Properties

Label 693.4.a.q.1.3
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.183399\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.183399 q^{2} -7.96636 q^{4} +17.9271 q^{5} -7.00000 q^{7} +2.92821 q^{8} +O(q^{10})\) \(q-0.183399 q^{2} -7.96636 q^{4} +17.9271 q^{5} -7.00000 q^{7} +2.92821 q^{8} -3.28780 q^{10} +11.0000 q^{11} -53.2063 q^{13} +1.28379 q^{14} +63.1939 q^{16} +86.7553 q^{17} +55.6681 q^{19} -142.814 q^{20} -2.01738 q^{22} -185.307 q^{23} +196.380 q^{25} +9.75796 q^{26} +55.7646 q^{28} +145.956 q^{29} +132.697 q^{31} -35.0153 q^{32} -15.9108 q^{34} -125.490 q^{35} -129.344 q^{37} -10.2094 q^{38} +52.4942 q^{40} -139.776 q^{41} -87.1438 q^{43} -87.6300 q^{44} +33.9850 q^{46} +576.595 q^{47} +49.0000 q^{49} -36.0158 q^{50} +423.861 q^{52} +92.0572 q^{53} +197.198 q^{55} -20.4975 q^{56} -26.7680 q^{58} -315.667 q^{59} -146.479 q^{61} -24.3365 q^{62} -499.129 q^{64} -953.834 q^{65} +734.048 q^{67} -691.124 q^{68} +23.0146 q^{70} +702.870 q^{71} -361.385 q^{73} +23.7214 q^{74} -443.472 q^{76} -77.0000 q^{77} +1162.09 q^{79} +1132.88 q^{80} +25.6347 q^{82} +1302.46 q^{83} +1555.27 q^{85} +15.9820 q^{86} +32.2103 q^{88} -1383.29 q^{89} +372.444 q^{91} +1476.22 q^{92} -105.747 q^{94} +997.965 q^{95} +212.382 q^{97} -8.98653 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8} + 113 q^{10} + 55 q^{11} + 23 q^{13} - 7 q^{14} + 281 q^{16} + 102 q^{17} - 155 q^{19} - 291 q^{20} + 11 q^{22} - 192 q^{23} + 394 q^{25} - 41 q^{26} - 147 q^{28} - 591 q^{29} + 366 q^{31} + 87 q^{32} + 594 q^{34} + 49 q^{35} + 259 q^{37} - 175 q^{38} + 1890 q^{40} + 104 q^{41} + 224 q^{43} + 231 q^{44} + 1416 q^{46} + 453 q^{47} + 245 q^{49} - 1350 q^{50} + 815 q^{52} - 1032 q^{53} - 77 q^{55} - 84 q^{56} + 293 q^{58} + 517 q^{59} + 958 q^{61} + 3030 q^{62} + 516 q^{64} + 197 q^{65} + 361 q^{67} + 1680 q^{68} - 791 q^{70} - 548 q^{71} - 1035 q^{73} + 2555 q^{74} - 5201 q^{76} - 385 q^{77} + 776 q^{79} + 1273 q^{80} + 376 q^{82} + 1974 q^{83} + 1838 q^{85} - 1224 q^{86} + 132 q^{88} - 2710 q^{89} - 161 q^{91} + 2834 q^{92} - 563 q^{94} + 355 q^{95} + 1988 q^{97} + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.183399 −0.0648412 −0.0324206 0.999474i \(-0.510322\pi\)
−0.0324206 + 0.999474i \(0.510322\pi\)
\(3\) 0 0
\(4\) −7.96636 −0.995796
\(5\) 17.9271 1.60345 0.801723 0.597696i \(-0.203917\pi\)
0.801723 + 0.597696i \(0.203917\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 2.92821 0.129410
\(9\) 0 0
\(10\) −3.28780 −0.103969
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −53.2063 −1.13514 −0.567568 0.823326i \(-0.692116\pi\)
−0.567568 + 0.823326i \(0.692116\pi\)
\(14\) 1.28379 0.0245077
\(15\) 0 0
\(16\) 63.1939 0.987405
\(17\) 86.7553 1.23772 0.618860 0.785501i \(-0.287595\pi\)
0.618860 + 0.785501i \(0.287595\pi\)
\(18\) 0 0
\(19\) 55.6681 0.672165 0.336082 0.941833i \(-0.390898\pi\)
0.336082 + 0.941833i \(0.390898\pi\)
\(20\) −142.814 −1.59670
\(21\) 0 0
\(22\) −2.01738 −0.0195504
\(23\) −185.307 −1.67996 −0.839981 0.542616i \(-0.817434\pi\)
−0.839981 + 0.542616i \(0.817434\pi\)
\(24\) 0 0
\(25\) 196.380 1.57104
\(26\) 9.75796 0.0736036
\(27\) 0 0
\(28\) 55.7646 0.376375
\(29\) 145.956 0.934595 0.467298 0.884100i \(-0.345228\pi\)
0.467298 + 0.884100i \(0.345228\pi\)
\(30\) 0 0
\(31\) 132.697 0.768810 0.384405 0.923165i \(-0.374407\pi\)
0.384405 + 0.923165i \(0.374407\pi\)
\(32\) −35.0153 −0.193434
\(33\) 0 0
\(34\) −15.9108 −0.0802553
\(35\) −125.490 −0.606046
\(36\) 0 0
\(37\) −129.344 −0.574701 −0.287351 0.957825i \(-0.592774\pi\)
−0.287351 + 0.957825i \(0.592774\pi\)
\(38\) −10.2094 −0.0435840
\(39\) 0 0
\(40\) 52.4942 0.207502
\(41\) −139.776 −0.532423 −0.266212 0.963915i \(-0.585772\pi\)
−0.266212 + 0.963915i \(0.585772\pi\)
\(42\) 0 0
\(43\) −87.1438 −0.309053 −0.154527 0.987989i \(-0.549385\pi\)
−0.154527 + 0.987989i \(0.549385\pi\)
\(44\) −87.6300 −0.300244
\(45\) 0 0
\(46\) 33.9850 0.108931
\(47\) 576.595 1.78947 0.894734 0.446599i \(-0.147365\pi\)
0.894734 + 0.446599i \(0.147365\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −36.0158 −0.101868
\(51\) 0 0
\(52\) 423.861 1.13036
\(53\) 92.0572 0.238585 0.119293 0.992859i \(-0.461937\pi\)
0.119293 + 0.992859i \(0.461937\pi\)
\(54\) 0 0
\(55\) 197.198 0.483457
\(56\) −20.4975 −0.0489123
\(57\) 0 0
\(58\) −26.7680 −0.0606003
\(59\) −315.667 −0.696547 −0.348274 0.937393i \(-0.613232\pi\)
−0.348274 + 0.937393i \(0.613232\pi\)
\(60\) 0 0
\(61\) −146.479 −0.307455 −0.153727 0.988113i \(-0.549128\pi\)
−0.153727 + 0.988113i \(0.549128\pi\)
