Properties

Label 693.4.a.r.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.31088\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.31088 q^{2} +20.2055 q^{4} +7.25200 q^{5} +7.00000 q^{7} -64.8218 q^{8} +O(q^{10})\) \(q-5.31088 q^{2} +20.2055 q^{4} +7.25200 q^{5} +7.00000 q^{7} -64.8218 q^{8} -38.5145 q^{10} -11.0000 q^{11} +47.6369 q^{13} -37.1762 q^{14} +182.617 q^{16} +31.5955 q^{17} +18.9406 q^{19} +146.530 q^{20} +58.4197 q^{22} -200.570 q^{23} -72.4085 q^{25} -252.994 q^{26} +141.438 q^{28} -224.264 q^{29} -237.936 q^{31} -451.284 q^{32} -167.800 q^{34} +50.7640 q^{35} +226.700 q^{37} -100.591 q^{38} -470.088 q^{40} +31.1161 q^{41} -176.064 q^{43} -222.260 q^{44} +1065.20 q^{46} -526.826 q^{47} +49.0000 q^{49} +384.553 q^{50} +962.527 q^{52} +342.689 q^{53} -79.7720 q^{55} -453.753 q^{56} +1191.04 q^{58} +283.465 q^{59} -216.971 q^{61} +1263.65 q^{62} +935.778 q^{64} +345.463 q^{65} -180.035 q^{67} +638.402 q^{68} -269.602 q^{70} +166.734 q^{71} +44.8888 q^{73} -1203.98 q^{74} +382.704 q^{76} -77.0000 q^{77} +349.350 q^{79} +1324.34 q^{80} -165.254 q^{82} -722.258 q^{83} +229.131 q^{85} +935.053 q^{86} +713.040 q^{88} -443.808 q^{89} +333.459 q^{91} -4052.61 q^{92} +2797.91 q^{94} +137.357 q^{95} -1804.50 q^{97} -260.233 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + 30 q^{4} - 10 q^{5} + 56 q^{7} - 81 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 6 q^{2} + 30 q^{4} - 10 q^{5} + 56 q^{7} - 81 q^{8} + 9 q^{10} - 88 q^{11} + 16 q^{13} - 42 q^{14} + 122 q^{16} - 90 q^{17} - 42 q^{19} - 291 q^{20} + 66 q^{22} - 338 q^{23} + 244 q^{25} - 209 q^{26} + 210 q^{28} - 496 q^{29} - 8 q^{31} - 524 q^{32} - 302 q^{34} - 70 q^{35} - 360 q^{37} - 45 q^{38} - 6 q^{40} - 242 q^{41} - 66 q^{43} - 330 q^{44} + 344 q^{46} - 540 q^{47} + 392 q^{49} - 1171 q^{50} + 465 q^{52} - 906 q^{53} + 110 q^{55} - 567 q^{56} + 977 q^{58} - 1242 q^{59} - 318 q^{61} + 110 q^{62} + 525 q^{64} - 1258 q^{65} + 522 q^{67} - 678 q^{68} + 63 q^{70} - 858 q^{71} - 78 q^{73} - 1651 q^{74} + 1775 q^{76} - 616 q^{77} + 516 q^{79} - 567 q^{80} - 1212 q^{82} - 3192 q^{83} + 720 q^{85} - 1322 q^{86} + 891 q^{88} - 2356 q^{89} + 112 q^{91} - 4504 q^{92} - 423 q^{94} - 3308 q^{95} - 1556 q^{97} - 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.31088 −1.87768 −0.938840 0.344353i \(-0.888098\pi\)
−0.938840 + 0.344353i \(0.888098\pi\)
\(3\) 0 0
\(4\) 20.2055 2.52568
\(5\) 7.25200 0.648639 0.324319 0.945948i \(-0.394865\pi\)
0.324319 + 0.945948i \(0.394865\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −64.8218 −2.86475
\(9\) 0 0
\(10\) −38.5145 −1.21794
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 47.6369 1.01632 0.508158 0.861264i \(-0.330327\pi\)
0.508158 + 0.861264i \(0.330327\pi\)
\(14\) −37.1762 −0.709696
\(15\) 0 0
\(16\) 182.617 2.85339
\(17\) 31.5955 0.450766 0.225383 0.974270i \(-0.427637\pi\)
0.225383 + 0.974270i \(0.427637\pi\)
\(18\) 0 0
\(19\) 18.9406 0.228699 0.114349 0.993441i \(-0.463522\pi\)
0.114349 + 0.993441i \(0.463522\pi\)
\(20\) 146.530 1.63826
\(21\) 0 0
\(22\) 58.4197 0.566142
\(23\) −200.570 −1.81833 −0.909167 0.416431i \(-0.863281\pi\)
−0.909167 + 0.416431i \(0.863281\pi\)
\(24\) 0 0
\(25\) −72.4085 −0.579268
\(26\) −252.994 −1.90832
\(27\) 0 0
\(28\) 141.438 0.954619
\(29\) −224.264 −1.43603 −0.718014 0.696029i \(-0.754948\pi\)
−0.718014 + 0.696029i \(0.754948\pi\)
\(30\) 0 0
\(31\) −237.936 −1.37853 −0.689267 0.724507i \(-0.742067\pi\)
−0.689267 + 0.724507i \(0.742067\pi\)
\(32\) −451.284 −2.49302
\(33\) 0 0
\(34\) −167.800 −0.846395
\(35\) 50.7640 0.245162
\(36\) 0 0
\(37\) 226.700 1.00728 0.503639 0.863914i \(-0.331994\pi\)
0.503639 + 0.863914i \(0.331994\pi\)
\(38\) −100.591 −0.429423
\(39\) 0 0
\(40\) −470.088 −1.85819
\(41\) 31.1161 0.118525 0.0592625 0.998242i \(-0.481125\pi\)
0.0592625 + 0.998242i \(0.481125\pi\)
\(42\) 0 0
\(43\) −176.064 −0.624406 −0.312203 0.950015i \(-0.601067\pi\)
−0.312203 + 0.950015i \(0.601067\pi\)
\(44\) −222.260 −0.761522
\(45\) 0 0
\(46\) 1065.20 3.41425
\(47\) −526.826 −1.63501 −0.817505 0.575922i \(-0.804643\pi\)
−0.817505 + 0.575922i \(0.804643\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 384.553 1.08768
\(51\) 0 0
\(52\) 962.527 2.56689
\(53\) 342.689 0.888151 0.444076 0.895989i \(-0.353532\pi\)
0.444076 + 0.895989i \(0.353532\pi\)
\(54\) 0 0
\(55\) −79.7720 −0.195572
\(56\) −453.753 −1.08277
\(57\) 0 0
\(58\) 1191.04 2.69640
\(59\) 283.465 0.625492 0.312746 0.949837i \(-0.398751\pi\)
0.312746 + 0.949837i \(0.398751\pi\)
