Properties

Label 693.4.a.q.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.50528\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.50528 q^{2} -5.73413 q^{4} +0.155265 q^{5} -7.00000 q^{7} +20.6737 q^{8} +O(q^{10})\) \(q-1.50528 q^{2} -5.73413 q^{4} +0.155265 q^{5} -7.00000 q^{7} +20.6737 q^{8} -0.233718 q^{10} +11.0000 q^{11} +88.7135 q^{13} +10.5370 q^{14} +14.7533 q^{16} -102.195 q^{17} -26.8508 q^{19} -0.890312 q^{20} -16.5581 q^{22} -65.1580 q^{23} -124.976 q^{25} -133.539 q^{26} +40.1389 q^{28} -136.493 q^{29} -87.8011 q^{31} -187.598 q^{32} +153.832 q^{34} -1.08686 q^{35} +391.184 q^{37} +40.4180 q^{38} +3.20991 q^{40} +69.8526 q^{41} +293.400 q^{43} -63.0754 q^{44} +98.0811 q^{46} -122.585 q^{47} +49.0000 q^{49} +188.124 q^{50} -508.694 q^{52} -140.132 q^{53} +1.70792 q^{55} -144.716 q^{56} +205.460 q^{58} +653.662 q^{59} +295.112 q^{61} +132.165 q^{62} +164.361 q^{64} +13.7741 q^{65} -82.0975 q^{67} +585.998 q^{68} +1.63603 q^{70} +579.406 q^{71} -123.715 q^{73} -588.842 q^{74} +153.966 q^{76} -77.0000 q^{77} +420.453 q^{79} +2.29067 q^{80} -105.148 q^{82} -59.7076 q^{83} -15.8673 q^{85} -441.650 q^{86} +227.411 q^{88} +280.345 q^{89} -620.994 q^{91} +373.624 q^{92} +184.525 q^{94} -4.16900 q^{95} +19.1595 q^{97} -73.7588 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8} + 113 q^{10} + 55 q^{11} + 23 q^{13} - 7 q^{14} + 281 q^{16} + 102 q^{17} - 155 q^{19} - 291 q^{20} + 11 q^{22} - 192 q^{23} + 394 q^{25} - 41 q^{26} - 147 q^{28} - 591 q^{29} + 366 q^{31} + 87 q^{32} + 594 q^{34} + 49 q^{35} + 259 q^{37} - 175 q^{38} + 1890 q^{40} + 104 q^{41} + 224 q^{43} + 231 q^{44} + 1416 q^{46} + 453 q^{47} + 245 q^{49} - 1350 q^{50} + 815 q^{52} - 1032 q^{53} - 77 q^{55} - 84 q^{56} + 293 q^{58} + 517 q^{59} + 958 q^{61} + 3030 q^{62} + 516 q^{64} + 197 q^{65} + 361 q^{67} + 1680 q^{68} - 791 q^{70} - 548 q^{71} - 1035 q^{73} + 2555 q^{74} - 5201 q^{76} - 385 q^{77} + 776 q^{79} + 1273 q^{80} + 376 q^{82} + 1974 q^{83} + 1838 q^{85} - 1224 q^{86} + 132 q^{88} - 2710 q^{89} - 161 q^{91} + 2834 q^{92} - 563 q^{94} + 355 q^{95} + 1988 q^{97} + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50528 −0.532197 −0.266099 0.963946i \(-0.585735\pi\)
−0.266099 + 0.963946i \(0.585735\pi\)
\(3\) 0 0
\(4\) −5.73413 −0.716766
\(5\) 0.155265 0.0138874 0.00694368 0.999976i \(-0.497790\pi\)
0.00694368 + 0.999976i \(0.497790\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 20.6737 0.913658
\(9\) 0 0
\(10\) −0.233718 −0.00739082
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 88.7135 1.89267 0.946334 0.323190i \(-0.104755\pi\)
0.946334 + 0.323190i \(0.104755\pi\)
\(14\) 10.5370 0.201152
\(15\) 0 0
\(16\) 14.7533 0.230520
\(17\) −102.195 −1.45799 −0.728996 0.684518i \(-0.760013\pi\)
−0.728996 + 0.684518i \(0.760013\pi\)
\(18\) 0 0
\(19\) −26.8508 −0.324210 −0.162105 0.986774i \(-0.551828\pi\)
−0.162105 + 0.986774i \(0.551828\pi\)
\(20\) −0.890312 −0.00995399
\(21\) 0 0
\(22\) −16.5581 −0.160464
\(23\) −65.1580 −0.590712 −0.295356 0.955387i \(-0.595438\pi\)
