\) 0 0
\(427\) 1802.54 0.204288
\(428\) 10613.7 1.19868
\(429\) 0 0
\(430\) 153.161 0.0171770
\(431\) −11287.7 −1.26151 −0.630753 0.775984i \(-0.717254\pi\)
−0.630753 + 0.775984i \(0.717254\pi\)
\(432\) 0 0
\(433\) 1261.97 0.140061 0.0700303 0.997545i \(-0.477690\pi\)
0.0700303 + 0.997545i \(0.477690\pi\)
\(434\) 295.197 0.0326496
\(435\) 0 0
\(436\) −3043.37 −0.334292
\(437\) −1336.79 −0.146333
\(438\) 0 0
\(439\) −7735.83 −0.841027 −0.420514 0.907286i \(-0.638150\pi\)
−0.420514 + 0.907286i \(0.638150\pi\)
\(440\) 590.359 0.0639642
\(441\) 0 0
\(442\) −518.115 −0.0557561
\(443\) 6696.73 0.718219 0.359110 0.933295i \(-0.383080\pi\)
0.359110 + 0.933295i \(0.383080\pi\)
\(444\) 0 0
\(445\) 3354.88 0.357386
\(446\) −606.016 −0.0643401
\(447\) 0 0
\(448\) −3452.30 −0.364075
\(449\) −11839.5 −1.24442 −0.622208 0.782852i \(-0.713764\pi\)
−0.622208 + 0.782852i \(0.713764\pi\)
\(450\) 0 0
\(451\) 858.135 0.0895965
\(452\) 5096.49 0.530351
\(453\) 0 0
\(454\) 470.073 0.0485938
\(455\) −4011.88 −0.413362
\(456\) 0 0
\(457\) −9116.78 −0.933183 −0.466592 0.884473i \(-0.654518\pi\)
−0.466592 + 0.884473i \(0.654518\pi\)
\(458\) 626.163 0.0638836
\(459\) 0 0
\(460\) −2953.21 −0.299336
\(461\) −9601.92 −0.970078 −0.485039 0.874492i \(-0.661195\pi\)
−0.485039 + 0.874492i \(0.661195\pi\)
\(462\) 0 0
\(463\) 10049.0 1.00867 0.504337 0.863507i \(-0.331737\pi\)
0.504337 + 0.863507i \(0.331737\pi\)
\(464\) 1022.04 0.102256
\(465\) 0 0
\(466\) 1517.71 0.150872
\(467\) −53.2684 −0.00527831 −0.00263915 0.999997i \(-0.500840\pi\)
−0.00263915 + 0.999997i \(0.500840\pi\)
\(468\) 0 0
\(469\) −2798.37 −0.275515
\(470\) −920.557 −0.0903449
\(471\) 0 0
\(472\) −2301.76 −0.224464
\(473\) −500.725 −0.0486752
\(474\) 0 0
\(475\) 5722.39 0.552761
\(476\) −3437.36 −0.330990
\(477\) 0 0
\(478\) 770.912 0.0737671
\(479\) 1553.49 0.148185 0.0740926 0.997251i \(-0.476394\pi\)
0.0740926 + 0.997251i \(0.476394\pi\)
\(480\) 0 0
\(481\) 6456.95 0.612083
\(482\) −371.266 −0.0350844
\(483\) 0 0
\(484\) −962.041 −0.0903494
\(485\) −24242.4 −2.26967
\(486\) 0 0
\(487\) −4340.19 −0.403845 −0.201923 0.979401i \(-0.564719\pi\)
−0.201923 + 0.979401i \(0.564719\pi\)
\(488\) 911.525 0.0845549
\(489\) 0 0
\(490\) 164.869 0.0152000
\(491\) 304.844 0.0280192 0.0140096 0.999902i \(-0.495540\pi\)
0.0140096 + 0.999902i \(0.495540\pi\)
\(492\) 0 0
\(493\) 1004.81 0.0917941
