Properties

Label 693.4.a.q.1.4
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.48454\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.48454 q^{2} -1.82705 q^{4} -13.9229 q^{5} -7.00000 q^{7} -24.4157 q^{8} +O(q^{10})\) \(q+2.48454 q^{2} -1.82705 q^{4} -13.9229 q^{5} -7.00000 q^{7} -24.4157 q^{8} -34.5919 q^{10} +11.0000 q^{11} -53.9968 q^{13} -17.3918 q^{14} -46.0455 q^{16} +21.8891 q^{17} +73.6854 q^{19} +25.4377 q^{20} +27.3300 q^{22} +16.7425 q^{23} +68.8459 q^{25} -134.157 q^{26} +12.7893 q^{28} -153.954 q^{29} +224.363 q^{31} +80.9237 q^{32} +54.3845 q^{34} +97.4600 q^{35} +369.604 q^{37} +183.074 q^{38} +339.937 q^{40} +61.3701 q^{41} +37.2526 q^{43} -20.0975 q^{44} +41.5974 q^{46} -279.867 q^{47} +49.0000 q^{49} +171.051 q^{50} +98.6548 q^{52} -235.547 q^{53} -153.151 q^{55} +170.910 q^{56} -382.506 q^{58} -19.1584 q^{59} +713.262 q^{61} +557.439 q^{62} +569.423 q^{64} +751.790 q^{65} -198.118 q^{67} -39.9925 q^{68} +242.144 q^{70} +76.3922 q^{71} +984.250 q^{73} +918.297 q^{74} -134.627 q^{76} -77.0000 q^{77} -697.458 q^{79} +641.085 q^{80} +152.477 q^{82} +388.757 q^{83} -304.759 q^{85} +92.5557 q^{86} -268.573 q^{88} -33.0992 q^{89} +377.978 q^{91} -30.5893 q^{92} -695.341 q^{94} -1025.91 q^{95} +1384.34 q^{97} +121.743 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8} + 113 q^{10} + 55 q^{11} + 23 q^{13} - 7 q^{14} + 281 q^{16} + 102 q^{17} - 155 q^{19} - 291 q^{20} + 11 q^{22} - 192 q^{23} + 394 q^{25} - 41 q^{26} - 147 q^{28} - 591 q^{29} + 366 q^{31} + 87 q^{32} + 594 q^{34} + 49 q^{35} + 259 q^{37} - 175 q^{38} + 1890 q^{40} + 104 q^{41} + 224 q^{43} + 231 q^{44} + 1416 q^{46} + 453 q^{47} + 245 q^{49} - 1350 q^{50} + 815 q^{52} - 1032 q^{53} - 77 q^{55} - 84 q^{56} + 293 q^{58} + 517 q^{59} + 958 q^{61} + 3030 q^{62} + 516 q^{64} + 197 q^{65} + 361 q^{67} + 1680 q^{68} - 791 q^{70} - 548 q^{71} - 1035 q^{73} + 2555 q^{74} - 5201 q^{76} - 385 q^{77} + 776 q^{79} + 1273 q^{80} + 376 q^{82} + 1974 q^{83} + 1838 q^{85} - 1224 q^{86} + 132 q^{88} - 2710 q^{89} - 161 q^{91} + 2834 q^{92} - 563 q^{94} + 355 q^{95} + 1988 q^{97} + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48454 0.878418 0.439209 0.898385i \(-0.355259\pi\)
0.439209 + 0.898385i \(0.355259\pi\)
\(3\) 0 0
\(4\) −1.82705 −0.228381
\(5\) −13.9229 −1.24530 −0.622649 0.782501i \(-0.713944\pi\)
−0.622649 + 0.782501i \(0.713944\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −24.4157 −1.07903
\(9\) 0 0
\(10\) −34.5919 −1.09389
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −53.9968 −1.15200 −0.576001 0.817449i \(-0.695388\pi\)
−0.576001 + 0.817449i \(0.695388\pi\)
\(14\) −17.3918 −0.332011
\(15\) 0 0
\(16\) −46.0455 −0.719461
\(17\) 21.8891 0.312288 0.156144 0.987734i \(-0.450094\pi\)
0.156144 + 0.987734i \(0.450094\pi\)
\(18\) 0 0
\(19\) 73.6854 0.889715 0.444858 0.895601i \(-0.353254\pi\)
0.444858 + 0.895601i \(0.353254\pi\)
\(20\) 25.4377 0.284402
\(21\) 0 0
\(22\) 27.3300 0.264853
\(23\) 16.7425 0.151785 0.0758923 0.997116i \(-0.475819\pi\)
0.0758923 + 0.997116i \(0.475819\pi\)
\(24\) 0 0
\(25\) 68.8459 0.550768
\(26\) −134.157 −1.01194
\(27\) 0 0
\(28\) 12.7893 0.0863199
\(29\) −153.954 −0.985813 −0.492906 0.870082i \(-0.664066\pi\)
−0.492906 + 0.870082i \(0.664066\pi\)
\(30\) 0 0
\(31\) 224.363 1.29990 0.649948 0.759979i \(-0.274791\pi\)
0.649948 + 0.759979i \(0.274791\pi\)
\(32\) 80.9237 0.447045
\(33\) 0 0
\(34\) 54.3845 0.274320
\(35\) 97.4600 0.470678
\(36\) 0 0
\(37\) 369.604 1.64223 0.821115 0.570763i \(-0.193352\pi\)
0.821115 + 0.570763i \(0.193352\pi\)
\(38\) 183.074 0.781542
\(39\) 0 0
\(40\) 339.937 1.34372
\(41\) 61.3701 0.233766 0.116883 0.993146i \(-0.462710\pi\)
0.116883 + 0.993146i \(0.462710\pi\)
\(42\) 0 0
\(43\) 37.2526 0.132116 0.0660578 0.997816i \(-0.478958\pi\)
0.0660578 + 0.997816i \(0.478958\pi\)
\(44\) −20.0975 −0.0688595
\(45\) 0 0
\(46\) 41.5974 0.133330
\(47\) −279.867 −0.868570 −0.434285 0.900776i \(-0.642999\pi\)
−0.434285 + 0.900776i \(0.642999\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 171.051 0.483804
\(51\) 0 0
\(52\) 98.6548 0.263095
\(53\) −235.547 −0.610470 −0.305235 0.952277i \(-0.598735\pi\)
−0.305235 + 0.952277i \(0.598735\pi\)
\(54\) 0 0
\(55\) −153.151 −0.375472
\(56\) 170.910 0.407836
\(57\) 0 0
\(58\) −382.506 −0.865956
\(59\) −19.1584 −0.0422748 −0.0211374 0.999777i \(-0.506729\pi\)
−0.0211374 + 0.999777i \(0.506729\pi\)
\(60\) 0 0
\(61\) 713.262 1.49711 0.748556 0.663071i \(-0.230747\pi\)
0.748556 + 0.663071i \(0.230747\pi\)