−0.295356 + 0.955387i \(0.595438\pi\)
\(24\) 0 0
\(25\) −124.976 −0.999807
\(26\) −133.539 −1.00727
\(27\) 0 0
\(28\) 40.1389 0.270912
\(29\) −136.493 −0.874001 −0.437001 0.899461i \(-0.643959\pi\)
−0.437001 + 0.899461i \(0.643959\pi\)
\(30\) 0 0
\(31\) −87.8011 −0.508695 −0.254348 0.967113i \(-0.581861\pi\)
−0.254348 + 0.967113i \(0.581861\pi\)
\(32\) −187.598 −1.03634
\(33\) 0 0
\(34\) 153.832 0.775939
\(35\) −1.08686 −0.00524893
\(36\) 0 0
\(37\) 391.184 1.73812 0.869058 0.494710i \(-0.164726\pi\)
0.869058 + 0.494710i \(0.164726\pi\)
\(38\) 40.4180 0.172544
\(39\) 0 0
\(40\) 3.20991 0.0126883
\(41\) 69.8526 0.266077 0.133038 0.991111i \(-0.457527\pi\)
0.133038 + 0.991111i \(0.457527\pi\)
\(42\) 0 0
\(43\) 293.400 1.04054 0.520268 0.854003i \(-0.325832\pi\)
0.520268 + 0.854003i \(0.325832\pi\)
\(44\) −63.0754 −0.216113
\(45\) 0 0
\(46\) 98.0811 0.314376
\(47\) −122.585 −0.380445 −0.190223 0.981741i \(-0.560921\pi\)
−0.190223 + 0.981741i \(0.560921\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 188.124 0.532095
\(51\) 0 0
\(52\) −508.694 −1.35660
\(53\) −140.132 −0.363181 −0.181591 0.983374i \(-0.558125\pi\)
−0.181591 + 0.983374i \(0.558125\pi\)
\(54\) 0 0
\(55\) 1.70792 0.00418720
\(56\) −144.716 −0.345330
\(57\) 0 0
\(58\) 205.460 0.465141
\(59\) 653.662 1.44237 0.721183 0.692745i \(-0.243599\pi\)
0.721183 + 0.692745i \(0.243599\pi\)
\(60\) 0 0
\(61\) 295.112 0.619431 0.309715 0.950829i \(-0.399766\pi\)
0.309715 + 0.950829i \(0.399766\pi\)
\(62\) 132.165 0.270726
\(63\) 0 0
\(64\) 164.361 0.321018
\(65\) 13.7741 0.0262842
\(66\) 0 0
\(67\) −82.0975 −0.149699 −0.0748493 0.997195i \(-0.523848\pi\)
−0.0748493 + 0.997195i \(0.523848\pi\)
\(68\) 585.998 1.04504
\(69\) 0 0
\(70\) 1.63603 0.00279347
\(71\) 579.406 0.968491 0.484245 0.874932i \(-0.339094\pi\)
0.484245 + 0.874932i \(0.339094\pi\)
\(72\) 0 0
\(73\) −123.715 −0.198352 −0.0991762 0.995070i \(-0.531621\pi\)
−0.0991762 + 0.995070i \(0.531621\pi\)
\(74\) −588.842 −0.925021
\(75\) 0 0
\(76\) 153.966 0.232383
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 420.453 0.598794 0.299397 0.954129i \(-0.403215\pi\)
0.299397 + 0.954129i \(0.403215\pi\)
\(80\) 2.29067 0.00320131
\(81\) 0 0
\(82\) −105.148 −0.141605
\(83\) −59.7076 −0.0789610 −0.0394805 0.999220i \(-0.512570\pi\)
−0.0394805 + 0.999220i \(0.512570\pi\)
\(84\) 0 0
\(85\) −15.8673 −0.0202477
\(86\) −441.650 −0.553771
\(87\) 0 0
\(88\) 227.411 0.275478
\(89\) 280.345 0.333894 0.166947 0.985966i \(-0.446609\pi\)
0.166947 + 0.985966i \(0.446609\pi\)
\(90\) 0 0
\(91\) −620.994 −0.715361
\(92\) 373.624 0.423403
\(93\) 0 0
\(94\) 184.525 0.202472
\(95\) −4.16900 −0.00450242
\(96\) 0 0
\(97\) 19.1595 0.0200552 0.0100276 0.999950i \(-0.496808\pi\)
0.0100276 + 0.999950i \(0.496808\pi\)
\(98\) −73.7588 −0.0760282
\(99\) 0 0
\(100\) 716.628 0.716628
\(101\) 35.9731 0.0354401 0.0177201 0.999843i \(-0.494359\pi\)
0.0177201 + 0.999843i \(0.494359\pi\)
\(102\) 0 0
\(103\) 1690.03 1.61674 0.808369 0.588676i \(-0.200350\pi\)
0.808369 + 0.588676i \(0.200350\pi\)
\(104\) 1834.04 1.72925