\(494\) −457.748 −0.0416904
\(495\) 0 0
\(496\) −11937.6 −1.08067
\(497\) −1389.36 −0.125395
\(498\) 0 0
\(499\) 14238.0 1.27732 0.638658 0.769491i \(-0.279490\pi\)
0.638658 + 0.769491i \(0.279490\pi\)
\(500\) −2426.40 −0.217024
\(501\) 0 0
\(502\) −991.671 −0.0881682
\(503\) 863.867 0.0765764 0.0382882 0.999267i \(-0.487810\pi\)
0.0382882 + 0.999267i \(0.487810\pi\)
\(504\) 0 0
\(505\) 26849.3 2.36590
\(506\) −59.8049 −0.00525425
\(507\) 0 0
\(508\) 4570.28 0.399160
\(509\) 15882.5 1.38307 0.691533 0.722345i \(-0.256936\pi\)
0.691533 + 0.722345i \(0.256936\pi\)
\(510\) 0 0
\(511\) −1585.35 −0.137244
\(512\) −4433.76 −0.382708
\(513\) 0 0
\(514\) 142.857 0.0122591
\(515\) −17575.3 −1.50381
\(516\) 0 0
\(517\) 3009.55 0.256015
\(518\) −265.349 −0.0225073
\(519\) 0 0
\(520\) −2028.76 −0.171090
\(521\) 3222.11 0.270946 0.135473 0.990781i \(-0.456745\pi\)
0.135473 + 0.990781i \(0.456745\pi\)
\(522\) 0 0
\(523\) −15897.9 −1.32919 −0.664595 0.747203i \(-0.731396\pi\)
−0.664595 + 0.747203i \(0.731396\pi\)
\(524\) −5828.94 −0.485951
\(525\) 0 0
\(526\) −910.028 −0.0754355
\(527\) −11736.4 −0.970104
\(528\) 0 0
\(529\) −11566.8 −0.950671
\(530\) 549.271 0.0450166
\(531\) 0 0
\(532\) −3036.87 −0.247491
\(533\) −2948.97 −0.239651
\(534\) 0 0
\(535\) 20239.6 1.63558
\(536\) −1415.10 −0.114036
\(537\) 0 0
\(538\) 414.966 0.0332537
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 5790.34 0.460159 0.230080 0.973172i \(-0.426101\pi\)
0.230080 + 0.973172i \(0.426101\pi\)
\(542\) −1208.74 −0.0957934
\(543\) 0 0
\(544\) −2610.03 −0.205706
\(545\) −5803.50 −0.456137
\(546\) 0 0
\(547\) −394.656 −0.0308487 −0.0154244 0.999881i \(-0.504910\pi\)
−0.0154244 + 0.999881i \(0.504910\pi\)
\(548\) −5569.51 −0.434156
\(549\) 0 0
\(550\) 256.006 0.0198475
\(551\) 887.740 0.0686370
\(552\) 0 0
\(553\) 970.485 0.0746279
\(554\) 570.531 0.0437537
\(555\) 0 0
\(556\) −4925.34 −0.375685
\(557\) −20388.5 −1.55097 −0.775484 0.631367i \(-0.782494\pi\)
−0.775484 + 0.631367i \(0.782494\pi\)
\(558\) 0 0
\(559\) 1720.73 0.130196
\(560\) −6667.17 −0.503106
\(561\) 0 0
\(562\) −1359.86 −0.102068
\(563\) 9186.83 0.687707 0.343853 0.939023i \(-0.388268\pi\)
0.343853 + 0.939023i \(0.388268\pi\)
\(564\) 0 0
\(565\) 9718.64 0.723657
\(566\) 362.805 0.0269432
\(567\) 0 0
\(568\) −702.580 −0.0519007
\(569\) −20287.6 −1.49473 −0.747364 0.664415i \(-0.768681\pi\)