\(62\) 557.439 1.14185
\(63\) 0 0
\(64\) 569.423 1.11215
\(65\) 751.790 1.43459
\(66\) 0 0
\(67\) −198.118 −0.361254 −0.180627 0.983552i \(-0.557813\pi\)
−0.180627 + 0.983552i \(0.557813\pi\)
\(68\) −39.9925 −0.0713207
\(69\) 0 0
\(70\) 242.144 0.413453
\(71\) 76.3922 0.127691 0.0638457 0.997960i \(-0.479663\pi\)
0.0638457 + 0.997960i \(0.479663\pi\)
\(72\) 0 0
\(73\) 984.250 1.57805 0.789026 0.614360i \(-0.210586\pi\)
0.789026 + 0.614360i \(0.210586\pi\)
\(74\) 918.297 1.44257
\(75\) 0 0
\(76\) −134.627 −0.203194
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −697.458 −0.993292 −0.496646 0.867953i \(-0.665435\pi\)
−0.496646 + 0.867953i \(0.665435\pi\)
\(80\) 641.085 0.895944
\(81\) 0 0
\(82\) 152.477 0.205344
\(83\) 388.757 0.514116 0.257058 0.966396i \(-0.417247\pi\)
0.257058 + 0.966396i \(0.417247\pi\)
\(84\) 0 0
\(85\) −304.759 −0.388892
\(86\) 92.5557 0.116053
\(87\) 0 0
\(88\) −268.573 −0.325341
\(89\) −33.0992 −0.0394214 −0.0197107 0.999806i \(-0.506275\pi\)
−0.0197107 + 0.999806i \(0.506275\pi\)
\(90\) 0 0
\(91\) 377.978 0.435416
\(92\) −30.5893 −0.0346647
\(93\) 0 0
\(94\) −695.341 −0.762968
\(95\) −1025.91 −1.10796
\(96\) 0 0
\(97\) 1384.34 1.44906 0.724530 0.689243i \(-0.242057\pi\)
0.724530 + 0.689243i \(0.242057\pi\)
\(98\) 121.743 0.125488
\(99\) 0 0
\(100\) −125.785 −0.125785
\(101\) −1061.43 −1.04571 −0.522853 0.852423i \(-0.675133\pi\)
−0.522853 + 0.852423i \(0.675133\pi\)
\(102\) 0 0
\(103\) −867.093 −0.829488 −0.414744 0.909938i \(-0.636129\pi\)
−0.414744 + 0.909938i \(0.636129\pi\)
\(104\) 1318.37 1.24305
\(105\) 0 0
\(106\) −585.228 −0.536248
\(107\) 826.383 0.746630 0.373315 0.927705i \(-0.378221\pi\)
0.373315 + 0.927705i \(0.378221\pi\)
\(108\) 0 0
\(109\) 1021.07 0.897253 0.448626 0.893719i \(-0.351913\pi\)
0.448626 + 0.893719i \(0.351913\pi\)
\(110\) −380.511 −0.329821
\(111\) 0 0
\(112\) 322.319 0.271931
\(113\) −1174.94 −0.978131 −0.489066 0.872247i \(-0.662662\pi\)
−0.489066 + 0.872247i \(0.662662\pi\)
\(114\) 0 0
\(115\) −233.103 −0.189017
\(116\) 281.282 0.225141
\(117\) 0 0
\(118\) −47.5999 −0.0371350
\(119\) −153.224 −0.118034
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1772.13 1.31509
\(123\) 0 0
\(124\) −409.922 −0.296871
\(125\) 781.825 0.559428
\(126\) 0 0
\(127\) −1756.11 −1.22700 −0.613502 0.789693i \(-0.710240\pi\)
−0.613502 + 0.789693i \(0.710240\pi\)
\(128\) 767.365 0.529891
\(129\) 0 0
\(130\) 1867.85 1.26017
\(131\) 1306.21 0.871174 0.435587 0.900147i \(-0.356541\pi\)
0.435587 + 0.900147i \(0.356541\pi\)
\(132\) 0 0
\(133\) −515.798 −0.336281
\(134\) −492.234 −0.317332
\(135\) 0 0
\(136\) −534.439 −0.336969
\(137\) −756.981 −0.472067 −0.236034 0.971745i \(-0.575848\pi\)
−0.236034 + 0.971745i \(0.575848\pi\)
\(138\) 0 0
\(139\) −1958.12 −1.19486 −0.597431 0.801920i \(-0.703812\pi\)
−0.597431 + 0.801920i \(0.703812\pi\)
\(140\) −178.064 −0.107494
\(141\) 0 0
\(142\) 189.800 0.112166
\(143\) −593.965 −0.347342
\(144\) 0 0
\(145\) 2143.48 1.22763
\(146\) 2445.41 1.38619
\(147\) 0 0
\(148\) −675.284 −0.375054
\(149\) −1442.32 −0.793016 −0.396508 0.918031i \(-0.629778\pi\)
−0.396508 + 0.918031i \(0.629778\pi\)
\(150\) 0 0
\(151\) 2626.40 1.41545 0.707727 0.706486i \(-0.249721\pi\)
0.707727 + 0.706486i \(0.249721\pi\)
\(152\) −1799.08 −0.960031
\(153\) 0 0
\(154\) −191.310 −0.100105
\(155\) −3123.77 −1.61876
\(156\) 0 0
\(157\) −1812.72 −0.921471 −0.460735 0.887538i \(-0.652414\pi\)
−0.460735 + 0.887538i \(0.652414\pi\)
\(158\) −1732.86 −0.872526
\(159\) 0 0
\(160\) −1126.69 −0.556704
\(161\) −117.197 −0.0573692
\(162\) 0 0
\(163\) 3552.18 1.70692 0.853460 0.521158i \(-0.174500\pi\)
0.853460 + 0.521158i \(0.174500\pi\)
\(164\) −112.126 −0.0533877
\(165\) 0 0
\(166\) 965.883 0.451609
\(167\) 3217.80 1.49102 0.745511 0.666493i \(-0.232205\pi\)
0.745511 + 0.666493i \(0.232205\pi\)
\(168\) 0 0
\(169\) 718.657 0.327108
\(170\) −757.188 −0.341610
\(171\) 0 0
\(172\) −68.0623 −0.0301727
\(173\) −2512.65 −1.10424 −0.552120 0.833765i \(-0.686181\pi\)
−0.552120 + 0.833765i \(0.686181\pi\)
\(174\) 0 0
\(175\) −481.922 −0.208171
\(176\) −506.501 −0.216926
\(177\) 0 0
\(178\) −82.2363 −0.0346285
\(179\) −4436.03 −1.85231 −0.926157 0.377139i \(-0.876908\pi\)
−0.926157 + 0.377139i \(0.876908\pi\)
\(180\) 0 0
\(181\) 4431.76 1.81994 0.909972 0.414670i \(-0.136103\pi\)
0.909972 + 0.414670i \(0.136103\pi\)
\(182\) 939.102 0.382477
\(183\) 0 0
\(184\) −408.779 −0.163780
\(185\) −5145.94 −2.04507
\(186\) 0 0
\(187\) 240.781 0.0941584
\(188\) 511.330 0.198365