\(60\) 0 0
\(61\) −216.971 −0.455415 −0.227708 0.973730i \(-0.573123\pi\)
−0.227708 + 0.973730i \(0.573123\pi\)
\(62\) 1263.65 2.58845
\(63\) 0 0
\(64\) 935.778 1.82769
\(65\) 345.463 0.659222
\(66\) 0 0
\(67\) −180.035 −0.328280 −0.164140 0.986437i \(-0.552485\pi\)
−0.164140 + 0.986437i \(0.552485\pi\)
\(68\) 638.402 1.13849
\(69\) 0 0
\(70\) −269.602 −0.460337
\(71\) 166.734 0.278699 0.139350 0.990243i \(-0.455499\pi\)
0.139350 + 0.990243i \(0.455499\pi\)
\(72\) 0 0
\(73\) 44.8888 0.0719704 0.0359852 0.999352i \(-0.488543\pi\)
0.0359852 + 0.999352i \(0.488543\pi\)
\(74\) −1203.98 −1.89135
\(75\) 0 0
\(76\) 382.704 0.577620
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 349.350 0.497530 0.248765 0.968564i \(-0.419975\pi\)
0.248765 + 0.968564i \(0.419975\pi\)
\(80\) 1324.34 1.85082
\(81\) 0 0
\(82\) −165.254 −0.222552
\(83\) −722.258 −0.955158 −0.477579 0.878589i \(-0.658486\pi\)
−0.477579 + 0.878589i \(0.658486\pi\)
\(84\) 0 0
\(85\) 229.131 0.292385
\(86\) 935.053 1.17243
\(87\) 0 0
\(88\) 713.040 0.863753
\(89\) −443.808 −0.528579 −0.264290 0.964443i \(-0.585137\pi\)
−0.264290 + 0.964443i \(0.585137\pi\)
\(90\) 0 0
\(91\) 333.459 0.384131
\(92\) −4052.61 −4.59254
\(93\) 0 0
\(94\) 2797.91 3.07002
\(95\) 137.357 0.148343
\(96\) 0 0
\(97\) −1804.50 −1.88886 −0.944431 0.328710i \(-0.893386\pi\)
−0.944431 + 0.328710i \(0.893386\pi\)
\(98\) −260.233 −0.268240
\(99\) 0 0
\(100\) −1463.05 −1.46305
\(101\) 1767.79 1.74160 0.870801 0.491635i \(-0.163601\pi\)
0.870801 + 0.491635i \(0.163601\pi\)
\(102\) 0 0
\(103\) −1224.69 −1.17157 −0.585786 0.810465i \(-0.699214\pi\)
−0.585786 + 0.810465i \(0.699214\pi\)
\(104\) −3087.91 −2.91149
\(105\) 0 0
\(106\) −1819.98 −1.66766
\(107\) 1720.89 1.55481 0.777405 0.629000i \(-0.216536\pi\)
0.777405 + 0.629000i \(0.216536\pi\)
\(108\) 0 0
\(109\) 1811.71 1.59202 0.796011 0.605282i \(-0.206940\pi\)
0.796011 + 0.605282i \(0.206940\pi\)
\(110\) 423.660 0.367222
\(111\) 0 0
\(112\) 1278.32 1.07848
\(113\) 780.246 0.649552 0.324776 0.945791i \(-0.394711\pi\)
0.324776 + 0.945791i \(0.394711\pi\)
\(114\) 0 0
\(115\) −1454.53 −1.17944
\(116\) −4531.36 −3.62695
\(117\) 0 0
\(118\) −1505.45 −1.17447
\(119\) 221.168 0.170374
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1152.31 0.855124
\(123\) 0 0
\(124\) −4807.61 −3.48174
\(125\) −1431.61 −1.02437
\(126\) 0 0
\(127\) −1086.03 −0.758815 −0.379408 0.925230i \(-0.623872\pi\)
−0.379408 + 0.925230i \(0.623872\pi\)
\(128\) −1359.54 −0.938806
\(129\) 0 0
\(130\) −1834.71 −1.23781
\(131\) 1626.30 1.08466 0.542328 0.840167i \(-0.317543\pi\)
0.542328 + 0.840167i \(0.317543\pi\)
\(132\) 0 0
\(133\) 132.584 0.0864399
\(134\) 956.144 0.616405
\(135\) 0 0
\(136\) −2048.08 −1.29133
\(137\) −2448.94 −1.52721 −0.763603 0.645686i \(-0.776571\pi\)
−0.763603 + 0.645686i \(0.776571\pi\)
\(138\) 0 0
\(139\) −2647.66 −1.61562 −0.807811 0.589441i \(-0.799348\pi\)
−0.807811 + 0.589441i \(0.799348\pi\)
\(140\) 1025.71 0.619203
\(141\) 0 0
\(142\) −885.503 −0.523308
\(143\) −524.006 −0.306431
\(144\) 0 0
\(145\) −1626.36 −0.931463
\(146\) −238.399 −0.135137
\(147\) 0 0
\(148\) 4580.59 2.54407
\(149\) −741.985 −0.407958 −0.203979 0.978975i \(-0.565387\pi\)
−0.203979 + 0.978975i \(0.565387\pi\)
\(150\) 0 0
\(151\) 516.653 0.278441 0.139221 0.990261i \(-0.455540\pi\)
0.139221 + 0.990261i \(0.455540\pi\)
\(152\) −1227.76 −0.655163
\(153\) 0 0
\(154\) 408.938 0.213982
\(155\) −1725.51 −0.894171
\(156\) 0 0
\(157\) −3189.89 −1.62153 −0.810767 0.585368i \(-0.800950\pi\)
−0.810767 + 0.585368i \(0.800950\pi\)
\(158\) −1855.35 −0.934203
\(159\) 0 0
\(160\) −3272.71 −1.61707
\(161\) −1403.99 −0.687266
\(162\) 0 0
\(163\) −1350.81 −0.649100 −0.324550 0.945868i \(-0.605213\pi\)
−0.324550 + 0.945868i \(0.605213\pi\)
\(164\) 628.716 0.299357
\(165\) 0 0
\(166\) 3835.83 1.79348
\(167\) −1538.13 −0.712721 −0.356360 0.934349i \(-0.615982\pi\)
−0.356360 + 0.934349i \(0.615982\pi\)
\(168\) 0 0
\(169\) 72.2788 0.0328988
\(170\) −1216.89 −0.549005
\(171\) 0 0
\(172\) −3557.45 −1.57705
\(173\) 256.648 0.112789 0.0563947 0.998409i \(-0.482039\pi\)
0.0563947 + 0.998409i \(0.482039\pi\)
\(174\) 0 0
\(175\) −506.859 −0.218943
\(176\) −2008.79 −0.860331
\(177\) 0 0
\(178\) 2357.01 0.992503
\(179\) −1362.17 −0.568789 −0.284394 0.958707i \(-0.591793\pi\)
−0.284394 + 0.958707i \(0.591793\pi\)
\(180\) 0 0
\(181\) 2699.57 1.10860 0.554302 0.832315i \(-0.312985\pi\)
0.554302 + 0.832315i \(0.312985\pi\)
\(182\) −1770.96 −0.721276
\(183\) 0 0