−0.747364 + 0.664415i \(0.768681\pi\)
\(570\) 0 0
\(571\) 16177.3 1.18564 0.592818 0.805337i \(-0.298015\pi\)
0.592818 + 0.805337i \(0.298015\pi\)
\(572\) 3306.04 0.241665
\(573\) 0 0
\(574\) 121.188 0.00881237
\(575\) −2569.22 −0.186337
\(576\) 0 0
\(577\) −3080.98 −0.222293 −0.111146 0.993804i \(-0.535452\pi\)
−0.111146 + 0.993804i \(0.535452\pi\)
\(578\) 243.779 0.0175430
\(579\) 0 0
\(580\) 1961.18 0.140402
\(581\) −3435.49 −0.245315
\(582\) 0 0
\(583\) −1795.71 −0.127566
\(584\) −801.693 −0.0568053
\(585\) 0 0
\(586\) −1287.60 −0.0907684
\(587\) 13470.3 0.947154 0.473577 0.880752i \(-0.342963\pi\)
0.473577 + 0.880752i \(0.342963\pi\)
\(588\) 0 0
\(589\) −10369.0 −0.725374
\(590\) −2187.87 −0.152666
\(591\) 0 0
\(592\) 10730.5 0.744970
\(593\) 9759.61 0.675850 0.337925 0.941173i \(-0.390275\pi\)
0.337925 + 0.941173i \(0.390275\pi\)
\(594\) 0 0
\(595\) −6554.81 −0.451632
\(596\) 20659.6 1.41988
\(597\) 0 0
\(598\) 205.519 0.0140540
\(599\) −26993.6 −1.84128 −0.920642 0.390407i \(-0.872334\pi\)
−0.920642 + 0.390407i \(0.872334\pi\)
\(600\) 0 0
\(601\) 921.111 0.0625173 0.0312587 0.999511i \(-0.490048\pi\)
0.0312587 + 0.999511i \(0.490048\pi\)
\(602\) −70.7138 −0.00478751
\(603\) 0 0
\(604\) 17457.5 1.17605
\(605\) −1834.54 −0.123281
\(606\) 0 0
\(607\) 8954.12 0.598742 0.299371 0.954137i \(-0.403223\pi\)
0.299371 + 0.954137i \(0.403223\pi\)
\(608\) −2305.93 −0.153812
\(609\) 0 0
\(610\) 866.423 0.0575089
\(611\) −10342.3 −0.684784
\(612\) 0 0
\(613\) 3495.30 0.230300 0.115150 0.993348i \(-0.463265\pi\)
0.115150 + 0.993348i \(0.463265\pi\)
\(614\) −224.748 −0.0147721
\(615\) 0 0
\(616\) −272.566 −0.0178279
\(617\) −703.452 −0.0458994 −0.0229497 0.999737i \(-0.507306\pi\)
−0.0229497 + 0.999737i \(0.507306\pi\)
\(618\) 0 0
\(619\) −22343.8 −1.45084 −0.725421 0.688305i \(-0.758355\pi\)
−0.725421 + 0.688305i \(0.758355\pi\)
\(620\) −22906.9 −1.48381
\(621\) 0 0
\(622\) 1245.43 0.0802848
\(623\) −1548.93 −0.0996095
\(624\) 0 0
\(625\) −17735.9 −1.13510
\(626\) 2078.04 0.132676
\(627\) 0 0
\(628\) 12607.8 0.801127
\(629\) 10549.7 0.668750
\(630\) 0 0
\(631\) −2517.59 −0.158833 −0.0794166 0.996842i \(-0.525306\pi\)
−0.0794166 + 0.996842i \(0.525306\pi\)
\(632\) 490.762 0.0308884
\(633\) 0 0
\(634\) −1746.64 −0.109413
\(635\) 8715.19 0.544649
\(636\) 0 0
\(637\) 1852.27 0.115211
\(638\) 39.7153 0.00246449
\(639\) 0 0
\(640\) −6785.18 −0.419075