\(189\) 0 0
\(190\) −2548.92 −0.973253
\(191\) −1612.21 −0.610760 −0.305380 0.952231i \(-0.598783\pi\)
−0.305380 + 0.952231i \(0.598783\pi\)
\(192\) 0 0
\(193\) 930.282 0.346960 0.173480 0.984837i \(-0.444499\pi\)
0.173480 + 0.984837i \(0.444499\pi\)
\(194\) 3439.46 1.27288
\(195\) 0 0
\(196\) −89.5253 −0.0326259
\(197\) 4707.36 1.70246 0.851231 0.524791i \(-0.175856\pi\)
0.851231 + 0.524791i \(0.175856\pi\)
\(198\) 0 0
\(199\) −143.956 −0.0512801 −0.0256400 0.999671i \(-0.508162\pi\)
−0.0256400 + 0.999671i \(0.508162\pi\)
\(200\) −1680.92 −0.594296
\(201\) 0 0
\(202\) −2637.17 −0.918568
\(203\) 1077.68 0.372602
\(204\) 0 0
\(205\) −854.448 −0.291108
\(206\) −2154.33 −0.728637
\(207\) 0 0
\(208\) 2486.31 0.828821
\(209\) 810.539 0.268259
\(210\) 0 0
\(211\) −451.368 −0.147268 −0.0736338 0.997285i \(-0.523460\pi\)
−0.0736338 + 0.997285i \(0.523460\pi\)
\(212\) 430.356 0.139420
\(213\) 0 0
\(214\) 2053.18 0.655854
\(215\) −518.663 −0.164523
\(216\) 0 0
\(217\) −1570.54 −0.491314
\(218\) 2536.89 0.788164
\(219\) 0 0
\(220\) 279.815 0.0857506
\(221\) −1181.94 −0.359756
\(222\) 0 0
\(223\) 377.140 0.113252 0.0566260 0.998395i \(-0.481966\pi\)
0.0566260 + 0.998395i \(0.481966\pi\)
\(224\) −566.466 −0.168967
\(225\) 0 0
\(226\) −2919.18 −0.859209
\(227\) 5441.73 1.59110 0.795551 0.605886i \(-0.207181\pi\)
0.795551 + 0.605886i \(0.207181\pi\)
\(228\) 0 0
\(229\) 2191.27 0.632328 0.316164 0.948705i \(-0.397605\pi\)
0.316164 + 0.948705i \(0.397605\pi\)
\(230\) −579.154 −0.166036
\(231\) 0 0
\(232\) 3758.90 1.06372
\(233\) 2379.94 0.669163 0.334582 0.942367i \(-0.391405\pi\)
0.334582 + 0.942367i \(0.391405\pi\)
\(234\) 0 0
\(235\) 3896.55 1.08163
\(236\) 35.0033 0.00965476
\(237\) 0 0
\(238\) −380.692 −0.103683
\(239\) −4504.56 −1.21914 −0.609572 0.792731i \(-0.708659\pi\)
−0.609572 + 0.792731i \(0.708659\pi\)
\(240\) 0 0
\(241\) −5414.93 −1.44733 −0.723665 0.690152i \(-0.757544\pi\)
−0.723665 + 0.690152i \(0.757544\pi\)
\(242\) 300.630 0.0798562
\(243\) 0 0
\(244\) −1303.16 −0.341912
\(245\) −682.220 −0.177900
\(246\) 0 0
\(247\) −3978.78 −1.02495
\(248\) −5477.98 −1.40263
\(249\) 0 0
\(250\) 1942.48 0.491412
\(251\) 1594.94 0.401083 0.200541 0.979685i \(-0.435730\pi\)
0.200541 + 0.979685i \(0.435730\pi\)
\(252\) 0 0
\(253\) 184.167 0.0457648
\(254\) −4363.13 −1.07782
\(255\) 0 0
\(256\) −2648.83 −0.646687
\(257\) 6585.39 1.59839 0.799194 0.601073i \(-0.205260\pi\)
0.799194 + 0.601073i \(0.205260\pi\)
\(258\) 0 0
\(259\) −2587.23 −0.620705
\(260\) −1373.56 −0.327632
\(261\) 0 0
\(262\) 3245.33 0.765256
\(263\) 5615.25 1.31654 0.658272 0.752780i \(-0.271288\pi\)
0.658272 + 0.752780i \(0.271288\pi\)
\(264\) 0 0
\(265\) 3279.49 0.760218
\(266\) −1281.52 −0.295395
\(267\) 0 0
\(268\) 361.972 0.0825035
\(269\) 5443.31 1.23377 0.616886 0.787053i \(-0.288394\pi\)
0.616886 + 0.787053i \(0.288394\pi\)
\(270\) 0 0
\(271\) −370.300 −0.0830041 −0.0415020 0.999138i \(-0.513214\pi\)
−0.0415020 + 0.999138i \(0.513214\pi\)
\(272\) −1007.90 −0.224679
\(273\) 0 0
\(274\) −1880.75 −0.414673
\(275\) 757.305 0.166063
\(276\) 0 0
\(277\) 1308.68 0.283867 0.141933 0.989876i \(-0.454668\pi\)
0.141933 + 0.989876i \(0.454668\pi\)
\(278\) −4865.04 −1.04959
\(279\) 0 0
\(280\) −2379.56 −0.507877
\(281\) 2680.45 0.569046 0.284523 0.958669i \(-0.408165\pi\)
0.284523 + 0.958669i \(0.408165\pi\)
\(282\) 0 0
\(283\) −6780.63 −1.42426 −0.712132 0.702046i \(-0.752270\pi\)
−0.712132 + 0.702046i \(0.752270\pi\)
\(284\) −139.572 −0.0291623
\(285\) 0 0
\(286\) −1475.73 −0.305111
\(287\) −429.591 −0.0883552
\(288\) 0 0
\(289\) −4433.87 −0.902476
\(290\) 5325.57 1.07837
\(291\) 0 0
\(292\) −1798.27 −0.360397
\(293\) 4596.85 0.916557 0.458278 0.888809i \(-0.348466\pi\)
0.458278 + 0.888809i \(0.348466\pi\)
\(294\) 0 0
\(295\) 266.740 0.0526447
\(296\) −9024.15 −1.77202
\(297\) 0 0
\(298\) −3583.50 −0.696600
\(299\) −904.040 −0.174856
\(300\) 0 0
\(301\) −260.768 −0.0499350
\(302\) 6525.41 1.24336
\(303\) 0 0
\(304\) −3392.88 −0.640115
\(305\) −9930.65 −1.86435
\(306\) 0 0
\(307\) 1875.22 0.348615 0.174307 0.984691i \(-0.444231\pi\)
0.174307 + 0.984691i \(0.444231\pi\)
\(308\) 140.683 0.0260264
\(309\) 0 0
\(310\) −7761.15 −1.42195
\(311\) −621.628 −0.113342 −0.0566709 0.998393i \(-0.518049\pi\)
−0.0566709 + 0.998393i \(0.518049\pi\)
\(312\) 0 0
\(313\) 2587.60 0.467283 0.233642 0.972323i \(-0.424936\pi\)
0.233642 + 0.972323i \(0.424936\pi\)
\(314\) −4503.78 −0.809437
\(315\) 0 0
\(316\) 1274.29 0.226849
\(317\) −4330.43 −0.767260 −0.383630 0.923487i \(-0.625326\pi\)