\(105\) 0 0
\(106\) 210.938 0.193284
\(107\) −992.428 −0.896651 −0.448326 0.893870i \(-0.647979\pi\)
−0.448326 + 0.893870i \(0.647979\pi\)
\(108\) 0 0
\(109\) 607.598 0.533920 0.266960 0.963708i \(-0.413981\pi\)
0.266960 + 0.963708i \(0.413981\pi\)
\(110\) −2.57090 −0.00222841
\(111\) 0 0
\(112\) −103.273 −0.0871282
\(113\) 876.628 0.729790 0.364895 0.931049i \(-0.381105\pi\)
0.364895 + 0.931049i \(0.381105\pi\)
\(114\) 0 0
\(115\) −10.1168 −0.00820344
\(116\) 782.666 0.626454
\(117\) 0 0
\(118\) −983.945 −0.767623
\(119\) 715.363 0.551069
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −444.227 −0.329659
\(123\) 0 0
\(124\) 503.463 0.364615
\(125\) −38.8126 −0.0277720
\(126\) 0 0
\(127\) 945.725 0.660784 0.330392 0.943844i \(-0.392819\pi\)
0.330392 + 0.943844i \(0.392819\pi\)
\(128\) 1253.37 0.865495
\(129\) 0 0
\(130\) −20.7339 −0.0139884
\(131\) 112.396 0.0749628 0.0374814 0.999297i \(-0.488067\pi\)
0.0374814 + 0.999297i \(0.488067\pi\)
\(132\) 0 0
\(133\) 187.956 0.122540
\(134\) 123.580 0.0796692
\(135\) 0 0
\(136\) −2112.75 −1.33211
\(137\) 1417.41 0.883925 0.441963 0.897033i \(-0.354282\pi\)
0.441963 + 0.897033i \(0.354282\pi\)
\(138\) 0 0
\(139\) 336.386 0.205265 0.102633 0.994719i \(-0.467273\pi\)
0.102633 + 0.994719i \(0.467273\pi\)
\(140\) 6.23218 0.00376225
\(141\) 0 0
\(142\) −872.169 −0.515428
\(143\) 975.848 0.570661
\(144\) 0 0
\(145\) −21.1926 −0.0121376
\(146\) 186.226 0.105563
\(147\) 0 0
\(148\) −2243.10 −1.24582
\(149\) −3130.80 −1.72138 −0.860689 0.509132i \(-0.829967\pi\)
−0.860689 + 0.509132i \(0.829967\pi\)
\(150\) 0 0
\(151\) 3421.03 1.84371 0.921853 0.387540i \(-0.126675\pi\)
0.921853 + 0.387540i \(0.126675\pi\)
\(152\) −555.106 −0.296217
\(153\) 0 0
\(154\) 115.907 0.0606495
\(155\) −13.6325 −0.00706443
\(156\) 0 0
\(157\) −1693.77 −0.861006 −0.430503 0.902589i \(-0.641664\pi\)
−0.430503 + 0.902589i \(0.641664\pi\)
\(158\) −632.901 −0.318676
\(159\) 0 0
\(160\) −29.1274 −0.0143920
\(161\) 456.106 0.223268
\(162\) 0 0
\(163\) −438.560 −0.210740 −0.105370 0.994433i \(-0.533603\pi\)
−0.105370 + 0.994433i \(0.533603\pi\)
\(164\) −400.544 −0.190715
\(165\) 0 0
\(166\) 89.8767 0.0420228
\(167\) −2606.86 −1.20793 −0.603967 0.797009i \(-0.706414\pi\)
−0.603967 + 0.797009i \(0.706414\pi\)
\(168\) 0 0
\(169\) 5673.08 2.58219
\(170\) 23.8848 0.0107758
\(171\) 0 0
\(172\) −1682.39 −0.745822
\(173\) 4498.50 1.97696 0.988481 0.151343i \(-0.0483599\pi\)
0.988481 + 0.151343i \(0.0483599\pi\)
\(174\) 0 0
\(175\) 874.831 0.377892
\(176\) 162.286 0.0695043
\(177\) 0 0
\(178\) −421.998 −0.177697
\(179\) −589.770 −0.246265 −0.123133 0.992390i \(-0.539294\pi\)
−0.123133 + 0.992390i \(0.539294\pi\)
\(180\) 0 0
\(181\) −2377.96 −0.976534 −0.488267 0.872694i \(-0.662371\pi\)
−0.488267 + 0.872694i \(0.662371\pi\)
\(182\) 934.771 0.380713
\(183\) 0 0
\(184\) −1347.06 −0.539709
\(185\) 60.7374 0.0241379
\(186\) 0 0
\(187\) −1124.14 −0.439601
\(188\) 702.920 0.272690
\(189\) 0 0
\(190\) 6.27552 0.00239618
\(191\) 3698.73 1.40121 0.700605 0.713550i \(-0.252914\pi\)