\(641\) 27413.1 1.68916 0.844581 0.535427i \(-0.179849\pi\)
0.844581 + 0.535427i \(0.179849\pi\)
\(642\) 0 0
\(643\) −14594.3 −0.895090 −0.447545 0.894261i \(-0.647702\pi\)
−0.447545 + 0.894261i \(0.647702\pi\)
\(644\) 1363.49 0.0834299
\(645\) 0 0
\(646\) −747.892 −0.0455502
\(647\) −30744.2 −1.86813 −0.934065 0.357102i \(-0.883765\pi\)
−0.934065 + 0.357102i \(0.883765\pi\)
\(648\) 0 0
\(649\) 7152.73 0.432618
\(650\) −879.760 −0.0530877
\(651\) 0 0
\(652\) −21373.4 −1.28381
\(653\) 963.185 0.0577218 0.0288609 0.999583i \(-0.490812\pi\)
0.0288609 + 0.999583i \(0.490812\pi\)
\(654\) 0 0
\(655\) −11115.4 −0.663074
\(656\) −4900.77 −0.291681
\(657\) 0 0
\(658\) 425.017 0.0251807
\(659\) −19165.9 −1.13292 −0.566461 0.824088i \(-0.691688\pi\)
−0.566461 + 0.824088i \(0.691688\pi\)
\(660\) 0 0
\(661\) 1337.15 0.0786825 0.0393412 0.999226i \(-0.487474\pi\)
0.0393412 + 0.999226i \(0.487474\pi\)
\(662\) 2146.48 0.126020
\(663\) 0 0
\(664\) −1737.29 −0.101536
\(665\) −5791.09 −0.337698
\(666\) 0 0
\(667\) −398.575 −0.0231378
\(668\) 18817.6 1.08993
\(669\) 0 0
\(670\) −1345.08 −0.0775599
\(671\) −2832.57 −0.162966
\(672\) 0 0
\(673\) −25541.2 −1.46291 −0.731456 0.681889i \(-0.761159\pi\)
−0.731456 + 0.681889i \(0.761159\pi\)
\(674\) −822.436 −0.0470016
\(675\) 0 0
\(676\) 6106.64 0.347442
\(677\) 28339.6 1.60883 0.804417 0.594065i \(-0.202478\pi\)
0.804417 + 0.594065i \(0.202478\pi\)
\(678\) 0 0
\(679\) 11192.6 0.632596
\(680\) −3314.69 −0.186930
\(681\) 0 0
\(682\) −463.882 −0.0260454
\(683\) −29608.1 −1.65875 −0.829373 0.558696i \(-0.811302\pi\)
−0.829373 + 0.558696i \(0.811302\pi\)
\(684\) 0 0
\(685\) −10620.7 −0.592401
\(686\) −76.1191 −0.00423650
\(687\) 0 0
\(688\) 2859.61 0.158462
\(689\) 6170.94 0.341211
\(690\) 0 0
\(691\) −9526.18 −0.524447 −0.262224 0.965007i \(-0.584456\pi\)
−0.262224 + 0.965007i \(0.584456\pi\)
\(692\) −7640.07 −0.419699
\(693\) 0 0
\(694\) 967.667 0.0529282
\(695\) −9392.27 −0.512617
\(696\) 0 0
\(697\) −4818.17 −0.261838
\(698\) 1182.32 0.0641141
\(699\) 0 0
\(700\) −5836.65 −0.315149
\(701\) −9000.24 −0.484928 −0.242464 0.970160i \(-0.577956\pi\)
−0.242464 + 0.970160i \(0.577956\pi\)
\(702\) 0 0
\(703\) 9320.53 0.500043
\(704\) 5425.04 0.290432
\(705\) 0 0
\(706\) −1930.22 −0.102896
\(707\) −12396.2 −0.659417
\(708\) 0 0
\(709\) −26507.1 −1.40409 −0.702043 0.712135i \(-0.747728\pi\)