\(184\) 13001.3 5.20907
\(185\) 1644.03 0.653360
\(186\) 0 0
\(187\) −347.550 −0.135911
\(188\) −10644.8 −4.12952
\(189\) 0 0
\(190\) −729.489 −0.278540
\(191\) −93.4291 −0.0353942 −0.0176971 0.999843i \(-0.505633\pi\)
−0.0176971 + 0.999843i \(0.505633\pi\)
\(192\) 0 0
\(193\) −1259.65 −0.469803 −0.234901 0.972019i \(-0.575477\pi\)
−0.234901 + 0.972019i \(0.575477\pi\)
\(194\) 9583.51 3.54668
\(195\) 0 0
\(196\) 990.068 0.360812
\(197\) 1109.80 0.401371 0.200686 0.979656i \(-0.435683\pi\)
0.200686 + 0.979656i \(0.435683\pi\)
\(198\) 0 0
\(199\) 1842.11 0.656200 0.328100 0.944643i \(-0.393592\pi\)
0.328100 + 0.944643i \(0.393592\pi\)
\(200\) 4693.65 1.65945
\(201\) 0 0
\(202\) −9388.53 −3.27017
\(203\) −1569.85 −0.542767
\(204\) 0 0
\(205\) 225.654 0.0768799
\(206\) 6504.17 2.19984
\(207\) 0 0
\(208\) 8699.33 2.89995
\(209\) −208.347 −0.0689552
\(210\) 0 0
\(211\) −3384.17 −1.10415 −0.552075 0.833795i \(-0.686164\pi\)
−0.552075 + 0.833795i \(0.686164\pi\)
\(212\) 6924.20 2.24319
\(213\) 0 0
\(214\) −9139.44 −2.91944
\(215\) −1276.81 −0.405014
\(216\) 0 0
\(217\) −1665.55 −0.521037
\(218\) −9621.78 −2.98931
\(219\) 0 0
\(220\) −1611.83 −0.493953
\(221\) 1505.11 0.458121
\(222\) 0 0
\(223\) −2571.75 −0.772274 −0.386137 0.922441i \(-0.626191\pi\)
−0.386137 + 0.922441i \(0.626191\pi\)
\(224\) −3158.99 −0.942271
\(225\) 0 0
\(226\) −4143.79 −1.21965
\(227\) −853.596 −0.249582 −0.124791 0.992183i \(-0.539826\pi\)
−0.124791 + 0.992183i \(0.539826\pi\)
\(228\) 0 0
\(229\) 4450.26 1.28420 0.642099 0.766622i \(-0.278064\pi\)
0.642099 + 0.766622i \(0.278064\pi\)
\(230\) 7724.85 2.21462
\(231\) 0 0
\(232\) 14537.2 4.11385
\(233\) 1749.92 0.492023 0.246011 0.969267i \(-0.420880\pi\)
0.246011 + 0.969267i \(0.420880\pi\)
\(234\) 0 0
\(235\) −3820.54 −1.06053
\(236\) 5727.55 1.57979
\(237\) 0 0
\(238\) −1174.60 −0.319907
\(239\) −2354.68 −0.637287 −0.318644 0.947875i \(-0.603227\pi\)
−0.318644 + 0.947875i \(0.603227\pi\)
\(240\) 0 0
\(241\) −5615.20 −1.50086 −0.750429 0.660951i \(-0.770153\pi\)
−0.750429 + 0.660951i \(0.770153\pi\)
\(242\) −642.617 −0.170698
\(243\) 0 0
\(244\) −4384.01 −1.15023
\(245\) 355.348 0.0926627
\(246\) 0 0
\(247\) 902.273 0.232430
\(248\) 15423.4 3.94915
\(249\) 0 0
\(250\) 7603.09 1.92345
\(251\) 6267.38 1.57607 0.788035 0.615630i \(-0.211098\pi\)
0.788035 + 0.615630i \(0.211098\pi\)
\(252\) 0 0
\(253\) 2206.27 0.548248
\(254\) 5767.77 1.42481
\(255\) 0 0
\(256\) −265.889 −0.0649142
\(257\) −3537.51 −0.858613 −0.429307 0.903159i \(-0.641242\pi\)
−0.429307 + 0.903159i \(0.641242\pi\)
\(258\) 0 0
\(259\) 1586.90 0.380716
\(260\) 6980.25 1.66499
\(261\) 0 0
\(262\) −8637.06 −2.03664
\(263\) −2708.76 −0.635093 −0.317547 0.948243i \(-0.602859\pi\)
−0.317547 + 0.948243i \(0.602859\pi\)
\(264\) 0 0
\(265\) 2485.18 0.576089
\(266\) −704.139 −0.162307
\(267\) 0 0
\(268\) −3637.69 −0.829132
\(269\) −5442.62 −1.23362 −0.616808 0.787114i \(-0.711574\pi\)
−0.616808 + 0.787114i \(0.711574\pi\)
\(270\) 0 0
\(271\) 1121.27 0.251337 0.125669 0.992072i \(-0.459892\pi\)
0.125669 + 0.992072i \(0.459892\pi\)
\(272\) 5769.88 1.28621
\(273\) 0 0
\(274\) 13006.0 2.86760
\(275\) 796.493 0.174656
\(276\) 0 0
\(277\) −4569.49 −0.991169 −0.495585 0.868560i \(-0.665046\pi\)
−0.495585 + 0.868560i \(0.665046\pi\)
\(278\) 14061.4 3.03362
\(279\) 0 0
\(280\) −3290.61 −0.702328
\(281\) −363.403 −0.0771488 −0.0385744 0.999256i \(-0.512282\pi\)
−0.0385744 + 0.999256i \(0.512282\pi\)
\(282\) 0 0
\(283\) 6985.88 1.46738 0.733688 0.679486i \(-0.237797\pi\)
0.733688 + 0.679486i \(0.237797\pi\)
\(284\) 3368.93 0.703906
\(285\) 0 0
\(286\) 2782.94 0.575379
\(287\) 217.813 0.0447982
\(288\) 0 0
\(289\) −3914.73 −0.796810
\(290\) 8637.42 1.74899
\(291\) 0 0
\(292\) 907.000 0.181774
\(293\) −203.016 −0.0404788 −0.0202394 0.999795i \(-0.506443\pi\)
−0.0202394 + 0.999795i \(0.506443\pi\)
\(294\) 0 0
\(295\) 2055.69 0.405718
\(296\) −14695.1 −2.88560
\(297\) 0 0
\(298\) 3940.60 0.766015
\(299\) −9554.53 −1.84800
\(300\) 0 0
\(301\) −1232.45 −0.236003
\(302\) −2743.88 −0.522824
\(303\) 0 0
\(304\) 3458.88 0.652567
\(305\) −1573.48 −0.295400
\(306\) 0 0
\(307\) −7669.96 −1.42589 −0.712944 0.701221i \(-0.752639\pi\)
−0.712944 + 0.701221i \(0.752639\pi\)
\(308\) −1555.82 −0.287828
\(309\) 0 0
\(310\) 9163.99 1.67897
\(311\) −4233.11 −0.771825 −0.385912 0.922535i \(-0.626113\pi\)
−0.385912 + 0.922535i \(0.626113\pi\)
\(312\) 0 0
\(313\) 4622.10 0.834685 0.417342 0.908749i \(-0.362962\pi\)
0.417342 + 0.908749i \(0.362962\pi\)