0.700605 + 0.713550i \(0.252914\pi\)
\(192\) 0 0
\(193\) 5199.41 1.93918 0.969589 0.244737i \(-0.0787016\pi\)
0.969589 + 0.244737i \(0.0787016\pi\)
\(194\) −28.8404 −0.0106733
\(195\) 0 0
\(196\) −280.972 −0.102395
\(197\) −1356.16 −0.490469 −0.245234 0.969464i \(-0.578865\pi\)
−0.245234 + 0.969464i \(0.578865\pi\)
\(198\) 0 0
\(199\) 2506.86 0.892999 0.446500 0.894784i \(-0.352670\pi\)
0.446500 + 0.894784i \(0.352670\pi\)
\(200\) −2583.72 −0.913482
\(201\) 0 0
\(202\) −54.1496 −0.0188611
\(203\) 955.448 0.330341
\(204\) 0 0
\(205\) 10.8457 0.00369510
\(206\) −2543.98 −0.860424
\(207\) 0 0
\(208\) 1308.81 0.436297
\(209\) −295.359 −0.0977530
\(210\) 0 0
\(211\) 631.216 0.205947 0.102973 0.994684i \(-0.467164\pi\)
0.102973 + 0.994684i \(0.467164\pi\)
\(212\) 803.534 0.260316
\(213\) 0 0
\(214\) 1493.88 0.477195
\(215\) 45.5549 0.0144503
\(216\) 0 0
\(217\) 614.608 0.192269
\(218\) −914.605 −0.284151
\(219\) 0 0
\(220\) −9.79343 −0.00300124
\(221\) −9066.05 −2.75950
\(222\) 0 0
\(223\) 2763.58 0.829879 0.414939 0.909849i \(-0.363803\pi\)
0.414939 + 0.909849i \(0.363803\pi\)
\(224\) 1313.18 0.391700
\(225\) 0 0
\(226\) −1319.57 −0.388392
\(227\) 5802.86 1.69669 0.848347 0.529441i \(-0.177598\pi\)
0.848347 + 0.529441i \(0.177598\pi\)
\(228\) 0 0
\(229\) 6741.60 1.94540 0.972702 0.232057i \(-0.0745455\pi\)
0.972702 + 0.232057i \(0.0745455\pi\)
\(230\) 15.2286 0.00436585
\(231\) 0 0
\(232\) −2821.81 −0.798538
\(233\) −5358.60 −1.50667 −0.753333 0.657639i \(-0.771555\pi\)
−0.753333 + 0.657639i \(0.771555\pi\)
\(234\) 0 0
\(235\) −19.0333 −0.00528338
\(236\) −3748.18 −1.03384
\(237\) 0 0
\(238\) −1076.82 −0.293278
\(239\) 5162.13 1.39712 0.698558 0.715554i \(-0.253826\pi\)
0.698558 + 0.715554i \(0.253826\pi\)
\(240\) 0 0
\(241\) −6404.70 −1.71188 −0.855939 0.517077i \(-0.827020\pi\)
−0.855939 + 0.517077i \(0.827020\pi\)
\(242\) −182.139 −0.0483816
\(243\) 0 0
\(244\) −1692.21 −0.443987
\(245\) 7.60801 0.00198391
\(246\) 0 0
\(247\) −2382.03 −0.613622
\(248\) −1815.18 −0.464773
\(249\) 0 0
\(250\) 58.4239 0.0147802
\(251\) −308.457 −0.0775682 −0.0387841 0.999248i \(-0.512348\pi\)
−0.0387841 + 0.999248i \(0.512348\pi\)
\(252\) 0 0
\(253\) −716.738 −0.178107
\(254\) −1423.58 −0.351667
\(255\) 0 0
\(256\) −3201.56 −0.781632
\(257\) −5546.96 −1.34634 −0.673171 0.739487i \(-0.735068\pi\)
−0.673171 + 0.739487i \(0.735068\pi\)
\(258\) 0 0
\(259\) −2738.29 −0.656946
\(260\) −78.9826 −0.0188396
\(261\) 0 0
\(262\) −169.188 −0.0398950
\(263\) −885.702 −0.207661 −0.103830 0.994595i \(-0.533110\pi\)
−0.103830 + 0.994595i \(0.533110\pi\)
\(264\) 0 0
\(265\) −21.7576 −0.00504363
\(266\) −282.926 −0.0652154
\(267\) 0 0
\(268\) 470.758 0.107299
\(269\) −4452.77 −1.00926 −0.504629 0.863336i \(-0.668371\pi\)
−0.504629 + 0.863336i \(0.668371\pi\)
\(270\) 0 0
\(271\) −2577.98 −0.577863 −0.288932 0.957350i \(-0.593300\pi\)
−0.288932 + 0.957350i \(0.593300\pi\)
\(272\) −1507.71 −0.336096
\(273\) 0 0
\(274\) −2133.60 −0.470423
\(275\) −1374.73 −0.301453
\(276\) 0 0
\(277\) −683.280 −0.148210 −0.0741052 0.997250i \(-0.523610\pi\)