\(62\) −24.3365 −0.0498505
\(63\) 0 0
\(64\) −499.129 −0.974862
\(65\) −953.834 −1.82013
\(66\) 0 0
\(67\) 734.048 1.33848 0.669241 0.743046i \(-0.266620\pi\)
0.669241 + 0.743046i \(0.266620\pi\)
\(68\) −691.124 −1.23252
\(69\) 0 0
\(70\) 23.0146 0.0392967
\(71\) 702.870 1.17486 0.587432 0.809274i \(-0.300139\pi\)
0.587432 + 0.809274i \(0.300139\pi\)
\(72\) 0 0
\(73\) −361.385 −0.579410 −0.289705 0.957116i \(-0.593557\pi\)
−0.289705 + 0.957116i \(0.593557\pi\)
\(74\) 23.7214 0.0372643
\(75\) 0 0
\(76\) −443.472 −0.669339
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 1162.09 1.65501 0.827503 0.561461i \(-0.189761\pi\)
0.827503 + 0.561461i \(0.189761\pi\)
\(80\) 1132.88 1.58325
\(81\) 0 0
\(82\) 25.6347 0.0345230
\(83\) 1302.46 1.72245 0.861223 0.508227i \(-0.169699\pi\)
0.861223 + 0.508227i \(0.169699\pi\)
\(84\) 0 0
\(85\) 1555.27 1.98462
\(86\) 15.9820 0.0200394
\(87\) 0 0
\(88\) 32.2103 0.0390185
\(89\) −1383.29 −1.64751 −0.823757 0.566942i \(-0.808126\pi\)
−0.823757 + 0.566942i \(0.808126\pi\)
\(90\) 0 0
\(91\) 372.444 0.429041
\(92\) 1476.22 1.67290
\(93\) 0 0
\(94\) −105.747 −0.116031
\(95\) 997.965 1.07778
\(96\) 0 0
\(97\) 212.382 0.222310 0.111155 0.993803i \(-0.464545\pi\)
0.111155 + 0.993803i \(0.464545\pi\)
\(98\) −8.98653 −0.00926303
\(99\) 0 0
\(100\) −1564.43 −1.56443
\(101\) 1326.57 1.30692 0.653459 0.756962i \(-0.273317\pi\)
0.653459 + 0.756962i \(0.273317\pi\)
\(102\) 0 0
\(103\) 1360.38 1.30138 0.650688 0.759345i \(-0.274480\pi\)
0.650688 + 0.759345i \(0.274480\pi\)
\(104\) −155.799 −0.146898
\(105\) 0 0
\(106\) −16.8832 −0.0154702
\(107\) 667.188 0.602799 0.301400 0.953498i \(-0.402546\pi\)
0.301400 + 0.953498i \(0.402546\pi\)
\(108\) 0 0
\(109\) 1208.14 1.06164 0.530822 0.847484i \(-0.321883\pi\)
0.530822 + 0.847484i \(0.321883\pi\)
\(110\) −36.1658 −0.0313479
\(111\) 0 0
\(112\) −442.357 −0.373204
\(113\) 889.537 0.740536 0.370268 0.928925i \(-0.379266\pi\)
0.370268 + 0.928925i \(0.379266\pi\)
\(114\) 0 0
\(115\) −3322.01 −2.69373
\(116\) −1162.74 −0.930666
\(117\) 0 0
\(118\) 57.8928 0.0451650
\(119\) −607.287 −0.467814
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 26.8641 0.0199357
\(123\) 0 0
\(124\) −1057.11 −0.765577
\(125\) 1279.63 0.915631
\(126\) 0 0
\(127\) 2474.54 1.72898 0.864489 0.502652i \(-0.167642\pi\)
0.864489 + 0.502652i \(0.167642\pi\)
\(128\) 371.662 0.256645
\(129\) 0 0
\(130\) 174.932 0.118019
\(131\) −307.112 −0.204829 −0.102414 0.994742i \(-0.532657\pi\)
−0.102414 + 0.994742i \(0.532657\pi\)
\(132\) 0 0
\(133\) −389.676 −0.254054
\(134\) −134.623 −0.0867887
\(135\) 0 0
\(136\) 254.038 0.160173
\(137\) −301.007 −0.187714 −0.0938569 0.995586i \(-0.529920\pi\)
−0.0938569 + 0.995586i \(0.529920\pi\)
\(138\) 0 0
\(139\) 951.210 0.580436 0.290218 0.956961i \(-0.406272\pi\)
0.290218 + 0.956961i \(0.406272\pi\)
\(140\) 999.695 0.603498
\(141\) 0 0
\(142\) −128.905 −0.0761796
\(143\) −585.270 −0.342257
\(144\) 0 0
\(145\) 2616.56 1.49857
\(146\) 66.2775 0.0375696
\(147\) 0 0
\(148\) 1030.40 0.572285
\(149\) 672.616 0.369818 0.184909 0.982756i \(-0.440801\pi\)
0.184909 + 0.982756i \(0.440801\pi\)
\(150\) 0 0
\(151\) −2367.48 −1.27591 −0.637955 0.770074i \(-0.720219\pi\)
−0.637955 + 0.770074i \(0.720219\pi\)
\(152\) 163.008 0.0869847
\(153\) 0 0
\(154\) 14.1217 0.00738934
\(155\) 2378.87 1.23274
\(156\) 0 0
\(157\) 1375.49 0.699211 0.349605 0.936897i \(-0.386316\pi\)
0.349605 + 0.936897i \(0.386316\pi\)
\(158\) −213.126 −0.107313
\(159\) 0 0
\(160\) −627.723 −0.310161
\(161\) 1297.15 0.634966
\(162\) 0 0
\(163\) 2441.46 1.17319 0.586594 0.809881i \(-0.300469\pi\)
0.586594 + 0.809881i \(0.300469\pi\)
\(164\) 1113.51 0.530185
\(165\) 0 0
\(166\) −238.868 −0.111685
\(167\) −13.6322 −0.00631670 −0.00315835 0.999995i \(-0.501005\pi\)
−0.00315835 + 0.999995i \(0.501005\pi\)
\(168\) 0 0
\(169\) 633.912 0.288535
\(170\) −285.234 −0.128685
\(171\) 0 0
\(172\) 694.219 0.307754
\(173\) −3685.65 −1.61974 −0.809870 0.586609i \(-0.800463\pi\)
−0.809870 + 0.586609i \(0.800463\pi\)
\(174\) 0 0
\(175\) −1374.66 −0.593797
\(176\) 695.133 0.297714
\(177\) 0 0
\(178\) 253.694 0.106827
\(179\) −2042.61 −0.852915 −0.426457 0.904508i \(-0.640239\pi\)
−0.426457 + 0.904508i \(0.640239\pi\)
\(180\) 0 0
\(181\) −4414.29 −1.81277 −0.906386 0.422450i \(-0.861170\pi\)
−0.906386 + 0.422450i \(0.861170\pi\)
\(182\) −68.3058 −0.0278196
\(183\) 0 0
\(184\) −542.617 −0.217403
\(185\) −2318.75 −0.921502
\(186\) 0 0
\(187\) 954.308 0.373187
\(188\) −4593.36 −1.78194
\(189\) 0 0
\(190\) −183.025 −0.0698845