−0.702043 + 0.712135i \(0.747728\pi\)
\(710\) −667.817 −0.0352996
\(711\) 0 0
\(712\) −783.278 −0.0412283
\(713\) 4655.42 0.244526
\(714\) 0 0
\(715\) 6304.38 0.329749
\(716\) 10100.5 0.527198
\(717\) 0 0
\(718\) 422.643 0.0219678
\(719\) 1142.82 0.0592766 0.0296383 0.999561i \(-0.490564\pi\)
0.0296383 + 0.999561i \(0.490564\pi\)
\(720\) 0 0
\(721\) 8114.44 0.419137
\(722\) 861.407 0.0444020
\(723\) 0 0
\(724\) 8480.06 0.435302
\(725\) 1706.17 0.0874010
\(726\) 0 0
\(727\) 8756.51 0.446714 0.223357 0.974737i \(-0.428298\pi\)
0.223357 + 0.974737i \(0.428298\pi\)
\(728\) 936.669 0.0476858
\(729\) 0 0
\(730\) −762.026 −0.0386354
\(731\) 2811.42 0.142249
\(732\) 0 0
\(733\) 21531.5 1.08497 0.542485 0.840065i \(-0.317483\pi\)
0.542485 + 0.840065i \(0.317483\pi\)
\(734\) −2557.25 −0.128597
\(735\) 0 0
\(736\) 1035.31 0.0518507
\(737\) 4397.44 0.219785
\(738\) 0 0
\(739\) −29052.5 −1.44616 −0.723082 0.690762i \(-0.757275\pi\)
−0.723082 + 0.690762i \(0.757275\pi\)
\(740\) 20590.7 1.02288
\(741\) 0 0
\(742\) −253.596 −0.0125469
\(743\) 21077.0 1.04070 0.520349 0.853954i \(-0.325802\pi\)
0.520349 + 0.853954i \(0.325802\pi\)
\(744\) 0 0
\(745\) 39396.4 1.93741
\(746\) 1866.52 0.0916061
\(747\) 0 0
\(748\) 5401.57 0.264039
\(749\) −9344.53 −0.455863
\(750\) 0 0
\(751\) −20376.3 −0.990068 −0.495034 0.868874i \(-0.664844\pi\)
−0.495034 + 0.868874i \(0.664844\pi\)
\(752\) −17187.4 −0.833456
\(753\) 0 0
\(754\) −136.481 −0.00659198
\(755\) 33290.2 1.60471
\(756\) 0 0
\(757\) 4174.74 0.200441 0.100220 0.994965i \(-0.468045\pi\)
0.100220 + 0.994965i \(0.468045\pi\)
\(758\) 327.296 0.0156833
\(759\) 0 0
\(760\) −2928.49 −0.139773
\(761\) 33842.9 1.61210 0.806048 0.591850i \(-0.201602\pi\)
0.806048 + 0.591850i \(0.201602\pi\)
\(762\) 0 0
\(763\) 2679.45 0.127133
\(764\) −7527.69 −0.356469
\(765\) 0 0
\(766\) −3286.18 −0.155006
\(767\) −24580.3 −1.15716
\(768\) 0 0
\(769\) 35288.8 1.65481 0.827403 0.561608i \(-0.189817\pi\)
0.827403 + 0.561608i \(0.189817\pi\)
\(770\) −259.079 −0.0121254
\(771\) 0 0
\(772\) 27078.3 1.26240
\(773\) −7889.49 −0.367096 −0.183548 0.983011i \(-0.558758\pi\)
−0.183548 + 0.983011i \(0.558758\pi\)
\(774\) 0 0
\(775\) −19928.4 −0.923676
\(776\) 5659.97 0.261831
\(777\) 0 0
\(778\) 1750.16 0.0806507
\(779\) −4256.80 −0.195784
\(780\) 0 0
\(781\) 2183.27 0.100030
\(782\) 335.787 0.0153551
\(783\) 0 0
\(784\) 3078.20 0.140224