−0.0741052 + 0.997250i \(0.523610\pi\)
\(278\) −506.355 −0.109242
\(279\) 0 0
\(280\) −22.4694 −0.00479573
\(281\) 8624.47 1.83094 0.915468 0.402391i \(-0.131821\pi\)
0.915468 + 0.402391i \(0.131821\pi\)
\(282\) 0 0
\(283\) 1252.68 0.263123 0.131562 0.991308i \(-0.458001\pi\)
0.131562 + 0.991308i \(0.458001\pi\)
\(284\) −3322.39 −0.694181
\(285\) 0 0
\(286\) −1468.93 −0.303704
\(287\) −488.968 −0.100568
\(288\) 0 0
\(289\) 5530.77 1.12574
\(290\) 31.9008 0.00645958
\(291\) 0 0
\(292\) 709.397 0.142172
\(293\) 6342.78 1.26467 0.632337 0.774694i \(-0.282096\pi\)
0.632337 + 0.774694i \(0.282096\pi\)
\(294\) 0 0
\(295\) 101.491 0.0200306
\(296\) 8087.24 1.58804
\(297\) 0 0
\(298\) 4712.74 0.916112
\(299\) −5780.39 −1.11802
\(300\) 0 0
\(301\) −2053.80 −0.393286
\(302\) −5149.61 −0.981215
\(303\) 0 0
\(304\) −396.137 −0.0747368
\(305\) 45.8207 0.00860226
\(306\) 0 0
\(307\) −5508.30 −1.02402 −0.512012 0.858979i \(-0.671100\pi\)
−0.512012 + 0.858979i \(0.671100\pi\)
\(308\) 441.528 0.0816831
\(309\) 0 0
\(310\) 20.5207 0.00375967
\(311\) 5363.85 0.977993 0.488996 0.872286i \(-0.337363\pi\)
0.488996 + 0.872286i \(0.337363\pi\)
\(312\) 0 0
\(313\) −5825.07 −1.05192 −0.525962 0.850508i \(-0.676295\pi\)
−0.525962 + 0.850508i \(0.676295\pi\)
\(314\) 2549.61 0.458225
\(315\) 0 0
\(316\) −2410.93 −0.429195
\(317\) 5798.44 1.02736 0.513680 0.857982i \(-0.328282\pi\)
0.513680 + 0.857982i \(0.328282\pi\)
\(318\) 0 0
\(319\) −1501.42 −0.263521
\(320\) 25.5196 0.00445809
\(321\) 0 0
\(322\) −686.568 −0.118823
\(323\) 2744.01 0.472696
\(324\) 0 0
\(325\) −11087.0 −1.89230
\(326\) 660.157 0.112156
\(327\) 0 0
\(328\) 1444.11 0.243103
\(329\) 858.098 0.143795
\(330\) 0 0
\(331\) −9130.56 −1.51620 −0.758098 0.652140i \(-0.773871\pi\)
−0.758098 + 0.652140i \(0.773871\pi\)
\(332\) 342.371 0.0565965
\(333\) 0 0
\(334\) 3924.06 0.642859
\(335\) −12.7469 −0.00207892
\(336\) 0 0
\(337\) −2404.87 −0.388729 −0.194364 0.980929i \(-0.562264\pi\)
−0.194364 + 0.980929i \(0.562264\pi\)
\(338\) −8539.58 −1.37424
\(339\) 0 0
\(340\) 90.9852 0.0145128
\(341\) −965.812 −0.153377
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 6065.67 0.950695
\(345\) 0 0
\(346\) −6771.51 −1.05213
\(347\) −7248.76 −1.12142 −0.560712 0.828011i \(-0.689472\pi\)
−0.560712 + 0.828011i \(0.689472\pi\)
\(348\) 0 0
\(349\) −4150.91 −0.636657 −0.318329 0.947980i \(-0.603122\pi\)
−0.318329 + 0.947980i \(0.603122\pi\)
\(350\) −1316.87 −0.201113
\(351\) 0 0
\(352\) −2063.57 −0.312468
\(353\) −1592.84 −0.240165 −0.120082 0.992764i \(-0.538316\pi\)
−0.120082 + 0.992764i \(0.538316\pi\)
\(354\) 0 0
\(355\) 89.9617 0.0134498
\(356\) −1607.54 −0.239324
\(357\) 0 0
\(358\) 887.770 0.131062
\(359\) 8489.06 1.24801 0.624005 0.781420i \(-0.285504\pi\)
0.624005 + 0.781420i \(0.285504\pi\)
\(360\) 0 0
\(361\) −6138.04 −0.894888
\(362\) 3579.50 0.519708
\(363\) 0 0
\(364\) 3560.86 0.512747
\(365\) −19.2086 −0.00275459
\(366\) 0 0
\(367\) −6646.14 −0.945301 −0.472650 0.881250i \(-0.656703\pi\)
−0.472650 + 0.881250i \(0.656703\pi\)