\(314\) 16941.1 3.04472
\(315\) 0 0
\(316\) 7058.77 1.25660
\(317\) 998.546 0.176921 0.0884605 0.996080i \(-0.471805\pi\)
0.0884605 + 0.996080i \(0.471805\pi\)
\(318\) 0 0
\(319\) 2466.90 0.432978
\(320\) 6786.27 1.18551
\(321\) 0 0
\(322\) 7456.42 1.29047
\(323\) 598.438 0.103090
\(324\) 0 0
\(325\) −3449.32 −0.588719
\(326\) 7173.98 1.21880
\(327\) 0 0
\(328\) −2017.00 −0.339544
\(329\) −3687.78 −0.617975
\(330\) 0 0
\(331\) 5612.23 0.931952 0.465976 0.884797i \(-0.345703\pi\)
0.465976 + 0.884797i \(0.345703\pi\)
\(332\) −14593.6 −2.41243
\(333\) 0 0
\(334\) 8168.85 1.33826
\(335\) −1305.61 −0.212935
\(336\) 0 0
\(337\) −4655.51 −0.752527 −0.376263 0.926513i \(-0.622791\pi\)
−0.376263 + 0.926513i \(0.622791\pi\)
\(338\) −383.864 −0.0617735
\(339\) 0 0
\(340\) 4629.69 0.738471
\(341\) 2617.30 0.415644
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 11412.8 1.78876
\(345\) 0 0
\(346\) −1363.03 −0.211782
\(347\) 5166.96 0.799357 0.399678 0.916655i \(-0.369122\pi\)
0.399678 + 0.916655i \(0.369122\pi\)
\(348\) 0 0
\(349\) 9167.31 1.40606 0.703030 0.711161i \(-0.251830\pi\)
0.703030 + 0.711161i \(0.251830\pi\)
\(350\) 2691.87 0.411104
\(351\) 0 0
\(352\) 4964.12 0.751672
\(353\) 29.1770 0.00439926 0.00219963 0.999998i \(-0.499300\pi\)
0.00219963 + 0.999998i \(0.499300\pi\)
\(354\) 0 0
\(355\) 1209.15 0.180775
\(356\) −8967.35 −1.33502
\(357\) 0 0
\(358\) 7234.31 1.06800
\(359\) −1668.90 −0.245352 −0.122676 0.992447i \(-0.539148\pi\)
−0.122676 + 0.992447i \(0.539148\pi\)
\(360\) 0 0
\(361\) −6500.25 −0.947697
\(362\) −14337.1 −2.08161
\(363\) 0 0
\(364\) 6737.69 0.970194
\(365\) 325.534 0.0466828
\(366\) 0 0
\(367\) 9479.10 1.34824 0.674121 0.738621i \(-0.264522\pi\)
0.674121 + 0.738621i \(0.264522\pi\)
\(368\) −36627.5 −5.18842
\(369\) 0 0
\(370\) −8731.26 −1.22680
\(371\) 2398.83 0.335690
\(372\) 0 0
\(373\) −1626.53 −0.225787 −0.112893 0.993607i \(-0.536012\pi\)
−0.112893 + 0.993607i \(0.536012\pi\)
\(374\) 1845.80 0.255198
\(375\) 0 0
\(376\) 34149.8 4.68389
\(377\) −10683.3 −1.45946
\(378\) 0 0
\(379\) −5377.26 −0.728790 −0.364395 0.931244i \(-0.618724\pi\)
−0.364395 + 0.931244i \(0.618724\pi\)
\(380\) 2775.37 0.374667
\(381\) 0 0
\(382\) 496.191 0.0664590
\(383\) −13111.9 −1.74931 −0.874657 0.484743i \(-0.838913\pi\)
−0.874657 + 0.484743i \(0.838913\pi\)
\(384\) 0 0
\(385\) −558.404 −0.0739193
\(386\) 6689.88 0.882139
\(387\) 0 0
\(388\) −36460.8 −4.77067
\(389\) −895.272 −0.116689 −0.0583446 0.998297i \(-0.518582\pi\)
−0.0583446 + 0.998297i \(0.518582\pi\)
\(390\) 0 0
\(391\) −6337.10 −0.819644
\(392\) −3176.27 −0.409249
\(393\) 0 0
\(394\) −5894.03 −0.753647
\(395\) 2533.48 0.322718
\(396\) 0 0
\(397\) −5690.01 −0.719329 −0.359664 0.933082i \(-0.617109\pi\)
−0.359664 + 0.933082i \(0.617109\pi\)
\(398\) −9783.24 −1.23213
\(399\) 0 0
\(400\) −13223.0 −1.65288
\(401\) −2358.60 −0.293723 −0.146861 0.989157i \(-0.546917\pi\)
−0.146861 + 0.989157i \(0.546917\pi\)
\(402\) 0 0
\(403\) −11334.5 −1.40103
\(404\) 35719.1 4.39874
\(405\) 0 0
\(406\) 8337.28 1.01914
\(407\) −2493.70 −0.303706
\(408\) 0 0
\(409\) 14655.6 1.77182 0.885908 0.463861i \(-0.153536\pi\)
0.885908 + 0.463861i \(0.153536\pi\)
\(410\) −1198.42 −0.144356
\(411\) 0 0
\(412\) −24745.4 −2.95902
\(413\) 1984.26 0.236414
\(414\) 0 0
\(415\) −5237.82 −0.619552
\(416\) −21497.8 −2.53369
\(417\) 0 0
\(418\) 1106.50 0.129476
\(419\) 11602.7 1.35281 0.676407 0.736528i \(-0.263536\pi\)
0.676407 + 0.736528i \(0.263536\pi\)
\(420\) 0 0
\(421\) 12579.8 1.45630 0.728149 0.685419i \(-0.240381\pi\)
0.728149 + 0.685419i \(0.240381\pi\)
\(422\) 17972.9 2.07324
\(423\) 0 0
\(424\) −22213.7 −2.54433
\(425\) −2287.78 −0.261114
\(426\) 0 0
\(427\) −1518.80 −0.172131
\(428\) 34771.4 3.92696
\(429\) 0 0
\(430\) 6781.01 0.760486
\(431\) −10004.7 −1.11812 −0.559060 0.829127i \(-0.688838\pi\)
−0.559060 + 0.829127i \(0.688838\pi\)
\(432\) 0 0
\(433\) −17934.2 −1.99045 −0.995223 0.0976238i \(-0.968876\pi\)
−0.995223 + 0.0976238i \(0.968876\pi\)
\(434\) 8845.55 0.978341
\(435\) 0 0
\(436\) 36606.5 4.02094
\(437\) −3798.91 −0.415850
\(438\) 0 0
\(439\) −16225.5 −1.76402 −0.882008 0.471234i \(-0.843809\pi\)
−0.882008 + 0.471234i \(0.843809\pi\)
\(440\) 5170.97 0.560264
\(441\) 0 0
\(442\) −7993.47 −0.860205
\(443\) 10194.9 1.09340 0.546699 0.837329i \(-0.315884\pi\)
0.546699 + 0.837329i \(0.315884\pi\)
\(444\) 0 0
\(445\) −3218.50 −0.342857
\(446\) 13658.3 1.45008
\(447\) 0 0
\(448\) 6550.45 0.690803
\(449\) 395.095 0.0415272 0.0207636 0.999784i \(-0.493390\pi\)