\(785\) 24042.3 1.09313
\(786\) 0 0
\(787\) −29792.1 −1.34940 −0.674698 0.738094i \(-0.735726\pi\)
−0.674698 + 0.738094i \(0.735726\pi\)
\(788\) −31197.9 −1.41038
\(789\) 0 0
\(790\) 466.480 0.0210084
\(791\) −4487.05 −0.201696
\(792\) 0 0
\(793\) 9734.08 0.435898
\(794\) 2028.44 0.0906634
\(795\) 0 0
\(796\) 20358.6 0.906520
\(797\) −9484.68 −0.421537 −0.210768 0.977536i \(-0.567597\pi\)
−0.210768 + 0.977536i \(0.567597\pi\)
\(798\) 0 0
\(799\) −16897.7 −0.748182
\(800\) −4431.84 −0.195862
\(801\) 0 0
\(802\) 690.359 0.0303958
\(803\) 2491.27 0.109483
\(804\) 0 0
\(805\) 2600.07 0.113839
\(806\) 1594.12 0.0696657
\(807\) 0 0
\(808\) −6268.62 −0.272932
\(809\) 4355.71 0.189294 0.0946469 0.995511i \(-0.469828\pi\)
0.0946469 + 0.995511i \(0.469828\pi\)
\(810\) 0 0
\(811\) 24779.5 1.07290 0.536452 0.843931i \(-0.319764\pi\)
0.536452 + 0.843931i \(0.319764\pi\)
\(812\) −905.466 −0.0391325
\(813\) 0 0
\(814\) 416.978 0.0179546
\(815\) −40757.5 −1.75174
\(816\) 0 0
\(817\) 2483.86 0.106364
\(818\) −975.528 −0.0416975
\(819\) 0 0
\(820\) −9404.02 −0.400491
\(821\) 11432.8 0.486001 0.243001 0.970026i \(-0.421868\pi\)
0.243001 + 0.970026i \(0.421868\pi\)
\(822\) 0 0
\(823\) −294.772 −0.0124850 −0.00624248 0.999981i \(-0.501987\pi\)
−0.00624248 + 0.999981i \(0.501987\pi\)
\(824\) 4103.38 0.173480
\(825\) 0 0
\(826\) 1010.13 0.0425507
\(827\) −5247.79 −0.220657 −0.110329 0.993895i \(-0.535190\pi\)
−0.110329 + 0.993895i \(0.535190\pi\)
\(828\) 0 0
\(829\) −7639.88 −0.320077 −0.160039 0.987111i \(-0.551162\pi\)
−0.160039 + 0.987111i \(0.551162\pi\)
\(830\) −1651.33 −0.0690582
\(831\) 0 0
\(832\) −18643.1 −0.776841
\(833\) 3026.32 0.125877
\(834\) 0 0
\(835\) 35883.8 1.48720
\(836\) 4772.22 0.197429
\(837\) 0 0
\(838\) 3035.98 0.125150
\(839\) −6424.79 −0.264372 −0.132186 0.991225i \(-0.542200\pi\)
−0.132186 + 0.991225i \(0.542200\pi\)
\(840\) 0 0
\(841\) −24124.3 −0.989147
\(842\) −1103.61 −0.0451696
\(843\) 0 0
\(844\) 45629.4 1.86093
\(845\) 11644.9 0.474080
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 10255.2 0.415290
\(849\) 0 0
\(850\) −1437.40 −0.0580027
\(851\) −4184.71 −0.168566
\(852\) 0 0
\(853\) −8879.93 −0.356440 −0.178220 0.983991i \(-0.557034\pi\)
−0.178220 + 0.983991i \(0.557034\pi\)
\(854\) −400.023 −0.0160287
\(855\) 0 0
\(856\) −4725.42 −0.188682
\(857\) −33495.3 −1.33510 −0.667549 0.744566i \(-0.732656\pi\)