\(191\) −3300.03 −1.25017 −0.625084 0.780558i \(-0.714935\pi\)
−0.625084 + 0.780558i \(0.714935\pi\)
\(192\) 0 0
\(193\) 3368.36 1.25627 0.628135 0.778105i \(-0.283819\pi\)
0.628135 + 0.778105i \(0.283819\pi\)
\(194\) −38.9505 −0.0144149
\(195\) 0 0
\(196\) −390.352 −0.142257
\(197\) 1367.51 0.494574 0.247287 0.968942i \(-0.420461\pi\)
0.247287 + 0.968942i \(0.420461\pi\)
\(198\) 0 0
\(199\) −4612.02 −1.64290 −0.821450 0.570280i \(-0.806835\pi\)
−0.821450 + 0.570280i \(0.806835\pi\)
\(200\) 575.041 0.203308
\(201\) 0 0
\(202\) −243.291 −0.0847421
\(203\) −1021.69 −0.353244
\(204\) 0 0
\(205\) −2505.78 −0.853712
\(206\) −249.491 −0.0843828
\(207\) 0 0
\(208\) −3362.31 −1.12084
\(209\) 612.349 0.202665
\(210\) 0 0
\(211\) 4838.75 1.57874 0.789368 0.613921i \(-0.210409\pi\)
0.789368 + 0.613921i \(0.210409\pi\)
\(212\) −733.361 −0.237582
\(213\) 0 0
\(214\) −122.361 −0.0390862
\(215\) −1562.23 −0.495551
\(216\) 0 0
\(217\) −928.879 −0.290583
\(218\) −221.572 −0.0688382
\(219\) 0 0
\(220\) −1570.95 −0.481425
\(221\) −4615.93 −1.40498
\(222\) 0 0
\(223\) 1794.33 0.538822 0.269411 0.963025i \(-0.413171\pi\)
0.269411 + 0.963025i \(0.413171\pi\)
\(224\) 245.107 0.0731113
\(225\) 0 0
\(226\) −163.140 −0.0480173
\(227\) 1297.05 0.379243 0.189622 0.981857i \(-0.439274\pi\)
0.189622 + 0.981857i \(0.439274\pi\)
\(228\) 0 0
\(229\) 2630.13 0.758968 0.379484 0.925198i \(-0.376102\pi\)
0.379484 + 0.925198i \(0.376102\pi\)
\(230\) 609.251 0.174665
\(231\) 0 0
\(232\) 427.388 0.120946
\(233\) −3707.36 −1.04239 −0.521196 0.853437i \(-0.674514\pi\)
−0.521196 + 0.853437i \(0.674514\pi\)
\(234\) 0 0
\(235\) 10336.7 2.86932
\(236\) 2514.72 0.693619
\(237\) 0 0
\(238\) 111.376 0.0303336
\(239\) −2844.60 −0.769882 −0.384941 0.922941i \(-0.625778\pi\)
−0.384941 + 0.922941i \(0.625778\pi\)
\(240\) 0 0
\(241\) 1778.70 0.475419 0.237710 0.971336i \(-0.423603\pi\)
0.237710 + 0.971336i \(0.423603\pi\)
\(242\) −22.1912 −0.00589465
\(243\) 0 0
\(244\) 1166.91 0.306162
\(245\) 878.427 0.229064
\(246\) 0 0
\(247\) −2961.89 −0.762999
\(248\) 388.565 0.0994915
\(249\) 0 0
\(250\) −234.683 −0.0593706
\(251\) −254.840 −0.0640851 −0.0320426 0.999487i \(-0.510201\pi\)
−0.0320426 + 0.999487i \(0.510201\pi\)
\(252\) 0 0
\(253\) −2038.37 −0.506528
\(254\) −453.828 −0.112109
\(255\) 0 0
\(256\) 3924.87 0.958221
\(257\) 1617.63 0.392626 0.196313 0.980541i \(-0.437103\pi\)
0.196313 + 0.980541i \(0.437103\pi\)
\(258\) 0 0
\(259\) 905.405 0.217217
\(260\) 7598.59 1.81248
\(261\) 0 0
\(262\) 56.3240 0.0132813
\(263\) 2738.61 0.642090 0.321045 0.947064i \(-0.395966\pi\)
0.321045 + 0.947064i \(0.395966\pi\)
\(264\) 0 0
\(265\) 1650.32 0.382559
\(266\) 71.4661 0.0164732
\(267\) 0 0
\(268\) −5847.70 −1.33285
\(269\) 856.853 0.194213 0.0971064 0.995274i \(-0.469041\pi\)
0.0971064 + 0.995274i \(0.469041\pi\)
\(270\) 0 0
\(271\) −6081.47 −1.36318 −0.681592 0.731732i \(-0.738712\pi\)
−0.681592 + 0.731732i \(0.738712\pi\)
\(272\) 5482.40 1.22213
\(273\) 0 0
\(274\) 55.2043 0.0121716
\(275\) 2160.18 0.473686
\(276\) 0 0
\(277\) −623.366 −0.135215 −0.0676073 0.997712i \(-0.521536\pi\)
−0.0676073 + 0.997712i \(0.521536\pi\)
\(278\) −174.451 −0.0376361
\(279\) 0 0
\(280\) −367.460 −0.0784282
\(281\) −1273.56 −0.270370 −0.135185 0.990820i \(-0.543163\pi\)
−0.135185 + 0.990820i \(0.543163\pi\)
\(282\) 0 0
\(283\) −8224.31 −1.72751 −0.863753 0.503915i \(-0.831893\pi\)
−0.863753 + 0.503915i \(0.831893\pi\)
\(284\) −5599.32 −1.16992
\(285\) 0 0
\(286\) 107.338 0.0221923
\(287\) 978.432 0.201237
\(288\) 0 0
\(289\) 2613.48 0.531952
\(290\) −479.873 −0.0971693
\(291\) 0 0
\(292\) 2878.93 0.576974
\(293\) −3203.94 −0.638826 −0.319413 0.947616i \(-0.603486\pi\)
−0.319413 + 0.947616i \(0.603486\pi\)
\(294\) 0 0
\(295\) −5658.98 −1.11688
\(296\) −378.745 −0.0743719
\(297\) 0 0
\(298\) −123.357 −0.0239794
\(299\) 9859.49 1.90699
\(300\) 0 0
\(301\) 610.006 0.116811
\(302\) 434.192 0.0827315
\(303\) 0 0
\(304\) 3517.88 0.663698
\(305\) −2625.94 −0.492987
\(306\) 0 0
\(307\) −7457.11 −1.38632 −0.693159 0.720784i \(-0.743782\pi\)
−0.693159 + 0.720784i \(0.743782\pi\)
\(308\) 613.410 0.113481
\(309\) 0 0
\(310\) −436.281 −0.0799326
\(311\) 2732.06 0.498137 0.249069 0.968486i \(-0.419876\pi\)
0.249069 + 0.968486i \(0.419876\pi\)
\(312\) 0 0
\(313\) 6263.36 1.13107 0.565537 0.824723i \(-0.308669\pi\)
0.565537 + 0.824723i \(0.308669\pi\)
\(314\) −252.263 −0.0453377
\(315\) 0 0
\(316\) −9257.64 −1.64805
\(317\) −2732.41 −0.484125 −0.242062 0.970261i \(-0.577824\pi\)