−0.383630 + 0.923487i \(0.625326\pi\)
\(318\) 0 0
\(319\) −1693.50 −0.297234
\(320\) −7927.99 −1.38496
\(321\) 0 0
\(322\) −291.182 −0.0503941
\(323\) 1612.91 0.277847
\(324\) 0 0
\(325\) −3717.46 −0.634485
\(326\) 8825.54 1.49939
\(327\) 0 0
\(328\) −1498.40 −0.252241
\(329\) 1959.07 0.328289
\(330\) 0 0
\(331\) 6117.61 1.01587 0.507937 0.861394i \(-0.330408\pi\)
0.507937 + 0.861394i \(0.330408\pi\)
\(332\) −710.278 −0.117414
\(333\) 0 0
\(334\) 7994.76 1.30974
\(335\) 2758.37 0.449869
\(336\) 0 0
\(337\) −1504.23 −0.243148 −0.121574 0.992582i \(-0.538794\pi\)
−0.121574 + 0.992582i \(0.538794\pi\)
\(338\) 1785.53 0.287338
\(339\) 0 0
\(340\) 556.810 0.0888155
\(341\) 2467.99 0.391933
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −909.550 −0.142557
\(345\) 0 0
\(346\) −6242.79 −0.969985
\(347\) 3421.45 0.529317 0.264658 0.964342i \(-0.414741\pi\)
0.264658 + 0.964342i \(0.414741\pi\)
\(348\) 0 0
\(349\) 2614.76 0.401045 0.200523 0.979689i \(-0.435736\pi\)
0.200523 + 0.979689i \(0.435736\pi\)
\(350\) −1197.35 −0.182861
\(351\) 0 0
\(352\) 890.161 0.134789
\(353\) 11775.3 1.77546 0.887728 0.460369i \(-0.152283\pi\)
0.887728 + 0.460369i \(0.152283\pi\)
\(354\) 0 0
\(355\) −1063.60 −0.159014
\(356\) 60.4738 0.00900310
\(357\) 0 0
\(358\) −11021.5 −1.62711
\(359\) −12034.1 −1.76918 −0.884590 0.466369i \(-0.845562\pi\)
−0.884590 + 0.466369i \(0.845562\pi\)
\(360\) 0 0
\(361\) −1429.46 −0.208407
\(362\) 11010.9 1.59867
\(363\) 0 0
\(364\) −690.583 −0.0994407
\(365\) −13703.6 −1.96514
\(366\) 0 0
\(367\) 5824.07 0.828376 0.414188 0.910191i \(-0.364066\pi\)
0.414188 + 0.910191i \(0.364066\pi\)
\(368\) −770.915 −0.109203
\(369\) 0 0
\(370\) −12785.3 −1.79642
\(371\) 1648.83 0.230736
\(372\) 0 0
\(373\) −3814.65 −0.529531 −0.264765 0.964313i \(-0.585295\pi\)
−0.264765 + 0.964313i \(0.585295\pi\)
\(374\) 598.230 0.0827105
\(375\) 0 0
\(376\) 6833.15 0.937215
\(377\) 8313.04 1.13566
\(378\) 0 0
\(379\) 8307.70 1.12596 0.562979 0.826471i \(-0.309655\pi\)
0.562979 + 0.826471i \(0.309655\pi\)
\(380\) 1874.39 0.253037
\(381\) 0 0
\(382\) −4005.59 −0.536503
\(383\) −5360.45 −0.715159 −0.357580 0.933883i \(-0.616398\pi\)
−0.357580 + 0.933883i \(0.616398\pi\)
\(384\) 0 0
\(385\) 1072.06 0.141915
\(386\) 2311.33 0.304776
\(387\) 0 0
\(388\) −2529.26 −0.330938
\(389\) −4791.44 −0.624513 −0.312256 0.949998i \(-0.601085\pi\)
−0.312256 + 0.949998i \(0.601085\pi\)
\(390\) 0 0
\(391\) 366.478 0.0474005
\(392\) −1196.37 −0.154148
\(393\) 0 0
\(394\) 11695.6 1.49547
\(395\) 9710.60 1.23695
\(396\) 0 0
\(397\) −2754.58 −0.348233 −0.174117 0.984725i \(-0.555707\pi\)
−0.174117 + 0.984725i \(0.555707\pi\)
\(398\) −357.664 −0.0450454
\(399\) 0 0
\(400\) −3170.05 −0.396256
\(401\) −8180.69 −1.01876 −0.509382 0.860540i \(-0.670126\pi\)
−0.509382 + 0.860540i \(0.670126\pi\)
\(402\) 0 0
\(403\) −12114.9 −1.49748
\(404\) 1939.29 0.238820
\(405\) 0 0
\(406\) 2677.54 0.327301
\(407\) 4065.64 0.495151
\(408\) 0 0
\(409\) 6869.60 0.830514 0.415257 0.909704i \(-0.363692\pi\)
0.415257 + 0.909704i \(0.363692\pi\)
\(410\) −2122.91 −0.255715
\(411\) 0 0
\(412\) 1584.22 0.189439
\(413\) 134.109 0.0159784
\(414\) 0 0
\(415\) −5412.61 −0.640228
\(416\) −4369.62 −0.514996
\(417\) 0 0
\(418\) 2013.82 0.235644
\(419\) 13045.4 1.52102 0.760511 0.649325i \(-0.224949\pi\)
0.760511 + 0.649325i \(0.224949\pi\)
\(420\) 0 0
\(421\) 805.294 0.0932248 0.0466124 0.998913i \(-0.485157\pi\)
0.0466124 + 0.998913i \(0.485157\pi\)
\(422\) −1121.44 −0.129363
\(423\) 0 0
\(424\) 5751.06 0.658717
\(425\) 1506.98 0.171998
\(426\) 0 0
\(427\) −4992.84 −0.565855
\(428\) −1509.84 −0.170516
\(429\) 0 0
\(430\) −1288.64 −0.144520
\(431\) −12020.6 −1.34341 −0.671707 0.740817i \(-0.734439\pi\)
−0.671707 + 0.740817i \(0.734439\pi\)
\(432\) 0 0
\(433\) 17240.9 1.91350 0.956749 0.290914i \(-0.0939592\pi\)
0.956749 + 0.290914i \(0.0939592\pi\)
\(434\) −3902.07 −0.431580
\(435\) 0 0
\(436\) −1865.54 −0.204915
\(437\) 1233.67 0.135045
\(438\) 0 0
\(439\) −14280.0 −1.55250 −0.776250 0.630425i \(-0.782881\pi\)
−0.776250 + 0.630425i \(0.782881\pi\)
\(440\) 3739.30 0.405146
\(441\) 0 0
\(442\) −2936.59 −0.316017
\(443\) −11832.6 −1.26904 −0.634518 0.772908i \(-0.718801\pi\)
−0.634518 + 0.772908i \(0.718801\pi\)
\(444\) 0 0
\(445\) 460.835 0.0490914
\(446\) 937.021 0.0994826
\(447\) 0 0
\(448\) −3985.96 −0.420354
\(449\) 11061.3 1.16261 0.581306 0.813685i \(-0.302542\pi\)
0.581306 + 0.813685i \(0.302542\pi\)
\(450\) 0 0
\(451\) 675.072 0.0704831