0.0207636 + 0.999784i \(0.493390\pi\)
\(450\) 0 0
\(451\) −342.277 −0.0357366
\(452\) 15765.2 1.64056
\(453\) 0 0
\(454\) 4533.35 0.468635
\(455\) 2418.24 0.249163
\(456\) 0 0
\(457\) 18408.4 1.88426 0.942130 0.335247i \(-0.108820\pi\)
0.942130 + 0.335247i \(0.108820\pi\)
\(458\) −23634.8 −2.41131
\(459\) 0 0
\(460\) −29389.5 −2.97890
\(461\) −16511.8 −1.66818 −0.834089 0.551630i \(-0.814006\pi\)
−0.834089 + 0.551630i \(0.814006\pi\)
\(462\) 0 0
\(463\) −15464.7 −1.55228 −0.776141 0.630559i \(-0.782826\pi\)
−0.776141 + 0.630559i \(0.782826\pi\)
\(464\) −40954.5 −4.09755
\(465\) 0 0
\(466\) −9293.64 −0.923862
\(467\) 5014.38 0.496869 0.248435 0.968649i \(-0.420084\pi\)
0.248435 + 0.968649i \(0.420084\pi\)
\(468\) 0 0
\(469\) −1260.24 −0.124078
\(470\) 20290.4 1.99134
\(471\) 0 0
\(472\) −18374.7 −1.79188
\(473\) 1936.70 0.188265
\(474\) 0 0
\(475\) −1371.46 −0.132478
\(476\) 4468.81 0.430310
\(477\) 0 0
\(478\) 12505.4 1.19662
\(479\) 10525.9 1.00405 0.502026 0.864853i \(-0.332588\pi\)
0.502026 + 0.864853i \(0.332588\pi\)
\(480\) 0 0
\(481\) 10799.3 1.02371
\(482\) 29821.7 2.81813
\(483\) 0 0
\(484\) 2444.86 0.229608
\(485\) −13086.3 −1.22519
\(486\) 0 0
\(487\) 15778.5 1.46815 0.734077 0.679066i \(-0.237615\pi\)
0.734077 + 0.679066i \(0.237615\pi\)
\(488\) 14064.5 1.30465
\(489\) 0 0
\(490\) −1887.21 −0.173991
\(491\) −13536.1 −1.24415 −0.622073 0.782959i \(-0.713709\pi\)
−0.622073 + 0.782959i \(0.713709\pi\)
\(492\) 0 0
\(493\) −7085.73 −0.647313
\(494\) −4791.86 −0.436429
\(495\) 0 0
\(496\) −43451.2 −3.93350
\(497\) 1167.14 0.105338
\(498\) 0 0
\(499\) 18101.7 1.62393 0.811967 0.583704i \(-0.198397\pi\)
0.811967 + 0.583704i \(0.198397\pi\)
\(500\) −28926.3 −2.58725
\(501\) 0 0
\(502\) −33285.3 −2.95936
\(503\) 5147.40 0.456285 0.228142 0.973628i \(-0.426735\pi\)
0.228142 + 0.973628i \(0.426735\pi\)
\(504\) 0 0
\(505\) 12820.0 1.12967
\(506\) −11717.2 −1.02944
\(507\) 0 0
\(508\) −21943.7 −1.91653
\(509\) 7185.23 0.625697 0.312848 0.949803i \(-0.398717\pi\)
0.312848 + 0.949803i \(0.398717\pi\)
\(510\) 0 0
\(511\) 314.222 0.0272023
\(512\) 12288.4 1.06069
\(513\) 0 0
\(514\) 18787.3 1.61220
\(515\) −8881.43 −0.759928
\(516\) 0 0
\(517\) 5795.08 0.492974
\(518\) −8427.85 −0.714862
\(519\) 0 0
\(520\) −22393.6 −1.88850
\(521\) −6620.31 −0.556700 −0.278350 0.960480i \(-0.589788\pi\)
−0.278350 + 0.960480i \(0.589788\pi\)
\(522\) 0 0
\(523\) 8525.60 0.712808 0.356404 0.934332i \(-0.384003\pi\)
0.356404 + 0.934332i \(0.384003\pi\)
\(524\) 32860.1 2.73950
\(525\) 0 0
\(526\) 14385.9 1.19250
\(527\) −7517.70 −0.621397
\(528\) 0 0
\(529\) 28061.2 2.30634
\(530\) −13198.5 −1.08171
\(531\) 0 0
\(532\) 2678.93 0.218320
\(533\) 1482.28 0.120459
\(534\) 0 0
\(535\) 12479.9 1.00851
\(536\) 11670.2 0.940439
\(537\) 0 0
\(538\) 28905.1 2.31634
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −6872.24 −0.546138 −0.273069 0.961994i \(-0.588039\pi\)
−0.273069 + 0.961994i \(0.588039\pi\)
\(542\) −5954.94 −0.471931
\(543\) 0 0
\(544\) −14258.5 −1.12377
\(545\) 13138.5 1.03265
\(546\) 0 0
\(547\) −12050.5 −0.941940 −0.470970 0.882149i \(-0.656096\pi\)
−0.470970 + 0.882149i \(0.656096\pi\)
\(548\) −49482.0 −3.85724
\(549\) 0 0
\(550\) −4230.08 −0.327948
\(551\) −4247.70 −0.328417
\(552\) 0 0
\(553\) 2445.45 0.188049
\(554\) 24268.0 1.86110
\(555\) 0 0
\(556\) −53497.2 −4.08055
\(557\) 24457.8 1.86052 0.930261 0.366899i \(-0.119580\pi\)
0.930261 + 0.366899i \(0.119580\pi\)
\(558\) 0 0
\(559\) −8387.13 −0.634594
\(560\) 9270.38 0.699545
\(561\) 0 0
\(562\) 1929.99 0.144861
\(563\) −14710.5 −1.10120 −0.550599 0.834770i \(-0.685601\pi\)
−0.550599 + 0.834770i \(0.685601\pi\)
\(564\) 0 0
\(565\) 5658.34 0.421324
\(566\) −37101.2 −2.75526
\(567\) 0 0
\(568\) −10808.0 −0.798403
\(569\) 24838.0 1.82999 0.914993 0.403470i \(-0.132196\pi\)
0.914993 + 0.403470i \(0.132196\pi\)
\(570\) 0 0
\(571\) 5512.76 0.404031 0.202016 0.979382i \(-0.435251\pi\)
0.202016 + 0.979382i \(0.435251\pi\)
\(572\) −10587.8 −0.773947
\(573\) 0 0
\(574\) −1156.78 −0.0841167
\(575\) 14522.9 1.05330
\(576\) 0 0
\(577\) 8281.91 0.597539 0.298770 0.954325i \(-0.403424\pi\)
0.298770 + 0.954325i \(0.403424\pi\)
\(578\) 20790.6 1.49615
\(579\) 0 0
\(580\) −32861.4 −2.35258
\(581\) −5055.80 −0.361016
\(582\) 0 0
\(583\) −3769.58 −0.267788
\(584\) −2909.77 −0.206177
\(585\) 0 0
\(586\) 1078.19 0.0760063
\(587\) −8424.68 −0.592374 −0.296187 0.955130i \(-0.595715\pi\)
−0.296187 + 0.955130i \(0.595715\pi\)
\(588\) 0 0
\(589\) −4506.65 −0.315269