−0.242062 + 0.970261i \(0.577824\pi\)
\(318\) 0 0
\(319\) 1605.51 0.281791
\(320\) −8947.93 −1.56314
\(321\) 0 0
\(322\) −237.895 −0.0411719
\(323\) 4829.50 0.831952
\(324\) 0 0
\(325\) −10448.7 −1.78334
\(326\) −447.759 −0.0760709
\(327\) 0 0
\(328\) −409.294 −0.0689008
\(329\) −4036.16 −0.676355
\(330\) 0 0
\(331\) −2578.92 −0.428249 −0.214124 0.976806i \(-0.568690\pi\)
−0.214124 + 0.976806i \(0.568690\pi\)
\(332\) −10375.8 −1.71520
\(333\) 0 0
\(334\) 2.50012 0.000409582 0
\(335\) 13159.3 2.14618
\(336\) 0 0
\(337\) −9297.79 −1.50292 −0.751458 0.659780i \(-0.770649\pi\)
−0.751458 + 0.659780i \(0.770649\pi\)
\(338\) −116.259 −0.0187090
\(339\) 0 0
\(340\) −12389.8 −1.97627
\(341\) 1459.67 0.231805
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −255.175 −0.0399945
\(345\) 0 0
\(346\) 675.944 0.105026
\(347\) 6167.17 0.954096 0.477048 0.878877i \(-0.341707\pi\)
0.477048 + 0.878877i \(0.341707\pi\)
\(348\) 0 0
\(349\) 10711.8 1.64294 0.821472 0.570249i \(-0.193153\pi\)
0.821472 + 0.570249i \(0.193153\pi\)
\(350\) 252.111 0.0385025
\(351\) 0 0
\(352\) −385.169 −0.0583226
\(353\) −5236.26 −0.789512 −0.394756 0.918786i \(-0.629171\pi\)
−0.394756 + 0.918786i \(0.629171\pi\)
\(354\) 0 0
\(355\) 12600.4 1.88383
\(356\) 11019.8 1.64059
\(357\) 0 0
\(358\) 374.612 0.0553040
\(359\) 7822.89 1.15007 0.575037 0.818127i \(-0.304988\pi\)
0.575037 + 0.818127i \(0.304988\pi\)
\(360\) 0 0
\(361\) −3760.07 −0.548195
\(362\) 809.575 0.117542
\(363\) 0 0
\(364\) −2967.03 −0.427238
\(365\) −6478.58 −0.929052
\(366\) 0 0
\(367\) −6533.92 −0.929340 −0.464670 0.885484i \(-0.653827\pi\)
−0.464670 + 0.885484i \(0.653827\pi\)
\(368\) −11710.3 −1.65880
\(369\) 0 0
\(370\) 425.256 0.0597513
\(371\) −644.400 −0.0901768
\(372\) 0 0
\(373\) −7348.39 −1.02007 −0.510034 0.860154i \(-0.670367\pi\)
−0.510034 + 0.860154i \(0.670367\pi\)
\(374\) −175.019 −0.0241979
\(375\) 0 0
\(376\) 1688.39 0.231575
\(377\) −7765.76 −1.06089
\(378\) 0 0
\(379\) −2549.40 −0.345525 −0.172762 0.984964i \(-0.555269\pi\)
−0.172762 + 0.984964i \(0.555269\pi\)
\(380\) −7950.16 −1.07325
\(381\) 0 0
\(382\) 605.221 0.0810623
\(383\) 3017.93 0.402634 0.201317 0.979526i \(-0.435478\pi\)
0.201317 + 0.979526i \(0.435478\pi\)
\(384\) 0 0
\(385\) −1380.38 −0.182730
\(386\) −617.753 −0.0814580
\(387\) 0 0
\(388\) −1691.91 −0.221376
\(389\) −7719.08 −1.00610 −0.503050 0.864257i \(-0.667789\pi\)
−0.503050 + 0.864257i \(0.667789\pi\)
\(390\) 0 0
\(391\) −16076.3 −2.07932
\(392\) 143.482 0.0184871
\(393\) 0 0
\(394\) −250.799 −0.0320687
\(395\) 20832.9 2.65371
\(396\) 0 0
\(397\) −7765.04 −0.981652 −0.490826 0.871258i \(-0.663305\pi\)
−0.490826 + 0.871258i \(0.663305\pi\)
\(398\) 845.837 0.106528
\(399\) 0 0
\(400\) 12410.0 1.55125
\(401\) −11406.1 −1.42044 −0.710219 0.703981i \(-0.751404\pi\)
−0.710219 + 0.703981i \(0.751404\pi\)
\(402\) 0 0
\(403\) −7060.32 −0.872704
\(404\) −10567.9 −1.30142
\(405\) 0 0
\(406\) 187.376 0.0229048
\(407\) −1422.78 −0.173279
\(408\) 0 0
\(409\) 8201.52 0.991538 0.495769 0.868454i \(-0.334886\pi\)
0.495769 + 0.868454i \(0.334886\pi\)
\(410\) 459.556 0.0553557
\(411\) 0 0
\(412\) −10837.2 −1.29590
\(413\) 2209.67 0.263270
\(414\) 0 0
\(415\) 23349.2 2.76185
\(416\) 1863.04 0.219574
\(417\) 0 0
\(418\) −112.304 −0.0131411
\(419\) −15833.2 −1.84607 −0.923036 0.384715i \(-0.874300\pi\)
−0.923036 + 0.384715i \(0.874300\pi\)
\(420\) 0 0
\(421\) −11030.9 −1.27699 −0.638497 0.769624i \(-0.720443\pi\)
−0.638497 + 0.769624i \(0.720443\pi\)
\(422\) −887.420 −0.102367
\(423\) 0 0
\(424\) 269.563 0.0308753
\(425\) 17037.0 1.94451
\(426\) 0 0
\(427\) 1025.36 0.116207
\(428\) −5315.06 −0.600265
\(429\) 0 0
\(430\) 286.511 0.0321321
\(431\) −13511.0 −1.50998 −0.754990 0.655737i \(-0.772358\pi\)
−0.754990 + 0.655737i \(0.772358\pi\)
\(432\) 0 0
\(433\) 9540.73 1.05889 0.529443 0.848345i \(-0.322401\pi\)
0.529443 + 0.848345i \(0.322401\pi\)
\(434\) 170.355 0.0188417
\(435\) 0 0
\(436\) −9624.51 −1.05718
\(437\) −10315.7 −1.12921
\(438\) 0 0
\(439\) 16487.1 1.79246 0.896228 0.443593i \(-0.146297\pi\)
0.896228 + 0.443593i \(0.146297\pi\)
\(440\) 577.436 0.0625641
\(441\) 0 0
\(442\) 846.555 0.0911007
\(443\) 15708.7 1.68475 0.842376 0.538891i \(-0.181156\pi\)
0.842376 + 0.538891i \(0.181156\pi\)
\(444\) 0 0
\(445\) −24798.4 −2.64170
\(446\) −329.078 −0.0349379
\(447\) 0 0
\(448\) 3493.91 0.368463
\(449\) −9850.65 −1.03537 −0.517685 0.855572i \(-0.673206\pi\)
−0.517685 + 0.855572i \(0.673206\pi\)
\(450\) 0 0
\(451\) −1537.54 −0.160532
\(452\) −7086.38 −0.737423
\(453\) 0 0