−0.667549 + 0.744566i \(0.732656\pi\)
\(858\) 0 0
\(859\) 8626.96 0.342664 0.171332 0.985213i \(-0.445193\pi\)
0.171332 + 0.985213i \(0.445193\pi\)
\(860\) 5487.28 0.217575
\(861\) 0 0
\(862\) 2504.98 0.0989792
\(863\) −31254.6 −1.23281 −0.616407 0.787428i \(-0.711412\pi\)
−0.616407 + 0.787428i \(0.711412\pi\)
\(864\) 0 0
\(865\) −14569.1 −0.572674
\(866\) −280.058 −0.0109893
\(867\) 0 0
\(868\) 10576.0 0.413563
\(869\) −1525.05 −0.0595324
\(870\) 0 0
\(871\) −15111.7 −0.587878
\(872\) 1354.96 0.0526203
\(873\) 0 0
\(874\) 296.663 0.0114815
\(875\) 2136.25 0.0825354
\(876\) 0 0
\(877\) 17993.1 0.692798 0.346399 0.938087i \(-0.387404\pi\)
0.346399 + 0.938087i \(0.387404\pi\)
\(878\) 1716.75 0.0659880
\(879\) 0 0
\(880\) 10477.0 0.401340
\(881\) 21216.5 0.811353 0.405677 0.914017i \(-0.367036\pi\)
0.405677 + 0.914017i \(0.367036\pi\)
\(882\) 0 0
\(883\) −25621.2 −0.976470 −0.488235 0.872712i \(-0.662359\pi\)
−0.488235 + 0.872712i \(0.662359\pi\)
\(884\) −18562.4 −0.706246
\(885\) 0 0
\(886\) −1486.15 −0.0563523
\(887\) −9821.44 −0.371783 −0.185892 0.982570i \(-0.559517\pi\)
−0.185892 + 0.982570i \(0.559517\pi\)
\(888\) 0 0
\(889\) −4023.76 −0.151803
\(890\) −744.521 −0.0280409
\(891\) 0 0
\(892\) −21711.6 −0.814977
\(893\) −14928.9 −0.559437
\(894\) 0 0
\(895\) 19260.9 0.719355
\(896\) 3132.69 0.116803
\(897\) 0 0
\(898\) 2627.45 0.0976382
\(899\) −3091.58 −0.114694
\(900\) 0 0
\(901\) 10082.4 0.372801
\(902\) −190.439 −0.00702984
\(903\) 0 0
\(904\) −2269.05 −0.0834817
\(905\) 16170.9 0.593964
\(906\) 0 0
\(907\) −42843.2 −1.56845 −0.784226 0.620475i \(-0.786940\pi\)
−0.784226 + 0.620475i \(0.786940\pi\)
\(908\) 16841.2 0.615524
\(909\) 0 0
\(910\) 890.323 0.0324329
\(911\) 41062.3 1.49336 0.746681 0.665182i \(-0.231646\pi\)
0.746681 + 0.665182i \(0.231646\pi\)
\(912\) 0 0
\(913\) 5398.62 0.195694
\(914\) 2023.21 0.0732186
\(915\) 0 0
\(916\) 22433.5 0.809195
\(917\) 5131.91 0.184810
\(918\) 0 0
\(919\) 48794.4 1.75144 0.875722 0.482815i \(-0.160386\pi\)
0.875722 + 0.482815i \(0.160386\pi\)
\(920\) 1314.82 0.0471179
\(921\) 0 0
\(922\) 2130.87 0.0761134
\(923\) −7502.78 −0.267559
\(924\) 0 0
\(925\) 17913.4 0.636745
\(926\) −2230.09 −0.0791417
\(927\) 0 0
\(928\) −687.532 −0.0243204
\(929\) 20643.0 0.729038 0.364519 0.931196i \(-0.381233\pi\)
0.364519 + 0.931196i \(0.381233\pi\)
\(930\) 0 0
\(931\) 2673.72 0.0941221