\(590\) −10917.5 −0.761809
\(591\) 0 0
\(592\) 41399.4 2.87416
\(593\) −2199.00 −0.152280 −0.0761402 0.997097i \(-0.524260\pi\)
−0.0761402 + 0.997097i \(0.524260\pi\)
\(594\) 0 0
\(595\) 1603.91 0.110511
\(596\) −14992.2 −1.03037
\(597\) 0 0
\(598\) 50743.0 3.46996
\(599\) 8765.83 0.597934 0.298967 0.954264i \(-0.403358\pi\)
0.298967 + 0.954264i \(0.403358\pi\)
\(600\) 0 0
\(601\) −15362.1 −1.04265 −0.521326 0.853357i \(-0.674563\pi\)
−0.521326 + 0.853357i \(0.674563\pi\)
\(602\) 6545.37 0.443139
\(603\) 0 0
\(604\) 10439.2 0.703255
\(605\) 877.492 0.0589672
\(606\) 0 0
\(607\) 1674.58 0.111976 0.0559878 0.998431i \(-0.482169\pi\)
0.0559878 + 0.998431i \(0.482169\pi\)
\(608\) −8547.59 −0.570149
\(609\) 0 0
\(610\) 8356.55 0.554667
\(611\) −25096.4 −1.66169
\(612\) 0 0
\(613\) −10407.8 −0.685756 −0.342878 0.939380i \(-0.611402\pi\)
−0.342878 + 0.939380i \(0.611402\pi\)
\(614\) 40734.2 2.67736
\(615\) 0 0
\(616\) 4991.28 0.326468
\(617\) 8306.01 0.541957 0.270978 0.962585i \(-0.412653\pi\)
0.270978 + 0.962585i \(0.412653\pi\)
\(618\) 0 0
\(619\) −20339.2 −1.32068 −0.660342 0.750965i \(-0.729588\pi\)
−0.660342 + 0.750965i \(0.729588\pi\)
\(620\) −34864.8 −2.25839
\(621\) 0 0
\(622\) 22481.5 1.44924
\(623\) −3106.66 −0.199784
\(624\) 0 0
\(625\) −1330.96 −0.0851813
\(626\) −24547.4 −1.56727
\(627\) 0 0
\(628\) −64453.2 −4.09548
\(629\) 7162.71 0.454047
\(630\) 0 0
\(631\) 3457.35 0.218122 0.109061 0.994035i \(-0.465216\pi\)
0.109061 + 0.994035i \(0.465216\pi\)
\(632\) −22645.5 −1.42530
\(633\) 0 0
\(634\) −5303.16 −0.332201
\(635\) −7875.89 −0.492197
\(636\) 0 0
\(637\) 2334.21 0.145188
\(638\) −13101.4 −0.812995
\(639\) 0 0
\(640\) −9859.36 −0.608946
\(641\) −12098.8 −0.745516 −0.372758 0.927929i \(-0.621588\pi\)
−0.372758 + 0.927929i \(0.621588\pi\)
\(642\) 0 0
\(643\) 5887.31 0.361077 0.180539 0.983568i \(-0.442216\pi\)
0.180539 + 0.983568i \(0.442216\pi\)
\(644\) −28368.2 −1.73582
\(645\) 0 0
\(646\) −3178.23 −0.193569
\(647\) −21800.3 −1.32467 −0.662333 0.749210i \(-0.730434\pi\)
−0.662333 + 0.749210i \(0.730434\pi\)
\(648\) 0 0
\(649\) −3118.12 −0.188593
\(650\) 18318.9 1.10543
\(651\) 0 0
\(652\) −27293.7 −1.63942
\(653\) −28636.2 −1.71611 −0.858055 0.513559i \(-0.828327\pi\)
−0.858055 + 0.513559i \(0.828327\pi\)
\(654\) 0 0
\(655\) 11793.9 0.703551
\(656\) 5682.34 0.338198
\(657\) 0 0
\(658\) 19585.4 1.16036
\(659\) −23309.7 −1.37787 −0.688934 0.724824i \(-0.741921\pi\)
−0.688934 + 0.724824i \(0.741921\pi\)
\(660\) 0 0
\(661\) 19540.2 1.14981 0.574906 0.818220i \(-0.305039\pi\)
0.574906 + 0.818220i \(0.305039\pi\)
\(662\) −29805.9 −1.74991
\(663\) 0 0
\(664\) 46818.0 2.73628
\(665\) 961.501 0.0560683
\(666\) 0 0
\(667\) 44980.6 2.61118
\(668\) −31078.7 −1.80011
\(669\) 0 0
\(670\) 6933.96 0.399824
\(671\) 2386.68 0.137313
\(672\) 0 0
\(673\) −17079.1 −0.978236 −0.489118 0.872218i \(-0.662681\pi\)
−0.489118 + 0.872218i \(0.662681\pi\)
\(674\) 24724.8 1.41300
\(675\) 0 0
\(676\) 1460.43 0.0830921
\(677\) −22077.4 −1.25333 −0.626663 0.779290i \(-0.715580\pi\)
−0.626663 + 0.779290i \(0.715580\pi\)
\(678\) 0 0
\(679\) −12631.5 −0.713923
\(680\) −14852.7 −0.837608
\(681\) 0 0
\(682\) −13900.1 −0.780446
\(683\) 2423.70 0.135784 0.0678919 0.997693i \(-0.478373\pi\)
0.0678919 + 0.997693i \(0.478373\pi\)
\(684\) 0 0
\(685\) −17759.7 −0.990605
\(686\) −1821.63 −0.101385
\(687\) 0 0
\(688\) −32152.2 −1.78168
\(689\) 16324.7 0.902642
\(690\) 0 0
\(691\) 34446.1 1.89637 0.948185 0.317720i \(-0.102917\pi\)
0.948185 + 0.317720i \(0.102917\pi\)
\(692\) 5185.69 0.284870
\(693\) 0 0
\(694\) −27441.1 −1.50094
\(695\) −19200.8 −1.04796
\(696\) 0 0
\(697\) 983.129 0.0534271
\(698\) −48686.5 −2.64013
\(699\) 0 0
\(700\) −10241.3 −0.552980
\(701\) 12732.3 0.686012 0.343006 0.939333i \(-0.388555\pi\)
0.343006 + 0.939333i \(0.388555\pi\)
\(702\) 0 0
\(703\) 4293.84 0.230363
\(704\) −10293.6 −0.551070
\(705\) 0 0
\(706\) −154.956 −0.00826040
\(707\) 12374.5 0.658264
\(708\) 0 0
\(709\) −2619.52 −0.138756 −0.0693782 0.997590i \(-0.522102\pi\)
−0.0693782 + 0.997590i \(0.522102\pi\)
\(710\) −6421.67 −0.339438
\(711\) 0 0
\(712\) 28768.4 1.51425
\(713\) 47722.8 2.50664
\(714\) 0 0
\(715\) −3800.10 −0.198763
\(716\) −27523.2 −1.43658
\(717\) 0 0
\(718\) 8863.34 0.460692
\(719\) 20757.7 1.07668 0.538338 0.842729i \(-0.319052\pi\)
0.538338 + 0.842729i \(0.319052\pi\)
\(720\) 0 0
\(721\) −8572.81 −0.442813
\(722\) 34522.1 1.77947
\(723\) 0 0
\(724\) 54546.1 2.79999
\(725\) 16238.6 0.831844
\(726\) 0 0