\(454\) −237.877 −0.0245906
\(455\) 6676.83 0.687945
\(456\) 0 0
\(457\) 5247.90 0.537170 0.268585 0.963256i \(-0.413444\pi\)
0.268585 + 0.963256i \(0.413444\pi\)
\(458\) −482.362 −0.0492124
\(459\) 0 0
\(460\) 26464.3 2.68240
\(461\) −5258.64 −0.531279 −0.265639 0.964072i \(-0.585583\pi\)
−0.265639 + 0.964072i \(0.585583\pi\)
\(462\) 0 0
\(463\) 8815.88 0.884900 0.442450 0.896793i \(-0.354109\pi\)
0.442450 + 0.896793i \(0.354109\pi\)
\(464\) 9223.50 0.922824
\(465\) 0 0
\(466\) 679.925 0.0675899
\(467\) −2599.62 −0.257594 −0.128797 0.991671i \(-0.541111\pi\)
−0.128797 + 0.991671i \(0.541111\pi\)
\(468\) 0 0
\(469\) −5138.34 −0.505898
\(470\) −1895.73 −0.186050
\(471\) 0 0
\(472\) −924.338 −0.0901400
\(473\) −958.581 −0.0931831
\(474\) 0 0
\(475\) 10932.1 1.05600
\(476\) 4837.87 0.465847
\(477\) 0 0
\(478\) 521.695 0.0499200
\(479\) 6316.67 0.602539 0.301269 0.953539i \(-0.402590\pi\)
0.301269 + 0.953539i \(0.402590\pi\)
\(480\) 0 0
\(481\) 6881.89 0.652364
\(482\) −326.211 −0.0308268
\(483\) 0 0
\(484\) −963.930 −0.0905269
\(485\) 3807.39 0.356463
\(486\) 0 0
\(487\) −6664.47 −0.620115 −0.310058 0.950718i \(-0.600348\pi\)
−0.310058 + 0.950718i \(0.600348\pi\)
\(488\) −428.922 −0.0397877
\(489\) 0 0
\(490\) −161.102 −0.0148528
\(491\) −6411.20 −0.589274 −0.294637 0.955609i \(-0.595199\pi\)
−0.294637 + 0.955609i \(0.595199\pi\)
\(492\) 0 0
\(493\) 12662.4 1.15677
\(494\) 543.207 0.0494738
\(495\) 0 0
\(496\) 8385.64 0.759126
\(497\) −4920.09 −0.444057
\(498\) 0 0
\(499\) −6855.85 −0.615050 −0.307525 0.951540i \(-0.599501\pi\)
−0.307525 + 0.951540i \(0.599501\pi\)
\(500\) −10194.0 −0.911781
\(501\) 0 0
\(502\) 46.7373 0.00415536
\(503\) 12991.9 1.15165 0.575827 0.817572i \(-0.304680\pi\)
0.575827 + 0.817572i \(0.304680\pi\)
\(504\) 0 0
\(505\) 23781.5 2.09557
\(506\) 373.835 0.0328439
\(507\) 0 0
\(508\) −19713.1 −1.72171
\(509\) 8619.95 0.750633 0.375317 0.926897i \(-0.377534\pi\)
0.375317 + 0.926897i \(0.377534\pi\)
\(510\) 0 0
\(511\) 2529.70 0.218996
\(512\) −3693.12 −0.318778
\(513\) 0 0
\(514\) −296.671 −0.0254583
\(515\) 24387.5 2.08669
\(516\) 0 0
\(517\) 6342.54 0.539545
\(518\) −166.050 −0.0140846
\(519\) 0 0
\(520\) −2793.02 −0.235543
\(521\) −79.1785 −0.00665810 −0.00332905 0.999994i \(-0.501060\pi\)
−0.00332905 + 0.999994i \(0.501060\pi\)
\(522\) 0 0
\(523\) 11304.4 0.945141 0.472571 0.881293i \(-0.343326\pi\)
0.472571 + 0.881293i \(0.343326\pi\)
\(524\) 2446.57 0.203967
\(525\) 0 0
\(526\) −502.256 −0.0416339
\(527\) 11512.2 0.951571
\(528\) 0 0
\(529\) 22171.6 1.82227
\(530\) −302.666 −0.0248056
\(531\) 0 0
\(532\) 3104.30 0.252986
\(533\) 7436.97 0.604373
\(534\) 0 0
\(535\) 11960.7 0.966556
\(536\) 2149.45 0.173213
\(537\) 0 0
\(538\) −157.146 −0.0125930
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −5184.07 −0.411979 −0.205989 0.978554i \(-0.566041\pi\)
−0.205989 + 0.978554i \(0.566041\pi\)
\(542\) 1115.33 0.0883905
\(543\) 0 0
\(544\) −3037.77 −0.239418
\(545\) 21658.5 1.70229
\(546\) 0 0
\(547\) 18111.1 1.41568 0.707839 0.706374i \(-0.249670\pi\)
0.707839 + 0.706374i \(0.249670\pi\)
\(548\) 2397.93 0.186924
\(549\) 0 0
\(550\) −396.174 −0.0307144
\(551\) 8125.06 0.628202
\(552\) 0 0
\(553\) −8134.64 −0.625533
\(554\) 114.324 0.00876747
\(555\) 0 0
\(556\) −7577.68 −0.577995
\(557\) 20608.7 1.56772 0.783859 0.620939i \(-0.213249\pi\)
0.783859 + 0.620939i \(0.213249\pi\)
\(558\) 0 0
\(559\) 4636.60 0.350818
\(560\) −7930.17 −0.598412
\(561\) 0 0
\(562\) 233.569 0.0175311
\(563\) −9840.79 −0.736660 −0.368330 0.929695i \(-0.620070\pi\)
−0.368330 + 0.929695i \(0.620070\pi\)
\(564\) 0 0
\(565\) 15946.8 1.18741
\(566\) 1508.33 0.112014
\(567\) 0 0
\(568\) 2058.15 0.152039
\(569\) −12936.3 −0.953104 −0.476552 0.879146i \(-0.658114\pi\)
−0.476552 + 0.879146i \(0.658114\pi\)
\(570\) 0 0
\(571\) 20105.5 1.47353 0.736767 0.676146i \(-0.236351\pi\)
0.736767 + 0.676146i \(0.236351\pi\)
\(572\) 4662.47 0.340818
\(573\) 0 0
\(574\) −179.443 −0.0130485
\(575\) −36390.5 −2.63929
\(576\) 0 0
\(577\) −4071.91 −0.293788 −0.146894 0.989152i \(-0.546928\pi\)
−0.146894 + 0.989152i \(0.546928\pi\)
\(578\) −479.308 −0.0344924
\(579\) 0 0
\(580\) −20844.4 −1.49227
\(581\) −9117.19 −0.651023
\(582\) 0 0
\(583\) 1012.63 0.0719362
\(584\) −1058.21 −0.0749813
\(585\) 0 0
\(586\) 587.598 0.0414223
\(587\) −4603.50 −0.323691 −0.161846 0.986816i \(-0.551745\pi\)
−0.161846 + 0.986816i \(0.551745\pi\)
\(588\) 0 0
\(589\) 7386.99 0.516767
\(590\) 1037.85 0.0724196
\(591\) 0 0
\(592\) −8173.72 −0.567462