\(368\) −961.293 −0.136171
\(369\) 0 0
\(370\) −91.4269 −0.0128461
\(371\) 980.923 0.137270
\(372\) 0 0
\(373\) 5110.79 0.709455 0.354728 0.934970i \(-0.384574\pi\)
0.354728 + 0.934970i \(0.384574\pi\)
\(374\) 1692.15 0.233955
\(375\) 0 0
\(376\) −2534.30 −0.347597
\(377\) −12108.7 −1.65419
\(378\) 0 0
\(379\) −8198.11 −1.11111 −0.555553 0.831481i \(-0.687493\pi\)
−0.555553 + 0.831481i \(0.687493\pi\)
\(380\) 23.9056 0.00322718
\(381\) 0 0
\(382\) −5567.63 −0.745720
\(383\) 1917.46 0.255816 0.127908 0.991786i \(-0.459174\pi\)
0.127908 + 0.991786i \(0.459174\pi\)
\(384\) 0 0
\(385\) −11.9554 −0.00158261
\(386\) −7826.57 −1.03203
\(387\) 0 0
\(388\) −109.863 −0.0143749
\(389\) −5140.00 −0.669944 −0.334972 0.942228i \(-0.608727\pi\)
−0.334972 + 0.942228i \(0.608727\pi\)
\(390\) 0 0
\(391\) 6658.81 0.861254
\(392\) 1013.01 0.130523
\(393\) 0 0
\(394\) 2041.40 0.261026
\(395\) 65.2819 0.00831567
\(396\) 0 0
\(397\) 12960.0 1.63840 0.819202 0.573506i \(-0.194417\pi\)
0.819202 + 0.573506i \(0.194417\pi\)
\(398\) −3773.53 −0.475252
\(399\) 0 0
\(400\) −1843.80 −0.230475
\(401\) 5292.84 0.659131 0.329566 0.944133i \(-0.393098\pi\)
0.329566 + 0.944133i \(0.393098\pi\)
\(402\) 0 0
\(403\) −7789.14 −0.962791
\(404\) −206.274 −0.0254023
\(405\) 0 0
\(406\) −1438.22 −0.175807
\(407\) 4303.03 0.524062
\(408\) 0 0
\(409\) 5545.03 0.670377 0.335188 0.942151i \(-0.391200\pi\)
0.335188 + 0.942151i \(0.391200\pi\)
\(410\) −16.3258 −0.00196652
\(411\) 0 0
\(412\) −9690.88 −1.15882
\(413\) −4575.63 −0.545163
\(414\) 0 0
\(415\) −9.27053 −0.00109656
\(416\) −16642.4 −1.96145
\(417\) 0 0
\(418\) 444.598 0.0520239
\(419\) −3492.31 −0.407185 −0.203593 0.979056i \(-0.565262\pi\)
−0.203593 + 0.979056i \(0.565262\pi\)
\(420\) 0 0
\(421\) 15448.2 1.78836 0.894181 0.447706i \(-0.147759\pi\)
0.894181 + 0.447706i \(0.147759\pi\)
\(422\) −950.158 −0.109604
\(423\) 0 0
\(424\) −2897.05 −0.331823
\(425\) 12771.9 1.45771
\(426\) 0 0
\(427\) −2065.79 −0.234123
\(428\) 5690.71 0.642689
\(429\) 0 0
\(430\) −68.5729 −0.00769042
\(431\) 6938.29 0.775420 0.387710 0.921781i \(-0.373266\pi\)
0.387710 + 0.921781i \(0.373266\pi\)
\(432\) 0 0
\(433\) −2820.31 −0.313015 −0.156508 0.987677i \(-0.550024\pi\)
−0.156508 + 0.987677i \(0.550024\pi\)
\(434\) −925.158 −0.102325
\(435\) 0 0
\(436\) −3484.04 −0.382696
\(437\) 1749.54 0.191515
\(438\) 0 0
\(439\) 15521.6 1.68748 0.843740 0.536752i \(-0.180349\pi\)
0.843740 + 0.536752i \(0.180349\pi\)
\(440\) 35.3091 0.00382567
\(441\) 0 0
\(442\) 13647.0 1.46860
\(443\) −12187.2 −1.30707 −0.653536 0.756896i \(-0.726715\pi\)
−0.653536 + 0.756896i \(0.726715\pi\)
\(444\) 0 0
\(445\) 43.5279 0.00463690
\(446\) −4159.96 −0.441659
\(447\) 0 0
\(448\) −1150.53 −0.121333
\(449\) −9058.45 −0.952104 −0.476052 0.879417i \(-0.657933\pi\)
−0.476052 + 0.879417i \(0.657933\pi\)
\(450\) 0 0
\(451\) 768.379 0.0802252
\(452\) −5026.70 −0.523088
\(453\) 0 0
\(454\) −8734.94 −0.902975
\(455\) −96.4189 −0.00993448
\(456\) 0 0
\(457\) −1070.77 −0.109603 −0.0548013 0.998497i \(-0.517453\pi\)