\(727\) 11099.5 0.566241 0.283120 0.959084i \(-0.408630\pi\)
0.283120 + 0.959084i \(0.408630\pi\)
\(728\) −21615.4 −1.10044
\(729\) 0 0
\(730\) −1728.87 −0.0876554
\(731\) −5562.81 −0.281461
\(732\) 0 0
\(733\) 28379.9 1.43006 0.715030 0.699094i \(-0.246413\pi\)
0.715030 + 0.699094i \(0.246413\pi\)
\(734\) −50342.4 −2.53157
\(735\) 0 0
\(736\) 90513.9 4.53314
\(737\) 1980.38 0.0989802
\(738\) 0 0
\(739\) 2611.45 0.129991 0.0649957 0.997886i \(-0.479297\pi\)
0.0649957 + 0.997886i \(0.479297\pi\)
\(740\) 33218.4 1.65018
\(741\) 0 0
\(742\) −12739.9 −0.630318
\(743\) −35458.7 −1.75081 −0.875407 0.483386i \(-0.839407\pi\)
−0.875407 + 0.483386i \(0.839407\pi\)
\(744\) 0 0
\(745\) −5380.88 −0.264618
\(746\) 8638.29 0.423955
\(747\) 0 0
\(748\) −7022.42 −0.343269
\(749\) 12046.2 0.587663
\(750\) 0 0
\(751\) 15082.5 0.732845 0.366422 0.930449i \(-0.380582\pi\)
0.366422 + 0.930449i \(0.380582\pi\)
\(752\) −96207.4 −4.66532
\(753\) 0 0
\(754\) 56737.5 2.74040
\(755\) 3746.77 0.180608
\(756\) 0 0
\(757\) 11843.4 0.568633 0.284316 0.958731i \(-0.408233\pi\)
0.284316 + 0.958731i \(0.408233\pi\)
\(758\) 28558.0 1.36843
\(759\) 0 0
\(760\) −8903.75 −0.424964
\(761\) 19043.4 0.907128 0.453564 0.891224i \(-0.350152\pi\)
0.453564 + 0.891224i \(0.350152\pi\)
\(762\) 0 0
\(763\) 12682.0 0.601728
\(764\) −1887.78 −0.0893945
\(765\) 0 0
\(766\) 69635.8 3.28465
\(767\) 13503.4 0.635698
\(768\) 0 0
\(769\) 19957.0 0.935850 0.467925 0.883768i \(-0.345002\pi\)
0.467925 + 0.883768i \(0.345002\pi\)
\(770\) 2965.62 0.138797
\(771\) 0 0
\(772\) −25451.9 −1.18657
\(773\) −2643.80 −0.123015 −0.0615076 0.998107i \(-0.519591\pi\)
−0.0615076 + 0.998107i \(0.519591\pi\)
\(774\) 0 0
\(775\) 17228.6 0.798540
\(776\) 116971. 5.41111
\(777\) 0 0
\(778\) 4754.69 0.219105
\(779\) 589.358 0.0271065
\(780\) 0 0
\(781\) −1834.07 −0.0840310
\(782\) 33655.6 1.53903
\(783\) 0 0
\(784\) 8948.24 0.407628
\(785\) −23133.1 −1.05179
\(786\) 0 0
\(787\) 38850.2 1.75967 0.879835 0.475279i \(-0.157653\pi\)
0.879835 + 0.475279i \(0.157653\pi\)
\(788\) 22424.1 1.01374
\(789\) 0 0
\(790\) −13455.0 −0.605960
\(791\) 5461.72 0.245507
\(792\) 0 0
\(793\) −10335.9 −0.462846
\(794\) 30219.0 1.35067
\(795\) 0 0
\(796\) 37220.7 1.65735
\(797\) −18821.9 −0.836520 −0.418260 0.908327i \(-0.637360\pi\)
−0.418260 + 0.908327i \(0.637360\pi\)
\(798\) 0 0
\(799\) −16645.3 −0.737007
\(800\) 32676.8 1.44412
\(801\) 0 0
\(802\) 12526.2 0.551518
\(803\) −493.777 −0.0216999
\(804\) 0 0
\(805\) −10181.7 −0.445787
\(806\) 60196.4 2.63068
\(807\) 0 0
\(808\) −114591. −4.98925
\(809\) 38807.6 1.68653 0.843265 0.537498i \(-0.180630\pi\)
0.843265 + 0.537498i \(0.180630\pi\)
\(810\) 0 0
\(811\) 17348.5 0.751157 0.375579 0.926791i \(-0.377444\pi\)
0.375579 + 0.926791i \(0.377444\pi\)
\(812\) −31719.5 −1.37086
\(813\) 0 0
\(814\) 13243.8 0.570263
\(815\) −9796.06 −0.421032
\(816\) 0 0
\(817\) −3334.75 −0.142801
\(818\) −77834.2 −3.32690
\(819\) 0 0
\(820\) 4559.45 0.194174
\(821\) 44722.9 1.90115 0.950573 0.310502i \(-0.100497\pi\)
0.950573 + 0.310502i \(0.100497\pi\)
\(822\) 0 0
\(823\) −8808.05 −0.373061 −0.186531 0.982449i \(-0.559724\pi\)
−0.186531 + 0.982449i \(0.559724\pi\)
\(824\) 79386.4 3.35626
\(825\) 0 0
\(826\) −10538.2 −0.443909
\(827\) 23454.1 0.986191 0.493096 0.869975i \(-0.335865\pi\)
0.493096 + 0.869975i \(0.335865\pi\)
\(828\) 0 0
\(829\) −7484.57 −0.313570 −0.156785 0.987633i \(-0.550113\pi\)
−0.156785 + 0.987633i \(0.550113\pi\)
\(830\) 27817.4 1.16332
\(831\) 0 0
\(832\) 44577.6 1.85751
\(833\) 1548.18 0.0643952
\(834\) 0 0
\(835\) −11154.6 −0.462298
\(836\) −4209.74 −0.174159
\(837\) 0 0
\(838\) −61620.6 −2.54015
\(839\) −39660.2 −1.63197 −0.815985 0.578073i \(-0.803805\pi\)
−0.815985 + 0.578073i \(0.803805\pi\)
\(840\) 0 0
\(841\) 25905.4 1.06217
\(842\) −66809.8 −2.73446
\(843\) 0 0
\(844\) −68378.7 −2.78873
\(845\) 524.166 0.0213395
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 62581.0 2.53424
\(849\) 0 0
\(850\) 12150.1 0.490289
\(851\) −45469.2 −1.83157
\(852\) 0 0
\(853\) −1477.78 −0.0593180 −0.0296590 0.999560i \(-0.509442\pi\)
−0.0296590 + 0.999560i \(0.509442\pi\)
\(854\) 8066.16 0.323207
\(855\) 0 0
\(856\) −111551. −4.45414
\(857\) 371.368 0.0148024 0.00740122 0.999973i \(-0.497644\pi\)
0.00740122 + 0.999973i \(0.497644\pi\)
\(858\) 0 0
\(859\) −33342.7 −1.32437 −0.662187 0.749339i \(-0.730372\pi\)
−0.662187 + 0.749339i \(0.730372\pi\)
\(860\) −25798.6 −1.02294
\(861\) 0 0
\(862\) 53133.8 2.09947
\(863\) 23208.8 0.915452 0.457726 0.889093i \(-0.348664\pi\)