\(593\) 20033.1 1.38728 0.693642 0.720320i \(-0.256005\pi\)
0.693642 + 0.720320i \(0.256005\pi\)
\(594\) 0 0
\(595\) −10886.9 −0.750115
\(596\) −5358.30 −0.368263
\(597\) 0 0
\(598\) −1808.22 −0.123651
\(599\) 14558.0 0.993028 0.496514 0.868029i \(-0.334613\pi\)
0.496514 + 0.868029i \(0.334613\pi\)
\(600\) 0 0
\(601\) 20804.2 1.41201 0.706007 0.708205i \(-0.250495\pi\)
0.706007 + 0.708205i \(0.250495\pi\)
\(602\) −111.874 −0.00757418
\(603\) 0 0
\(604\) 18860.2 1.27055
\(605\) 2169.18 0.145768
\(606\) 0 0
\(607\) −12884.2 −0.861539 −0.430770 0.902462i \(-0.641758\pi\)
−0.430770 + 0.902462i \(0.641758\pi\)
\(608\) −1949.24 −0.130020
\(609\) 0 0
\(610\) 481.595 0.0319659
\(611\) −30678.5 −2.03129
\(612\) 0 0
\(613\) −27378.4 −1.80392 −0.901959 0.431821i \(-0.857871\pi\)
−0.901959 + 0.431821i \(0.857871\pi\)
\(614\) 1367.62 0.0898906
\(615\) 0 0
\(616\) −225.472 −0.0147476
\(617\) 24915.7 1.62572 0.812858 0.582462i \(-0.197911\pi\)
0.812858 + 0.582462i \(0.197911\pi\)
\(618\) 0 0
\(619\) 386.035 0.0250664 0.0125332 0.999921i \(-0.496010\pi\)
0.0125332 + 0.999921i \(0.496010\pi\)
\(620\) −18950.9 −1.22756
\(621\) 0 0
\(622\) −501.055 −0.0322998
\(623\) 9683.06 0.622702
\(624\) 0 0
\(625\) −1607.42 −0.102875
\(626\) −1148.69 −0.0733402
\(627\) 0 0
\(628\) −10957.7 −0.696271
\(629\) −11221.2 −0.711319
\(630\) 0 0
\(631\) −5550.75 −0.350193 −0.175097 0.984551i \(-0.556024\pi\)
−0.175097 + 0.984551i \(0.556024\pi\)
\(632\) 3402.85 0.214174
\(633\) 0 0
\(634\) 501.121 0.0313912
\(635\) 44361.3 2.77232
\(636\) 0 0
\(637\) −2607.11 −0.162162
\(638\) −294.448 −0.0182717
\(639\) 0 0
\(640\) 6662.82 0.411517
\(641\) −7892.05 −0.486298 −0.243149 0.969989i \(-0.578180\pi\)
−0.243149 + 0.969989i \(0.578180\pi\)
\(642\) 0 0
\(643\) 14985.7 0.919094 0.459547 0.888153i \(-0.348012\pi\)
0.459547 + 0.888153i \(0.348012\pi\)
\(644\) −10333.5 −0.632296
\(645\) 0 0
\(646\) −885.723 −0.0539448
\(647\) −23441.6 −1.42440 −0.712198 0.701979i \(-0.752300\pi\)
−0.712198 + 0.701979i \(0.752300\pi\)
\(648\) 0 0
\(649\) −3472.33 −0.210017
\(650\) 1916.27 0.115634
\(651\) 0 0
\(652\) −19449.5 −1.16825
\(653\) −9678.91 −0.580038 −0.290019 0.957021i \(-0.593662\pi\)
−0.290019 + 0.957021i \(0.593662\pi\)
\(654\) 0 0
\(655\) −5505.63 −0.328432
\(656\) −8832.99 −0.525717
\(657\) 0 0
\(658\) 740.227 0.0438557
\(659\) 21735.5 1.28482 0.642408 0.766363i \(-0.277936\pi\)
0.642408 + 0.766363i \(0.277936\pi\)
\(660\) 0 0
\(661\) 13443.6 0.791066 0.395533 0.918452i \(-0.370560\pi\)
0.395533 + 0.918452i \(0.370560\pi\)
\(662\) 472.971 0.0277682
\(663\) 0 0
\(664\) 3813.86 0.222901
\(665\) −6985.76 −0.407362
\(666\) 0 0
\(667\) −27046.5 −1.57008
\(668\) 108.599 0.00629014
\(669\) 0 0
\(670\) −2413.40 −0.139161
\(671\) −1611.27 −0.0927012
\(672\) 0 0
\(673\) −1965.43 −0.112573 −0.0562866 0.998415i \(-0.517926\pi\)
−0.0562866 + 0.998415i \(0.517926\pi\)
\(674\) 1705.20 0.0974509
\(675\) 0 0
\(676\) −5049.98 −0.287322
\(677\) 9497.24 0.539156 0.269578 0.962979i \(-0.413116\pi\)
0.269578 + 0.962979i \(0.413116\pi\)
\(678\) 0 0
\(679\) −1486.67 −0.0840255
\(680\) 4554.15 0.256829
\(681\) 0 0
\(682\) −267.701 −0.0150305
\(683\) −9717.77 −0.544422 −0.272211 0.962238i \(-0.587755\pi\)
−0.272211 + 0.962238i \(0.587755\pi\)
\(684\) 0 0
\(685\) −5396.18 −0.300989
\(686\) 62.9057 0.00350110
\(687\) 0 0
\(688\) −5506.95 −0.305161
\(689\) −4898.02 −0.270827
\(690\) 0 0
\(691\) −10090.8 −0.555532 −0.277766 0.960649i \(-0.589594\pi\)
−0.277766 + 0.960649i \(0.589594\pi\)
\(692\) 29361.3 1.61293
\(693\) 0 0
\(694\) −1131.05 −0.0618647
\(695\) 17052.4 0.930697
\(696\) 0 0
\(697\) −12126.3 −0.658991
\(698\) −1964.52 −0.106530
\(699\) 0 0
\(700\) 10951.0 0.591301
\(701\) 18004.8 0.970089 0.485044 0.874490i \(-0.338803\pi\)
0.485044 + 0.874490i \(0.338803\pi\)
\(702\) 0 0
\(703\) −7200.30 −0.386294
\(704\) −5490.42 −0.293932
\(705\) 0 0
\(706\) 960.322 0.0511929
\(707\) −9285.99 −0.493968
\(708\) 0 0
\(709\) 672.259 0.0356096 0.0178048 0.999841i \(-0.494332\pi\)
0.0178048 + 0.999841i \(0.494332\pi\)
\(710\) −2310.90 −0.122150
\(711\) 0 0
\(712\) −4050.57 −0.213205
\(713\) −24589.7 −1.29157
\(714\) 0 0
\(715\) −10492.2 −0.548790
\(716\) 16272.2 0.849329
\(717\) 0 0
\(718\) −1434.71 −0.0745722
\(719\) −9911.49 −0.514098 −0.257049 0.966398i \(-0.582750\pi\)
−0.257049 + 0.966398i \(0.582750\pi\)
\(720\) 0 0
\(721\) −9522.63 −0.491874
\(722\) 689.591 0.0355456
\(723\) 0 0
\(724\) 35165.9 1.80515
\(725\) 28662.7 1.46829
\(726\) 0 0
\(727\) 21271.5 1.08517 0.542584 0.840002i \(-0.317446\pi\)