−0.0548013 + 0.998497i \(0.517453\pi\)
\(458\) −10148.0 −1.03534
\(459\) 0 0
\(460\) 58.0110 0.00587995
\(461\) 10368.9 1.04756 0.523781 0.851853i \(-0.324521\pi\)
0.523781 + 0.851853i \(0.324521\pi\)
\(462\) 0 0
\(463\) −6335.12 −0.635892 −0.317946 0.948109i \(-0.602993\pi\)
−0.317946 + 0.948109i \(0.602993\pi\)
\(464\) −2013.71 −0.201474
\(465\) 0 0
\(466\) 8066.19 0.801844
\(467\) 12922.6 1.28048 0.640241 0.768174i \(-0.278834\pi\)
0.640241 + 0.768174i \(0.278834\pi\)
\(468\) 0 0
\(469\) 574.683 0.0565808
\(470\) 28.6504 0.00281180
\(471\) 0 0
\(472\) 13513.6 1.31783
\(473\) 3227.40 0.313734
\(474\) 0 0
\(475\) 3355.70 0.324148
\(476\) −4101.98 −0.394988
\(477\) 0 0
\(478\) −7770.46 −0.743541
\(479\) 14681.6 1.40046 0.700228 0.713920i \(-0.253082\pi\)
0.700228 + 0.713920i \(0.253082\pi\)
\(480\) 0 0
\(481\) 34703.3 3.28968
\(482\) 9640.87 0.911057
\(483\) 0 0
\(484\) −693.830 −0.0651606
\(485\) 2.97481 0.000278514 0
\(486\) 0 0
\(487\) 380.027 0.0353607 0.0176804 0.999844i \(-0.494372\pi\)
0.0176804 + 0.999844i \(0.494372\pi\)
\(488\) 6101.07 0.565948
\(489\) 0 0
\(490\) −11.4522 −0.00105583
\(491\) 5026.47 0.461999 0.230999 0.972954i \(-0.425801\pi\)
0.230999 + 0.972954i \(0.425801\pi\)
\(492\) 0 0
\(493\) 13948.8 1.27429
\(494\) 3585.62 0.326568
\(495\) 0 0
\(496\) −1295.35 −0.117264
\(497\) −4055.84 −0.366055
\(498\) 0 0
\(499\) 13825.8 1.24033 0.620167 0.784470i \(-0.287065\pi\)
0.620167 + 0.784470i \(0.287065\pi\)
\(500\) 222.557 0.0199061
\(501\) 0 0
\(502\) 464.314 0.0412816
\(503\) −12089.2 −1.07164 −0.535818 0.844334i \(-0.679997\pi\)
−0.535818 + 0.844334i \(0.679997\pi\)
\(504\) 0 0
\(505\) 5.58537 0.000492170 0
\(506\) 1078.89 0.0947878
\(507\) 0 0
\(508\) −5422.91 −0.473627
\(509\) 6405.45 0.557792 0.278896 0.960321i \(-0.410031\pi\)
0.278896 + 0.960321i \(0.410031\pi\)
\(510\) 0 0
\(511\) 866.004 0.0749702
\(512\) −5207.71 −0.449513
\(513\) 0 0
\(514\) 8349.74 0.716520
\(515\) 262.404 0.0224522
\(516\) 0 0
\(517\) −1348.44 −0.114708
\(518\) 4121.90 0.349625
\(519\) 0 0
\(520\) 284.763 0.0240147
\(521\) −9757.40 −0.820498 −0.410249 0.911974i \(-0.634558\pi\)
−0.410249 + 0.911974i \(0.634558\pi\)
\(522\) 0 0
\(523\) −8930.92 −0.746696 −0.373348 0.927691i \(-0.621790\pi\)
−0.373348 + 0.927691i \(0.621790\pi\)
\(524\) −644.496 −0.0537308
\(525\) 0 0
\(526\) 1333.23 0.110516
\(527\) 8972.81 0.741673
\(528\) 0 0
\(529\) −7921.43 −0.651059
\(530\) 32.7514 0.00268420
\(531\) 0 0
\(532\) −1077.76 −0.0878325
\(533\) 6196.87 0.503595
\(534\) 0 0
\(535\) −154.090 −0.0124521
\(536\) −1697.26 −0.136773
\(537\) 0 0
\(538\) 6702.67 0.537124
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −14163.8 −1.12560 −0.562800 0.826593i \(-0.690276\pi\)
−0.562800 + 0.826593i \(0.690276\pi\)
\(542\) 3880.58 0.307537
\(543\) 0 0
\(544\) 19171.5 1.51098
\(545\) 94.3389 0.00741474
\(546\) 0 0
\(547\) 13587.7 1.06210 0.531050 0.847341i \(-0.321798\pi\)
0.531050 + 0.847341i \(0.321798\pi\)
\(548\) −8127.63 −0.633568
\(549\) 0 0
\(550\) 2069.36 0.160433
\(551\) 3664.93 0.283360
\(552\) 0 0