0.457726 + 0.889093i \(0.348664\pi\)
\(864\) 0 0
\(865\) 1861.21 0.0731596
\(866\) 95246.5 3.73742
\(867\) 0 0
\(868\) −33653.2 −1.31597
\(869\) −3842.85 −0.150011
\(870\) 0 0
\(871\) −8576.31 −0.333636
\(872\) −117438. −4.56074
\(873\) 0 0
\(874\) 20175.6 0.780834
\(875\) −10021.2 −0.387177
\(876\) 0 0
\(877\) −20778.9 −0.800059 −0.400030 0.916502i \(-0.631000\pi\)
−0.400030 + 0.916502i \(0.631000\pi\)
\(878\) 86172.0 3.31226
\(879\) 0 0
\(880\) −14567.7 −0.558044
\(881\) −29688.6 −1.13534 −0.567669 0.823257i \(-0.692155\pi\)
−0.567669 + 0.823257i \(0.692155\pi\)
\(882\) 0 0
\(883\) 36836.6 1.40391 0.701953 0.712223i \(-0.252312\pi\)
0.701953 + 0.712223i \(0.252312\pi\)
\(884\) 30411.5 1.15707
\(885\) 0 0
\(886\) −54144.0 −2.05305
\(887\) −37539.3 −1.42102 −0.710511 0.703686i \(-0.751536\pi\)
−0.710511 + 0.703686i \(0.751536\pi\)
\(888\) 0 0
\(889\) −7602.21 −0.286805
\(890\) 17093.1 0.643776
\(891\) 0 0
\(892\) −51963.4 −1.95052
\(893\) −9978.40 −0.373924
\(894\) 0 0
\(895\) −9878.45 −0.368939
\(896\) −9516.75 −0.354835
\(897\) 0 0
\(898\) −2098.30 −0.0779747
\(899\) 53360.5 1.97961
\(900\) 0 0
\(901\) 10827.4 0.400349
\(902\) 1817.80 0.0671020
\(903\) 0 0
\(904\) −50576.9 −1.86080
\(905\) 19577.3 0.719084
\(906\) 0 0
\(907\) −31373.5 −1.14856 −0.574278 0.818660i \(-0.694717\pi\)
−0.574278 + 0.818660i \(0.694717\pi\)
\(908\) −17247.3 −0.630365
\(909\) 0 0
\(910\) −12843.0 −0.467848
\(911\) 6292.83 0.228859 0.114430 0.993431i \(-0.463496\pi\)
0.114430 + 0.993431i \(0.463496\pi\)
\(912\) 0 0
\(913\) 7944.84 0.287991
\(914\) −97764.7 −3.53804
\(915\) 0 0
\(916\) 89919.5 3.24348
\(917\) 11384.1 0.409962
\(918\) 0 0
\(919\) −36983.0 −1.32748 −0.663742 0.747961i \(-0.731033\pi\)
−0.663742 + 0.747961i \(0.731033\pi\)
\(920\) 94285.4 3.37880
\(921\) 0 0
\(922\) 87692.1 3.13230
\(923\) 7942.68 0.283247
\(924\) 0 0
\(925\) −16415.0 −0.583484
\(926\) 82131.4 2.91469
\(927\) 0 0
\(928\) 101207. 3.58004
\(929\) 20223.9 0.714234 0.357117 0.934060i \(-0.383760\pi\)
0.357117 + 0.934060i \(0.383760\pi\)
\(930\) 0 0
\(931\) 928.090 0.0326712
\(932\) 35358.0 1.24269
\(933\) 0 0
\(934\) −26630.8 −0.932961
\(935\) −2520.44 −0.0881573
\(936\) 0 0
\(937\) −1301.80 −0.0453873 −0.0226936 0.999742i \(-0.507224\pi\)
−0.0226936 + 0.999742i \(0.507224\pi\)
\(938\) 6693.01 0.232979
\(939\) 0 0
\(940\) −77195.8 −2.67856
\(941\) 19149.5 0.663395 0.331697 0.943386i \(-0.392379\pi\)
0.331697 + 0.943386i \(0.392379\pi\)
\(942\) 0 0
\(943\) −6240.96 −0.215518
\(944\) 51765.6 1.78477
\(945\) 0 0
\(946\) −10285.6 −0.353502
\(947\) −32816.0 −1.12606 −0.563030 0.826437i \(-0.690364\pi\)
−0.563030 + 0.826437i \(0.690364\pi\)
\(948\) 0 0
\(949\) 2138.37 0.0731447
\(950\) 7283.66 0.248751
\(951\) 0 0
\(952\) −14336.5 −0.488077
\(953\) −46677.1 −1.58659 −0.793294 0.608838i \(-0.791636\pi\)
−0.793294 + 0.608838i \(0.791636\pi\)
\(954\) 0 0
\(955\) −677.548 −0.0229581
\(956\) −47577.4 −1.60959
\(957\) 0 0
\(958\) −55901.8 −1.88529
\(959\) −17142.6 −0.577229
\(960\) 0 0
\(961\) 26822.5 0.900356
\(962\) −57353.9 −1.92221
\(963\) 0 0
\(964\) −113458. −3.79069
\(965\) −9135.02 −0.304732
\(966\) 0 0
\(967\) −24701.2 −0.821445 −0.410723 0.911760i \(-0.634724\pi\)
−0.410723 + 0.911760i \(0.634724\pi\)
\(968\) −7843.44 −0.260431
\(969\) 0 0
\(970\) 69499.6 2.30051
\(971\) −6025.41 −0.199140 −0.0995699 0.995031i \(-0.531747\pi\)
−0.0995699 + 0.995031i \(0.531747\pi\)
\(972\) 0 0
\(973\) −18533.6 −0.610648
\(974\) −83797.6 −2.75672
\(975\) 0 0
\(976\) −39622.7 −1.29948
\(977\) 53291.7 1.74509 0.872545 0.488533i \(-0.162468\pi\)
0.872545 + 0.488533i \(0.162468\pi\)
\(978\) 0 0
\(979\) 4881.89 0.159373
\(980\) 7179.98 0.234037
\(981\) 0 0
\(982\) 71888.7 2.33611
\(983\) 30172.7 0.979003 0.489502 0.872002i \(-0.337179\pi\)
0.489502 + 0.872002i \(0.337179\pi\)
\(984\) 0 0
\(985\) 8048.29 0.260345
\(986\) 37631.5 1.21545
\(987\) 0 0
\(988\) 18230.8 0.587045
\(989\) 35313.0 1.13538
\(990\) 0 0
\(991\) −37208.5 −1.19270 −0.596351 0.802724i \(-0.703383\pi\)
−0.596351 + 0.802724i \(0.703383\pi\)
\(992\) 107377. 3.43671
\(993\) 0 0
\(994\) −6198.52 −0.197792
\(995\) 13359.0 0.425637
\(996\) 0 0
\(997\) −4163.25 −0.132248 −0.0661241 0.997811i \(-0.521063\pi\)
−0.0661241 + 0.997811i \(0.521063\pi\)
\(998\) −96135.9 −3.04923
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.r.1.1 8
3.2 odd 2 693.4.a.u.1.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.4.a.r.1.1 8 1.1 even 1 trivial
693.4.a.u.1.8 yes 8 3.2 odd 2