0.542584 + 0.840002i \(0.317446\pi\)
\(728\) 1090.59 0.0555221
\(729\) 0 0
\(730\) 1188.16 0.0602409
\(731\) −7560.18 −0.382522
\(732\) 0 0
\(733\) 1013.20 0.0510553 0.0255277 0.999674i \(-0.491873\pi\)
0.0255277 + 0.999674i \(0.491873\pi\)
\(734\) 1198.31 0.0602595
\(735\) 0 0
\(736\) 6488.58 0.324962
\(737\) 8074.53 0.403567
\(738\) 0 0
\(739\) −30127.0 −1.49965 −0.749825 0.661636i \(-0.769862\pi\)
−0.749825 + 0.661636i \(0.769862\pi\)
\(740\) 18472.0 0.917628
\(741\) 0 0
\(742\) 118.182 0.00584717
\(743\) −26840.0 −1.32525 −0.662627 0.748950i \(-0.730558\pi\)
−0.662627 + 0.748950i \(0.730558\pi\)
\(744\) 0 0
\(745\) 12058.0 0.592983
\(746\) 1347.69 0.0661424
\(747\) 0 0
\(748\) −7602.37 −0.371618
\(749\) −4670.32 −0.227837
\(750\) 0 0
\(751\) −17665.5 −0.858355 −0.429178 0.903220i \(-0.641197\pi\)
−0.429178 + 0.903220i \(0.641197\pi\)
\(752\) 36437.3 1.76693
\(753\) 0 0
\(754\) 1424.23 0.0687896
\(755\) −42441.9 −2.04585
\(756\) 0 0
\(757\) 7471.81 0.358742 0.179371 0.983782i \(-0.442594\pi\)
0.179371 + 0.983782i \(0.442594\pi\)
\(758\) 467.556 0.0224042
\(759\) 0 0
\(760\) 2922.25 0.139475
\(761\) −9239.84 −0.440137 −0.220068 0.975484i \(-0.570628\pi\)
−0.220068 + 0.975484i \(0.570628\pi\)
\(762\) 0 0
\(763\) −8457.00 −0.401263
\(764\) 26289.3 1.24491
\(765\) 0 0
\(766\) −553.484 −0.0261073
\(767\) 16795.5 0.790677
\(768\) 0 0
\(769\) −4109.75 −0.192720 −0.0963599 0.995347i \(-0.530720\pi\)
−0.0963599 + 0.995347i \(0.530720\pi\)
\(770\) 253.161 0.0118484
\(771\) 0 0
\(772\) −26833.6 −1.25099
\(773\) −30935.4 −1.43942 −0.719709 0.694276i \(-0.755725\pi\)
−0.719709 + 0.694276i \(0.755725\pi\)
\(774\) 0 0
\(775\) 26059.0 1.20783
\(776\) 621.899 0.0287692
\(777\) 0 0
\(778\) 1415.67 0.0652367
\(779\) −7781.06 −0.357876
\(780\) 0 0
\(781\) 7731.57 0.354235
\(782\) 2948.38 0.134826
\(783\) 0 0
\(784\) 3096.50 0.141058
\(785\) 24658.5 1.12115
\(786\) 0 0
\(787\) −28615.8 −1.29612 −0.648058 0.761591i \(-0.724418\pi\)
−0.648058 + 0.761591i \(0.724418\pi\)
\(788\) −10894.1 −0.492494
\(789\) 0 0
\(790\) −3820.72 −0.172070
\(791\) −6226.76 −0.279896
\(792\) 0 0
\(793\) 7793.62 0.349003
\(794\) 1424.10 0.0636515
\(795\) 0 0
\(796\) 36741.0 1.63599
\(797\) −14303.2 −0.635690 −0.317845 0.948143i \(-0.602959\pi\)
−0.317845 + 0.948143i \(0.602959\pi\)
\(798\) 0 0
\(799\) 50022.6 2.21486
\(800\) −6876.31 −0.303893
\(801\) 0 0
\(802\) 2091.87 0.0921029
\(803\) −3975.24 −0.174699
\(804\) 0 0
\(805\) 23254.0 1.01813
\(806\) 1294.85 0.0565872
\(807\) 0 0
\(808\) 3884.48 0.169128
\(809\) −34991.0 −1.52066 −0.760332 0.649535i \(-0.774964\pi\)
−0.760332 + 0.649535i \(0.774964\pi\)
\(810\) 0 0
\(811\) 36535.7 1.58192 0.790962 0.611865i \(-0.209580\pi\)
0.790962 + 0.611865i \(0.209580\pi\)
\(812\) 8139.15 0.351759
\(813\) 0 0
\(814\) 260.936 0.0112356
\(815\) 43768.1 1.88114
\(816\) 0 0
\(817\) −4851.12 −0.207735
\(818\) −1504.15 −0.0642925
\(819\) 0 0
\(820\) 19961.9 0.850123
\(821\) −8067.24 −0.342934 −0.171467 0.985190i \(-0.554851\pi\)
−0.171467 + 0.985190i \(0.554851\pi\)
\(822\) 0 0
\(823\) −835.480 −0.0353864 −0.0176932 0.999843i \(-0.505632\pi\)
−0.0176932 + 0.999843i \(0.505632\pi\)
\(824\) 3983.46 0.168411
\(825\) 0 0
\(826\) −405.250 −0.0170708
\(827\) −6645.04 −0.279408 −0.139704 0.990193i \(-0.544615\pi\)
−0.139704 + 0.990193i \(0.544615\pi\)
\(828\) 0 0
\(829\) 35805.8 1.50010 0.750052 0.661379i \(-0.230029\pi\)
0.750052 + 0.661379i \(0.230029\pi\)
\(830\) −4282.21 −0.179082
\(831\) 0 0
\(832\) 26556.8 1.10660
\(833\) 4251.01 0.176817
\(834\) 0 0
\(835\) −244.385 −0.0101285
\(836\) −4878.19 −0.201813
\(837\) 0 0
\(838\) 2903.79 0.119701
\(839\) −33199.4 −1.36612 −0.683058 0.730364i \(-0.739350\pi\)
−0.683058 + 0.730364i \(0.739350\pi\)
\(840\) 0 0
\(841\) −3085.98 −0.126532
\(842\) 2023.06 0.0828018
\(843\) 0 0
\(844\) −38547.2 −1.57210
\(845\) 11364.2 0.462651
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 5817.45 0.235580
\(849\) 0 0
\(850\) −3124.56 −0.126084
\(851\) 23968.2 0.965476
\(852\) 0 0
\(853\) −10295.8 −0.413274 −0.206637 0.978418i \(-0.566252\pi\)
−0.206637 + 0.978418i \(0.566252\pi\)
\(854\) −188.049 −0.00753500
\(855\) 0 0
\(856\) 1953.67 0.0780081
\(857\) 1707.01 0.0680400 0.0340200 0.999421i \(-0.489169\pi\)
0.0340200 + 0.999421i \(0.489169\pi\)
\(858\) 0 0
\(859\) 11934.4 0.474035 0.237017 0.971505i \(-0.423830\pi\)
0.237017 + 0.971505i \(0.423830\pi\)
\(860\) 12445.3 0.493467
\(861\) 0 0
\(862\) 2477.90 0.0979089
\(863\) −19837.7 −0.782484 −0.391242 0.920288i \(-0.627955\pi\)
−0.391242 + 0.920288i \(0.627955\pi\)