\(452\) 2146.67 0.223387
\(453\) 0 0
\(454\) 13520.2 1.39765
\(455\) −5262.53 −0.542222
\(456\) 0 0
\(457\) −7359.11 −0.753270 −0.376635 0.926362i \(-0.622919\pi\)
−0.376635 + 0.926362i \(0.622919\pi\)
\(458\) 5444.30 0.555449
\(459\) 0 0
\(460\) 425.890 0.0431679
\(461\) −335.036 −0.0338486 −0.0169243 0.999857i \(-0.505387\pi\)
−0.0169243 + 0.999857i \(0.505387\pi\)
\(462\) 0 0
\(463\) 18973.8 1.90451 0.952255 0.305305i \(-0.0987584\pi\)
0.952255 + 0.305305i \(0.0987584\pi\)
\(464\) 7088.90 0.709254
\(465\) 0 0
\(466\) 5913.06 0.587806
\(467\) 3687.35 0.365375 0.182687 0.983171i \(-0.441520\pi\)
0.182687 + 0.983171i \(0.441520\pi\)
\(468\) 0 0
\(469\) 1386.83 0.136541
\(470\) 9681.14 0.950123
\(471\) 0 0
\(472\) 467.766 0.0456159
\(473\) 409.779 0.0398344
\(474\) 0 0
\(475\) 5072.94 0.490026
\(476\) 279.948 0.0269567
\(477\) 0 0
\(478\) −11191.8 −1.07092
\(479\) 340.873 0.0325154 0.0162577 0.999868i \(-0.494825\pi\)
0.0162577 + 0.999868i \(0.494825\pi\)
\(480\) 0 0
\(481\) −19957.4 −1.89185
\(482\) −13453.6 −1.27136
\(483\) 0 0
\(484\) −221.073 −0.0207619
\(485\) −19274.0 −1.80451
\(486\) 0 0
\(487\) −8353.29 −0.777256 −0.388628 0.921395i \(-0.627051\pi\)
−0.388628 + 0.921395i \(0.627051\pi\)
\(488\) −17414.8 −1.61543
\(489\) 0 0
\(490\) −1695.00 −0.156270
\(491\) 1511.64 0.138940 0.0694700 0.997584i \(-0.477869\pi\)
0.0694700 + 0.997584i \(0.477869\pi\)
\(492\) 0 0
\(493\) −3369.93 −0.307858
\(494\) −9885.44 −0.900338
\(495\) 0 0
\(496\) −10330.9 −0.935225
\(497\) −534.746 −0.0482628
\(498\) 0 0
\(499\) 15011.3 1.34669 0.673343 0.739330i \(-0.264858\pi\)
0.673343 + 0.739330i \(0.264858\pi\)
\(500\) −1428.43 −0.127763
\(501\) 0 0
\(502\) 3962.70 0.352318
\(503\) 7209.83 0.639106 0.319553 0.947568i \(-0.396467\pi\)
0.319553 + 0.947568i \(0.396467\pi\)
\(504\) 0 0
\(505\) 14778.2 1.30222
\(506\) 457.571 0.0402006
\(507\) 0 0
\(508\) 3208.50 0.280224
\(509\) −11403.4 −0.993016 −0.496508 0.868032i \(-0.665385\pi\)
−0.496508 + 0.868032i \(0.665385\pi\)
\(510\) 0 0
\(511\) −6889.75 −0.596447
\(512\) −12720.0 −1.09795
\(513\) 0 0
\(514\) 16361.7 1.40405
\(515\) 12072.4 1.03296
\(516\) 0 0
\(517\) −3078.54 −0.261884
\(518\) −6428.08 −0.545238
\(519\) 0 0
\(520\) −18355.5 −1.54796
\(521\) −552.992 −0.0465010 −0.0232505 0.999730i \(-0.507402\pi\)
−0.0232505 + 0.999730i \(0.507402\pi\)
\(522\) 0 0
\(523\) 14141.9 1.18238 0.591188 0.806534i \(-0.298659\pi\)
0.591188 + 0.806534i \(0.298659\pi\)
\(524\) −2386.50 −0.198960
\(525\) 0 0
\(526\) 13951.3 1.15648
\(527\) 4911.11 0.405942
\(528\) 0 0
\(529\) −11886.7 −0.976961
\(530\) 8148.04 0.667789
\(531\) 0 0
\(532\) 942.387 0.0768001
\(533\) −3313.79 −0.269299
\(534\) 0 0
\(535\) −11505.6 −0.929777
\(536\) 4837.20 0.389805
\(537\) 0 0
\(538\) 13524.1 1.08377
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 24148.2 1.91906 0.959530 0.281605i \(-0.0908669\pi\)
0.959530 + 0.281605i \(0.0908669\pi\)
\(542\) −920.026 −0.0729123
\(543\) 0 0
\(544\) 1771.35 0.139607
\(545\) −14216.2 −1.11735
\(546\) 0 0
\(547\) −2578.89 −0.201582 −0.100791 0.994908i \(-0.532137\pi\)
−0.100791 + 0.994908i \(0.532137\pi\)
\(548\) 1383.04 0.107811
\(549\) 0 0
\(550\) 1881.56 0.145873
\(551\) −11344.2 −0.877093
\(552\) 0 0
\(553\) 4882.20 0.375429
\(554\) 3251.48 0.249354
\(555\) 0 0
\(556\) 3577.58 0.272884
\(557\) 18640.9 1.41803 0.709014 0.705195i \(-0.249140\pi\)
0.709014 + 0.705195i \(0.249140\pi\)
\(558\) 0 0
\(559\) −2011.52 −0.152197
\(560\) −4487.60 −0.338635
\(561\) 0 0
\(562\) 6659.68 0.499861
\(563\) −17900.9 −1.34002 −0.670010 0.742352i \(-0.733710\pi\)
−0.670010 + 0.742352i \(0.733710\pi\)
\(564\) 0 0
\(565\) 16358.5 1.21807
\(566\) −16846.8 −1.25110
\(567\) 0 0
\(568\) −1865.17 −0.137783
\(569\) −6350.42 −0.467880 −0.233940 0.972251i \(-0.575162\pi\)
−0.233940 + 0.972251i \(0.575162\pi\)
\(570\) 0 0
\(571\) 5623.70 0.412162 0.206081 0.978535i \(-0.433929\pi\)
0.206081 + 0.978535i \(0.433929\pi\)
\(572\) 1085.20 0.0793262
\(573\) 0 0
\(574\) −1067.34 −0.0776129
\(575\) 1152.65 0.0835980
\(576\) 0 0
\(577\) 23322.7 1.68273 0.841366 0.540466i \(-0.181752\pi\)
0.841366 + 0.540466i \(0.181752\pi\)
\(578\) −11016.1 −0.792752
\(579\) 0 0
\(580\) −3916.24 −0.280368
\(581\) −2721.30 −0.194318
\(582\) 0 0
\(583\) −2591.02 −0.184064
\(584\) −24031.2 −1.70277
\(585\) 0 0
\(586\) 11421.1 0.805120
\(587\) 23553.9 1.65617 0.828086 0.560602i \(-0.189430\pi\)
0.828086 + 0.560602i \(0.189430\pi\)
\(588\) 0 0
\(589\) 16532.3 1.15654
\(590\) 662.726 0.0462441
\(591\) 0 0
\(592\) −17018.6 −1.18152
