Properties

Label 693.4.a.r
Level $693$
Weight $4$
Character orbit 693.a
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{2} - \beta_1 + 4) q^{4} + (\beta_{4} - 1) q^{5} + 7 q^{7} + (\beta_{3} - \beta_{2} + 3 \beta_1 - 11) q^{8} + ( - \beta_{6} - 2 \beta_{4} - \beta_{3} + \cdots + 2) q^{10}+ \cdots + (49 \beta_1 - 49) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + 30 q^{4} - 10 q^{5} + 56 q^{7} - 81 q^{8} + 9 q^{10} - 88 q^{11} + 16 q^{13} - 42 q^{14} + 122 q^{16} - 90 q^{17} - 42 q^{19} - 291 q^{20} + 66 q^{22} - 338 q^{23} + 244 q^{25} - 209 q^{26}+ \cdots - 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} - 43x^{6} + 57x^{5} + 560x^{4} - 439x^{3} - 2246x^{2} + 384x + 1056 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 17\nu + 15 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{7} - 2\nu^{6} - 161\nu^{5} + 103\nu^{4} + 2404\nu^{3} - 1309\nu^{2} - 8982\nu + 1672 ) / 352 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{7} - 2\nu^{6} - 117\nu^{5} + 15\nu^{4} + 1172\nu^{3} - 121\nu^{2} - 2470\nu + 1232 ) / 88 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -7\nu^{7} + 34\nu^{6} + 229\nu^{5} - 827\nu^{4} - 2764\nu^{3} + 3553\nu^{2} + 14094\nu + 4312 ) / 352 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} - 26\nu^{6} + 239\nu^{5} + 1119\nu^{4} - 2980\nu^{3} - 11165\nu^{2} + 10570\nu + 15752 ) / 352 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 19\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + \beta_{6} + \beta_{5} + 3\beta_{3} + 29\beta_{2} + 38\beta _1 + 203 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{7} + 2\beta_{6} + 4\beta_{5} - 8\beta_{4} + 34\beta_{3} + 87\beta_{2} + 433\beta _1 + 315 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 30\beta_{7} + 42\beta_{6} + 40\beta_{5} - 12\beta_{4} + 133\beta_{3} + 804\beta_{2} + 1299\beta _1 + 4489 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 93\beta_{7} + 101\beta_{6} + 207\beta_{5} - 320\beta_{4} + 1009\beta_{3} + 3043\beta_{2} + 11004\beta _1 + 11561 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.31088
−3.75652
−2.09275
−0.680784
0.778078
2.94273
3.66328
5.45684
−5.31088 0 20.2055 7.25200 0 7.00000 −64.8218 0 −38.5145
1.2 −4.75652 0 14.6245 −20.4224 0 7.00000 −31.5093 0 97.1395
1.3 −3.09275 0 1.56510 0.265436 0 7.00000 19.9015 0 −0.820927
1.4 −1.68078 0 −5.17496 17.3718 0 7.00000 22.1443 0 −29.1983
1.5 −0.221922 0 −7.95075 −15.1615 0 7.00000 3.53982 0 3.36467
1.6 1.94273 0 −4.22579 4.10121 0 7.00000 −23.7514 0 7.96756
1.7 2.66328 0 −0.906920 8.78457 0 7.00000 −23.7217 0 23.3958
1.8 4.45684 0 11.8634 −12.1911 0 7.00000 17.2186 0 −54.3338
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 693.4.a.r 8
3.b odd 2 1 693.4.a.u yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
693.4.a.r 8 1.a even 1 1 trivial
693.4.a.u yes 8 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(693))\):

\( T_{2}^{8} + 6T_{2}^{7} - 29T_{2}^{6} - 187T_{2}^{5} + 200T_{2}^{4} + 1497T_{2}^{3} - 292T_{2}^{2} - 3164T_{2} - 672 \) Copy content Toggle raw display
\( T_{5}^{8} + 10 T_{5}^{7} - 572 T_{5}^{6} - 3572 T_{5}^{5} + 100333 T_{5}^{4} + 133342 T_{5}^{3} + \cdots - 4547664 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 6 T^{7} + \cdots - 672 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 10 T^{7} + \cdots - 4547664 \) Copy content Toggle raw display
$7$ \( (T - 7)^{8} \) Copy content Toggle raw display
$11$ \( (T + 11)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 746331240672 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots - 6029195028480 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots - 7962599853072 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots - 11\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots - 314767624533120 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 21\!\cdots\!72 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 33\!\cdots\!72 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 20\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots - 99\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 18\!\cdots\!20 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 18\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 28\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 59\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 27\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 29\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 12\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 14\!\cdots\!20 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 86\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots - 70\!\cdots\!36 \) Copy content Toggle raw display
show more
show less