\(864\) 0 0
\(865\) −66073.0 −2.59717
\(866\) −1749.76 −0.0686595
\(867\) 0 0
\(868\) 7399.79 0.289361
\(869\) 12783.0 0.499003
\(870\) 0 0
\(871\) −39056.0 −1.51936
\(872\) 3537.69 0.137387
\(873\) 0 0
\(874\) 1891.88 0.0732194
\(875\) −8957.43 −0.346076
\(876\) 0 0
\(877\) 5630.62 0.216799 0.108399 0.994107i \(-0.465427\pi\)
0.108399 + 0.994107i \(0.465427\pi\)
\(878\) −3023.72 −0.116225
\(879\) 0 0
\(880\) 12461.7 0.477368
\(881\) −42058.5 −1.60838 −0.804191 0.594370i \(-0.797401\pi\)
−0.804191 + 0.594370i \(0.797401\pi\)
\(882\) 0 0
\(883\) 15501.7 0.590797 0.295398 0.955374i \(-0.404548\pi\)
0.295398 + 0.955374i \(0.404548\pi\)
\(884\) 36772.2 1.39907
\(885\) 0 0
\(886\) −2880.96 −0.109241
\(887\) −27103.2 −1.02597 −0.512986 0.858397i \(-0.671461\pi\)
−0.512986 + 0.858397i \(0.671461\pi\)
\(888\) 0 0
\(889\) −17321.8 −0.653492
\(890\) 4547.99 0.171291
\(891\) 0 0
\(892\) −14294.3 −0.536557
\(893\) 32097.9 1.20282
\(894\) 0 0
\(895\) −36618.0 −1.36760
\(896\) −2601.64 −0.0970029
\(897\) 0 0
\(898\) 1806.59 0.0671346
\(899\) 19367.9 0.718526
\(900\) 0 0
\(901\) 7986.45 0.295302
\(902\) 281.982 0.0104091
\(903\) 0 0
\(904\) 2604.75 0.0958327
\(905\) −79135.3 −2.90668
\(906\) 0 0
\(907\) 43553.1 1.59444 0.797219 0.603690i \(-0.206304\pi\)
0.797219 + 0.603690i \(0.206304\pi\)
\(908\) −10332.8 −0.377649
\(909\) 0 0
\(910\) −1224.52 −0.0446072
\(911\) 44312.9 1.61158 0.805792 0.592199i \(-0.201740\pi\)
0.805792 + 0.592199i \(0.201740\pi\)
\(912\) 0 0
\(913\) 14327.0 0.519337
\(914\) −962.458 −0.0348307
\(915\) 0 0
\(916\) −20952.5 −0.755777
\(917\) 2149.79 0.0774179
\(918\) 0 0
\(919\) −2487.86 −0.0893004 −0.0446502 0.999003i \(-0.514217\pi\)
−0.0446502 + 0.999003i \(0.514217\pi\)
\(920\) −9727.53 −0.348595
\(921\) 0 0
\(922\) 964.428 0.0344487
\(923\) −37397.1 −1.33363
\(924\) 0 0
\(925\) −25400.5 −0.902878
\(926\) −1616.82 −0.0573780
\(927\) 0 0
\(928\) −5110.68 −0.180783
\(929\) −53068.5 −1.87419 −0.937093 0.349079i \(-0.886495\pi\)
−0.937093 + 0.349079i \(0.886495\pi\)
\(930\) 0 0
\(931\) 2727.73 0.0960235
\(932\) 29534.2 1.03801
\(933\) 0 0
\(934\) 476.767 0.0167027
\(935\) 17107.9 0.598385
\(936\) 0 0
\(937\) 44976.4 1.56810 0.784052 0.620695i \(-0.213149\pi\)
0.784052 + 0.620695i \(0.213149\pi\)
\(938\) 942.364 0.0328031
\(939\) 0 0
\(940\) −82345.6 −2.85725
\(941\) −20420.9 −0.707442 −0.353721 0.935351i \(-0.615084\pi\)
−0.353721 + 0.935351i \(0.615084\pi\)
\(942\) 0 0
\(943\) 25901.4 0.894451
\(944\) −19948.2 −0.687774
\(945\) 0 0
\(946\) 175.802 0.00604211
\(947\) −2792.83 −0.0958340 −0.0479170 0.998851i \(-0.515258\pi\)
−0.0479170 + 0.998851i \(0.515258\pi\)
\(948\) 0 0
\(949\) 19228.0 0.657709
\(950\) −2004.93 −0.0684721
\(951\) 0 0
\(952\) −1778.26 −0.0605397
\(953\) 37731.4 1.28252 0.641260 0.767324i \(-0.278412\pi\)
0.641260 + 0.767324i \(0.278412\pi\)
\(954\) 0 0
\(955\) −59159.9 −2.00458
\(956\) 22661.1 0.766645
\(957\) 0 0
\(958\) −1158.47 −0.0390693
\(959\) 2107.05 0.0709491
\(960\) 0 0
\(961\) −12182.5 −0.408932
\(962\) −1262.13 −0.0423001
\(963\) 0 0
\(964\) −14169.8 −0.473421
\(965\) 60384.9 2.01436
\(966\) 0 0
\(967\) 21417.8 0.712254 0.356127 0.934438i \(-0.384097\pi\)
0.356127 + 0.934438i \(0.384097\pi\)
\(968\) 354.313 0.0117645
\(969\) 0 0
\(970\) −698.269 −0.0231135
\(971\) 775.461 0.0256290 0.0128145 0.999918i \(-0.495921\pi\)
0.0128145 + 0.999918i \(0.495921\pi\)
\(972\) 0 0
\(973\) −6658.47 −0.219384
\(974\) 1222.26 0.0402090
\(975\) 0 0
\(976\) −9256.60 −0.303582
\(977\) 23964.4 0.784739 0.392369 0.919808i \(-0.371655\pi\)
0.392369 + 0.919808i \(0.371655\pi\)
\(978\) 0 0
\(979\) −15216.2 −0.496744
\(980\) −6997.87 −0.228101
\(981\) 0 0
\(982\) 1175.81 0.0382092
\(983\) −11537.1 −0.374339 −0.187169 0.982328i \(-0.559931\pi\)
−0.187169 + 0.982328i \(0.559931\pi\)
\(984\) 0 0
\(985\) 24515.4 0.793022
\(986\) −2322.27 −0.0750062
\(987\) 0 0
\(988\) 23595.5 0.759791
\(989\) 16148.3 0.519198
\(990\) 0 0
\(991\) −13148.8 −0.421479 −0.210740 0.977542i \(-0.567587\pi\)
−0.210740 + 0.977542i \(0.567587\pi\)
\(992\) −4646.43 −0.148714
\(993\) 0 0
\(994\) 902.338 0.0287932
\(995\) −82679.9 −2.63430
\(996\) 0 0
\(997\) −12337.2 −0.391897 −0.195949 0.980614i \(-0.562779\pi\)
−0.195949 + 0.980614i \(0.562779\pi\)
\(998\) 1257.35 0.0398806
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.q.1.3 5
3.2 odd 2 231.4.a.j.1.3 5
21.20 even 2 1617.4.a.o.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.j.1.3 5 3.2 odd 2
693.4.a.q.1.3 5 1.1 even 1 trivial
1617.4.a.o.1.3 5 21.20 even 2