\(593\) −1765.18 −0.122238 −0.0611192 0.998130i \(-0.519467\pi\)
−0.0611192 + 0.998130i \(0.519467\pi\)
\(594\) 0 0
\(595\) 2133.32 0.146987
\(596\) 2635.18 0.181110
\(597\) 0 0
\(598\) −2246.13 −0.153597
\(599\) 17470.9 1.19172 0.595860 0.803088i \(-0.296811\pi\)
0.595860 + 0.803088i \(0.296811\pi\)
\(600\) 0 0
\(601\) −160.251 −0.0108765 −0.00543824 0.999985i \(-0.501731\pi\)
−0.00543824 + 0.999985i \(0.501731\pi\)
\(602\) −647.890 −0.0438638
\(603\) 0 0
\(604\) −4798.56 −0.323263
\(605\) −1684.67 −0.113209
\(606\) 0 0
\(607\) 9184.30 0.614134 0.307067 0.951688i \(-0.400652\pi\)
0.307067 + 0.951688i \(0.400652\pi\)
\(608\) 5962.89 0.397742
\(609\) 0 0
\(610\) −24673.1 −1.63768
\(611\) 15111.9 1.00059
\(612\) 0 0
\(613\) −2847.11 −0.187592 −0.0937960 0.995591i \(-0.529900\pi\)
−0.0937960 + 0.995591i \(0.529900\pi\)
\(614\) 4659.07 0.306229
\(615\) 0 0
\(616\) 1880.01 0.122967
\(617\) −18483.3 −1.20601 −0.603007 0.797736i \(-0.706031\pi\)
−0.603007 + 0.797736i \(0.706031\pi\)
\(618\) 0 0
\(619\) 6463.20 0.419674 0.209837 0.977736i \(-0.432707\pi\)
0.209837 + 0.977736i \(0.432707\pi\)
\(620\) 5707.28 0.369694
\(621\) 0 0
\(622\) −1544.46 −0.0995615
\(623\) 231.694 0.0148999
\(624\) 0 0
\(625\) −19491.0 −1.24742
\(626\) 6429.00 0.410470
\(627\) 0 0
\(628\) 3311.93 0.210446
\(629\) 8090.31 0.512849
\(630\) 0 0
\(631\) 7523.28 0.474639 0.237319 0.971432i \(-0.423731\pi\)
0.237319 + 0.971432i \(0.423731\pi\)
\(632\) 17028.9 1.07179
\(633\) 0 0
\(634\) −10759.1 −0.673975
\(635\) 24450.1 1.52799
\(636\) 0 0
\(637\) −2645.84 −0.164572
\(638\) −4207.56 −0.261096
\(639\) 0 0
\(640\) −10683.9 −0.659873
\(641\) 25452.2 1.56833 0.784165 0.620552i \(-0.213091\pi\)
0.784165 + 0.620552i \(0.213091\pi\)
\(642\) 0 0
\(643\) −2227.13 −0.136593 −0.0682967 0.997665i \(-0.521756\pi\)
−0.0682967 + 0.997665i \(0.521756\pi\)
\(644\) 214.125 0.0131020
\(645\) 0 0
\(646\) 4007.34 0.244066
\(647\) 1204.60 0.0731960 0.0365980 0.999330i \(-0.488348\pi\)
0.0365980 + 0.999330i \(0.488348\pi\)
\(648\) 0 0
\(649\) −210.743 −0.0127463
\(650\) −9236.19 −0.557344
\(651\) 0 0
\(652\) −6490.00 −0.389828
\(653\) 21289.4 1.27584 0.637918 0.770105i \(-0.279796\pi\)
0.637918 + 0.770105i \(0.279796\pi\)
\(654\) 0 0
\(655\) −18186.1 −1.08487
\(656\) −2825.82 −0.168186
\(657\) 0 0
\(658\) 4867.39 0.288375
\(659\) 30617.8 1.80986 0.904931 0.425558i \(-0.139922\pi\)
0.904931 + 0.425558i \(0.139922\pi\)
\(660\) 0 0
\(661\) −27593.1 −1.62367 −0.811837 0.583884i \(-0.801532\pi\)
−0.811837 + 0.583884i \(0.801532\pi\)
\(662\) 15199.5 0.892363
\(663\) 0 0
\(664\) −9491.78 −0.554748
\(665\) 7181.38 0.418770
\(666\) 0 0
\(667\) −2577.57 −0.149631
\(668\) −5879.07 −0.340521
\(669\) 0 0
\(670\) 6853.30 0.395173
\(671\) 7845.88 0.451396
\(672\) 0 0
\(673\) 24287.2 1.39109 0.695546 0.718482i \(-0.255163\pi\)
0.695546 + 0.718482i \(0.255163\pi\)
\(674\) −3737.33 −0.213585
\(675\) 0 0
\(676\) −1313.02 −0.0747053
\(677\) 30433.9 1.72773 0.863863 0.503727i \(-0.168038\pi\)
0.863863 + 0.503727i \(0.168038\pi\)
\(678\) 0 0
\(679\) −9690.40 −0.547693
\(680\) 7440.92 0.419627
\(681\) 0 0
\(682\) 6131.83 0.344281
\(683\) 848.117 0.0475143 0.0237572 0.999718i \(-0.492437\pi\)
0.0237572 + 0.999718i \(0.492437\pi\)
\(684\) 0 0
\(685\) 10539.3 0.587864
\(686\) −852.198 −0.0474301
\(687\) 0 0
\(688\) −1715.32 −0.0950521
\(689\) 12718.8 0.703263
\(690\) 0 0
\(691\) 21464.2 1.18167 0.590836 0.806792i \(-0.298798\pi\)
0.590836 + 0.806792i \(0.298798\pi\)
\(692\) 4590.74 0.252187
\(693\) 0 0
\(694\) 8500.73 0.464961
\(695\) 27262.7 1.48796
\(696\) 0 0
\(697\) 1343.34 0.0730023
\(698\) 6496.47 0.352285
\(699\) 0 0
\(700\) 880.494 0.0475422
\(701\) −20127.9 −1.08448 −0.542240 0.840223i \(-0.682424\pi\)
−0.542240 + 0.840223i \(0.682424\pi\)
\(702\) 0 0
\(703\) 27234.4 1.46112
\(704\) 6263.65 0.335327
\(705\) 0 0
\(706\) 29256.2 1.55959
\(707\) 7430.02 0.395240
\(708\) 0 0
\(709\) −27572.3 −1.46051 −0.730253 0.683177i \(-0.760598\pi\)
−0.730253 + 0.683177i \(0.760598\pi\)
\(710\) −2642.55 −0.139681
\(711\) 0 0
\(712\) 808.140 0.0425370
\(713\) 3756.39 0.197304
\(714\) 0 0
\(715\) 8269.69 0.432544
\(716\) 8104.83 0.423033
\(717\) 0 0
\(718\) −29899.3 −1.55408
\(719\) 781.592 0.0405403 0.0202701 0.999795i \(-0.493547\pi\)
0.0202701 + 0.999795i \(0.493547\pi\)
\(720\) 0 0
\(721\) 6069.65 0.313517
\(722\) −3551.57 −0.183069
\(723\) 0 0
\(724\) −8097.03 −0.415640
\(725\) −10599.1 −0.542954
\(726\) 0 0
\(727\) −26327.3 −1.34309 −0.671544 0.740964i \(-0.734369\pi\)