\(932\) 54374.7 1.91105
\(933\) 0 0
\(934\) 11.8214 0.000414142 0
\(935\) 10300.4 0.360277
\(936\) 0 0
\(937\) 42485.1 1.48124 0.740622 0.671921i \(-0.234531\pi\)
0.740622 + 0.671921i \(0.234531\pi\)
\(938\) 621.019 0.0216173
\(939\) 0 0
\(940\) −32980.6 −1.14437
\(941\) −1787.96 −0.0619404 −0.0309702 0.999520i \(-0.509860\pi\)
−0.0309702 + 0.999520i \(0.509860\pi\)
\(942\) 0 0
\(943\) 1911.21 0.0659994
\(944\) −40848.9 −1.40839
\(945\) 0 0
\(946\) 111.122 0.00381911
\(947\) −4409.90 −0.151323 −0.0756613 0.997134i \(-0.524107\pi\)
−0.0756613 + 0.997134i \(0.524107\pi\)
\(948\) 0 0
\(949\) −8561.20 −0.292843
\(950\) −1269.92 −0.0433702
\(951\) 0 0
\(952\) 1530.38 0.0521006
\(953\) 50160.0 1.70497 0.852487 0.522748i \(-0.175093\pi\)
0.852487 + 0.522748i \(0.175093\pi\)
\(954\) 0 0
\(955\) −14354.8 −0.486397
\(956\) 27619.3 0.934386
\(957\) 0 0
\(958\) −344.753 −0.0116268
\(959\) 4903.51 0.165112
\(960\) 0 0
\(961\) 6319.17 0.212117
\(962\) −1432.94 −0.0480247
\(963\) 0 0
\(964\) −13301.3 −0.444404
\(965\) 51636.4 1.72252
\(966\) 0 0
\(967\) 15711.7 0.522497 0.261248 0.965272i \(-0.415866\pi\)
0.261248 + 0.965272i \(0.415866\pi\)
\(968\) 428.318 0.0142218
\(969\) 0 0
\(970\) 5379.92 0.178081
\(971\) 21930.3 0.724795 0.362397 0.932024i \(-0.381958\pi\)
0.362397 + 0.932024i \(0.381958\pi\)
\(972\) 0 0
\(973\) 4336.37 0.142875
\(974\) 963.181 0.0316862
\(975\) 0 0
\(976\) 16176.7 0.530535
\(977\) 46329.0 1.51709 0.758544 0.651621i \(-0.225911\pi\)
0.758544 + 0.651621i \(0.225911\pi\)
\(978\) 0 0
\(979\) 2434.04 0.0794609
\(980\) 5906.73 0.192534
\(981\) 0 0
\(982\) −67.6515 −0.00219842
\(983\) 29563.1 0.959224 0.479612 0.877481i \(-0.340777\pi\)
0.479612 + 0.877481i \(0.340777\pi\)
\(984\) 0 0
\(985\) −59492.2 −1.92445
\(986\) −222.990 −0.00720227
\(987\) 0 0
\(988\) −16399.7 −0.528080
\(989\) −1115.20 −0.0358556
\(990\) 0 0
\(991\) −39722.4 −1.27328 −0.636642 0.771160i \(-0.719677\pi\)
−0.636642 + 0.771160i \(0.719677\pi\)
\(992\) 8030.48 0.257024
\(993\) 0 0
\(994\) 308.328 0.00983860
\(995\) 38822.3 1.23694
\(996\) 0 0
\(997\) −38762.1 −1.23130 −0.615652 0.788018i \(-0.711107\pi\)
−0.615652 + 0.788018i \(0.711107\pi\)
\(998\) −3159.72 −0.100220
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.r.1.5 8
3.2 odd 2 693.4.a.u.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.r.1.5 8 1.1 even 1 trivial
693.4.a.u.1.4 yes 8 3.2 odd 2