−0.671544 + 0.740964i \(0.734369\pi\)
\(728\) −9228.60 −0.469828
\(729\) 0 0
\(730\) −34047.1 −1.72622
\(731\) 815.428 0.0412581
\(732\) 0 0
\(733\) 30990.7 1.56162 0.780811 0.624767i \(-0.214806\pi\)
0.780811 + 0.624767i \(0.214806\pi\)
\(734\) 14470.1 0.727660
\(735\) 0 0
\(736\) 1354.86 0.0678545
\(737\) −2179.30 −0.108922
\(738\) 0 0
\(739\) 18965.5 0.944053 0.472027 0.881584i \(-0.343523\pi\)
0.472027 + 0.881584i \(0.343523\pi\)
\(740\) 9401.88 0.467054
\(741\) 0 0
\(742\) 4096.59 0.202683
\(743\) −7955.01 −0.392788 −0.196394 0.980525i \(-0.562923\pi\)
−0.196394 + 0.980525i \(0.562923\pi\)
\(744\) 0 0
\(745\) 20081.2 0.987541
\(746\) −9477.66 −0.465150
\(747\) 0 0
\(748\) −439.918 −0.0215040
\(749\) −5784.68 −0.282200
\(750\) 0 0
\(751\) 16225.6 0.788388 0.394194 0.919027i \(-0.371024\pi\)
0.394194 + 0.919027i \(0.371024\pi\)
\(752\) 12886.6 0.624902
\(753\) 0 0
\(754\) 20654.1 0.997583
\(755\) −36567.0 −1.76266
\(756\) 0 0
\(757\) −4814.19 −0.231142 −0.115571 0.993299i \(-0.536870\pi\)
−0.115571 + 0.993299i \(0.536870\pi\)
\(758\) 20640.8 0.989062
\(759\) 0 0
\(760\) 25048.4 1.19553
\(761\) 22741.4 1.08328 0.541639 0.840612i \(-0.317804\pi\)
0.541639 + 0.840612i \(0.317804\pi\)
\(762\) 0 0
\(763\) −7147.48 −0.339130
\(764\) 2945.58 0.139486
\(765\) 0 0
\(766\) −13318.3 −0.628209
\(767\) 1034.49 0.0487006
\(768\) 0 0
\(769\) 42230.5 1.98033 0.990163 0.139917i \(-0.0446834\pi\)
0.990163 + 0.139917i \(0.0446834\pi\)
\(770\) 2663.58 0.124661
\(771\) 0 0
\(772\) −1699.67 −0.0792390
\(773\) −14738.1 −0.685759 −0.342879 0.939379i \(-0.611402\pi\)
−0.342879 + 0.939379i \(0.611402\pi\)
\(774\) 0 0
\(775\) 15446.5 0.715941
\(776\) −33799.7 −1.56358
\(777\) 0 0
\(778\) −11904.5 −0.548584
\(779\) 4522.08 0.207985
\(780\) 0 0
\(781\) 840.314 0.0385004
\(782\) 910.531 0.0416375
\(783\) 0 0
\(784\) −2256.23 −0.102780
\(785\) 25238.3 1.14751
\(786\) 0 0
\(787\) −40440.5 −1.83170 −0.915851 0.401518i \(-0.868483\pi\)
−0.915851 + 0.401518i \(0.868483\pi\)
\(788\) −8600.56 −0.388810
\(789\) 0 0
\(790\) 24126.4 1.08656
\(791\) 8224.56 0.369699
\(792\) 0 0
\(793\) −38513.9 −1.72468
\(794\) −6843.88 −0.305895
\(795\) 0 0
\(796\) 263.014 0.0117114
\(797\) −6768.37 −0.300813 −0.150406 0.988624i \(-0.548058\pi\)
−0.150406 + 0.988624i \(0.548058\pi\)
\(798\) 0 0
\(799\) −6126.05 −0.271244
\(800\) 5571.27 0.246218
\(801\) 0 0
\(802\) −20325.3 −0.894901
\(803\) 10826.7 0.475800
\(804\) 0 0
\(805\) 1631.72 0.0714417
\(806\) −30099.9 −1.31542
\(807\) 0 0
\(808\) 25915.6 1.12835
\(809\) −40401.4 −1.75579 −0.877896 0.478851i \(-0.841053\pi\)
−0.877896 + 0.478851i \(0.841053\pi\)
\(810\) 0 0
\(811\) 16309.7 0.706178 0.353089 0.935590i \(-0.385131\pi\)
0.353089 + 0.935590i \(0.385131\pi\)
\(812\) −1968.97 −0.0850953
\(813\) 0 0
\(814\) 10101.3 0.434950
\(815\) −49456.5 −2.12562
\(816\) 0 0
\(817\) 2744.97 0.117545
\(818\) 17067.8 0.729538
\(819\) 0 0
\(820\) 1561.12 0.0664836
\(821\) −37753.3 −1.60487 −0.802436 0.596738i \(-0.796463\pi\)
−0.802436 + 0.596738i \(0.796463\pi\)
\(822\) 0 0
\(823\) −37291.1 −1.57945 −0.789725 0.613461i \(-0.789777\pi\)
−0.789725 + 0.613461i \(0.789777\pi\)
\(824\) 21170.7 0.895044
\(825\) 0 0
\(826\) 333.199 0.0140357
\(827\) −16814.3 −0.707000 −0.353500 0.935435i \(-0.615009\pi\)
−0.353500 + 0.935435i \(0.615009\pi\)
\(828\) 0 0
\(829\) −13095.5 −0.548642 −0.274321 0.961638i \(-0.588453\pi\)
−0.274321 + 0.961638i \(0.588453\pi\)
\(830\) −13447.9 −0.562388
\(831\) 0 0
\(832\) −30747.0 −1.28120
\(833\) 1072.57 0.0446126
\(834\) 0 0
\(835\) −44801.0 −1.85677
\(836\) −1480.89 −0.0612653
\(837\) 0 0
\(838\) 32411.8 1.33609
\(839\) 11341.3 0.466680 0.233340 0.972395i \(-0.425034\pi\)
0.233340 + 0.972395i \(0.425034\pi\)
\(840\) 0 0
\(841\) −687.109 −0.0281729
\(842\) 2000.79 0.0818904
\(843\) 0 0
\(844\) 824.671 0.0336331
\(845\) −10005.8 −0.407347
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 10845.9 0.439210
\(849\) 0 0
\(850\) 3744.15 0.151086
\(851\) 6188.08 0.249265
\(852\) 0 0
\(853\) 3075.53 0.123451 0.0617257 0.998093i \(-0.480340\pi\)
0.0617257 + 0.998093i \(0.480340\pi\)
\(854\) −12404.9 −0.497058
\(855\) 0 0
\(856\) −20176.7 −0.805638
\(857\) 5615.24 0.223819 0.111910 0.993718i \(-0.464303\pi\)
0.111910 + 0.993718i \(0.464303\pi\)
\(858\) 0 0
\(859\) −15825.9 −0.628606 −0.314303 0.949323i \(-0.601771\pi\)
−0.314303 + 0.949323i \(0.601771\pi\)
\(860\) 947.622 0.0375740
\(861\) 0 0
\(862\) −29865.7 −1.18008
\(863\) −43324.7 −1.70891 −0.854456 0.519523i \(-0.826110\pi\)
−0.854456 + 0.519523i \(0.826110\pi\)
\(864\) 0 0
\(865\) 34983.3 1.37511
\(866\) 42835.8 1.68085
\(867\) 0 0
\(868\) 2869.45 0.112207
\(869\) −7672.03 −0.299489
\(870\) 0 0
\(871\) 10697.8 0.416165
\(872\) −24930.1 −0.968165
\(873\) 0 0
\(874\) 3065.12 0.118626
\(875\) −5472.77 −0.211444
\(876\) 0 0
\(877\) −3754.22 −0.144551 −0.0722753 0.997385i \(-0.523026\pi\)
−0.0722753 + 0.997385i \(0.523026\pi\)
\(878\) −35479.3 −1.36375
\(879\) 0 0
\(880\) 7051.94 0.270137
\(881\) −4061.45 −0.155316 −0.0776581 0.996980i \(-0.524744\pi\)
−0.0776581 + 0.996980i \(0.524744\pi\)
\(882\) 0 0
\(883\) −30774.8 −1.17288 −0.586441 0.809992i \(-0.699472\pi\)
−0.586441 + 0.809992i \(0.699472\pi\)
\(884\) 2159.47 0.0821615
\(885\) 0 0
\(886\) −29398.6 −1.11474
\(887\) 33107.7 1.25327 0.626634 0.779314i \(-0.284432\pi\)
0.626634 + 0.779314i \(0.284432\pi\)
\(888\) 0 0
\(889\) 12292.8 0.463764
\(890\) 1144.96 0.0431228
\(891\) 0 0
\(892\) −689.054 −0.0258646
\(893\) −20622.1 −0.772780
\(894\) 0 0
\(895\) 61762.1 2.30668
\(896\) −5371.55 −0.200280
\(897\) 0 0
\(898\) 27482.2 1.02126
\(899\) −34541.6 −1.28145
\(900\) 0 0
\(901\) −5155.93 −0.190643
\(902\) 1677.24 0.0619137
\(903\) 0 0
\(904\) 28687.0 1.05544
\(905\) −61702.7 −2.26637
\(906\) 0 0
\(907\) 10605.6 0.388261 0.194130 0.980976i \(-0.437812\pi\)
0.194130 + 0.980976i \(0.437812\pi\)
\(908\) −9942.30 −0.363378
\(909\) 0 0
\(910\) −13075.0 −0.476298
\(911\) 45584.4 1.65783 0.828913 0.559377i \(-0.188960\pi\)
0.828913 + 0.559377i \(0.188960\pi\)
\(912\) 0 0
\(913\) 4276.33 0.155012
\(914\) −18284.0 −0.661687
\(915\) 0 0
\(916\) −4003.55 −0.144412
\(917\) −9143.45 −0.329273
\(918\) 0 0
\(919\) 32114.9 1.15275 0.576373 0.817187i \(-0.304468\pi\)
0.576373 + 0.817187i \(0.304468\pi\)
\(920\) 5691.37 0.203956
\(921\) 0 0
\(922\) −832.411 −0.0297332
\(923\) −4124.94 −0.147101
\(924\) 0 0
\(925\) 25445.7 0.904487
\(926\) 47141.2 1.67296
\(927\) 0 0
\(928\) −12458.5 −0.440702
\(929\) −26956.8 −0.952015 −0.476008 0.879441i \(-0.657917\pi\)
−0.476008 + 0.879441i \(0.657917\pi\)
\(930\) 0 0
\(931\) 3610.58 0.127102
\(932\) −4348.26 −0.152824
\(933\) 0 0
\(934\) 9161.37 0.320952
\(935\) −3352.35 −0.117255
\(936\) 0 0
\(937\) −47322.5 −1.64990 −0.824952 0.565203i \(-0.808798\pi\)
−0.824952 + 0.565203i \(0.808798\pi\)
\(938\) 3445.63 0.119940
\(939\) 0 0
\(940\) −7119.18 −0.247023
\(941\) 28861.8 0.999859 0.499930 0.866066i \(-0.333359\pi\)
0.499930 + 0.866066i \(0.333359\pi\)
\(942\) 0 0
\(943\) 1027.49 0.0354821
\(944\) 882.159 0.0304151
\(945\) 0 0
\(946\) 1018.11 0.0349912
\(947\) 48160.7 1.65260 0.826300 0.563230i \(-0.190442\pi\)
0.826300 + 0.563230i \(0.190442\pi\)
\(948\) 0 0
\(949\) −53146.4 −1.81792
\(950\) 12603.9 0.430448
\(951\) 0 0
\(952\) 3741.07 0.127362
\(953\) −15956.2 −0.542363 −0.271181 0.962528i \(-0.587414\pi\)
−0.271181 + 0.962528i \(0.587414\pi\)
\(954\) 0 0
\(955\) 22446.5 0.760578
\(956\) 8230.04 0.278429
\(957\) 0 0
\(958\) 846.914 0.0285621
\(959\) 5298.86 0.178425
\(960\) 0 0
\(961\) 20547.7 0.689729
\(962\) −49585.1 −1.66184
\(963\) 0 0
\(964\) 9893.34 0.330543
\(965\) −12952.2 −0.432068
\(966\) 0 0
\(967\) 41672.9 1.38584 0.692921 0.721013i \(-0.256323\pi\)
0.692921 + 0.721013i \(0.256323\pi\)
\(968\) −2954.30 −0.0980939
\(969\) 0 0
\(970\) −47887.1 −1.58512
\(971\) 10718.0 0.354229 0.177115 0.984190i \(-0.443324\pi\)
0.177115 + 0.984190i \(0.443324\pi\)
\(972\) 0 0
\(973\) 13706.9 0.451615
\(974\) −20754.1 −0.682756
\(975\) 0 0
\(976\) −32842.5 −1.07711
\(977\) −9552.87 −0.312818 −0.156409 0.987692i \(-0.549992\pi\)
−0.156409 + 0.987692i \(0.549992\pi\)
\(978\) 0 0
\(979\) −364.091 −0.0118860
\(980\) 1246.45 0.0406289
\(981\) 0 0
\(982\) 3755.75 0.122047
\(983\) −21150.8 −0.686272 −0.343136 0.939286i \(-0.611489\pi\)
−0.343136 + 0.939286i \(0.611489\pi\)
\(984\) 0 0
\(985\) −65539.8 −2.12007
\(986\) −8372.72 −0.270428
\(987\) 0 0
\(988\) 7269.41 0.234080
\(989\) 623.701 0.0200531
\(990\) 0 0
\(991\) −42985.5 −1.37788 −0.688940 0.724818i \(-0.741924\pi\)
−0.688940 + 0.724818i \(0.741924\pi\)
\(992\) 18156.3 0.581111
\(993\) 0 0
\(994\) −1328.60 −0.0423949
\(995\) 2004.27 0.0638590
\(996\) 0 0
\(997\) −10090.8 −0.320542 −0.160271 0.987073i \(-0.551237\pi\)
−0.160271 + 0.987073i \(0.551237\pi\)
\(998\) 37296.1 1.18295
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.q.1.4 5
3.2 odd 2 231.4.a.j.1.2 5
21.20 even 2 1617.4.a.o.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.j.1.2 5 3.2 odd 2
693.4.a.q.1.4 5 1.1 even 1 trivial
1617.4.a.o.1.2 5 21.20 even 2