\(553\) −2943.17 −0.226323
\(554\) 1028.53 0.0788772
\(555\) 0 0
\(556\) −1928.88 −0.147127
\(557\) 4396.25 0.334425 0.167213 0.985921i \(-0.446523\pi\)
0.167213 + 0.985921i \(0.446523\pi\)
\(558\) 0 0
\(559\) 26028.5 1.96939
\(560\) −16.0347 −0.00120998
\(561\) 0 0
\(562\) −12982.3 −0.974419
\(563\) 15806.4 1.18323 0.591615 0.806221i \(-0.298491\pi\)
0.591615 + 0.806221i \(0.298491\pi\)
\(564\) 0 0
\(565\) 136.110 0.0101349
\(566\) −1885.63 −0.140033
\(567\) 0 0
\(568\) 11978.5 0.884869
\(569\) −7381.00 −0.543810 −0.271905 0.962324i \(-0.587654\pi\)
−0.271905 + 0.962324i \(0.587654\pi\)
\(570\) 0 0
\(571\) −20365.2 −1.49257 −0.746285 0.665627i \(-0.768164\pi\)
−0.746285 + 0.665627i \(0.768164\pi\)
\(572\) −5595.64 −0.409030
\(573\) 0 0
\(574\) 736.035 0.0535218
\(575\) 8143.18 0.590599
\(576\) 0 0
\(577\) −2587.33 −0.186676 −0.0933378 0.995634i \(-0.529754\pi\)
−0.0933378 + 0.995634i \(0.529754\pi\)
\(578\) −8325.36 −0.599116
\(579\) 0 0
\(580\) 121.521 0.00869980
\(581\) 417.953 0.0298444
\(582\) 0 0
\(583\) −1541.45 −0.109503
\(584\) −2557.65 −0.181226
\(585\) 0 0
\(586\) −9547.67 −0.673056
\(587\) 26606.6 1.87082 0.935410 0.353565i \(-0.115031\pi\)
0.935410 + 0.353565i \(0.115031\pi\)
\(588\) 0 0
\(589\) 2357.53 0.164924
\(590\) −152.773 −0.0106603
\(591\) 0 0
\(592\) 5771.24 0.400670
\(593\) 26279.4 1.81984 0.909920 0.414783i \(-0.136143\pi\)
0.909920 + 0.414783i \(0.136143\pi\)
\(594\) 0 0
\(595\) 111.071 0.00765290
\(596\) 17952.4 1.23382
\(597\) 0 0
\(598\) 8701.12 0.595009
\(599\) −26971.4 −1.83977 −0.919884 0.392190i \(-0.871718\pi\)
−0.919884 + 0.392190i \(0.871718\pi\)
\(600\) 0 0
\(601\) 11604.8 0.787639 0.393819 0.919188i \(-0.371154\pi\)
0.393819 + 0.919188i \(0.371154\pi\)
\(602\) 3091.55 0.209306
\(603\) 0 0
\(604\) −19616.6 −1.32151
\(605\) 18.7871 0.00126249
\(606\) 0 0
\(607\) 1612.10 0.107797 0.0538987 0.998546i \(-0.482835\pi\)
0.0538987 + 0.998546i \(0.482835\pi\)
\(608\) 5037.14 0.335992
\(609\) 0 0
\(610\) −68.9731 −0.00457810
\(611\) −10875.0 −0.720056
\(612\) 0 0
\(613\) −11448.9 −0.754348 −0.377174 0.926142i \(-0.623104\pi\)
−0.377174 + 0.926142i \(0.623104\pi\)
\(614\) 8291.54 0.544982
\(615\) 0 0
\(616\) −1591.88 −0.104121
\(617\) −23635.8 −1.54221 −0.771104 0.636710i \(-0.780295\pi\)
−0.771104 + 0.636710i \(0.780295\pi\)
\(618\) 0 0
\(619\) 4143.73 0.269064 0.134532 0.990909i \(-0.457047\pi\)
0.134532 + 0.990909i \(0.457047\pi\)
\(620\) 78.1704 0.00506355
\(621\) 0 0
\(622\) −8074.10 −0.520485
\(623\) −1962.42 −0.126200
\(624\) 0 0
\(625\) 15616.0 0.999421
\(626\) 8768.37 0.559831
\(627\) 0 0
\(628\) 9712.32 0.617140
\(629\) −39977.0 −2.53416
\(630\) 0 0
\(631\) 16119.6 1.01697 0.508487 0.861070i \(-0.330205\pi\)
0.508487 + 0.861070i \(0.330205\pi\)
\(632\) 8692.34 0.547093
\(633\) 0 0
\(634\) −8728.29 −0.546758
\(635\) 146.838 0.00917654
\(636\) 0 0
\(637\) 4346.96 0.270381
\(638\) 2260.06 0.140245
\(639\) 0 0
\(640\) 194.605 0.0120194
\(641\) −1045.51 −0.0644231 −0.0322116 0.999481i \(-0.510255\pi\)
−0.0322116 + 0.999481i \(0.510255\pi\)
\(642\) 0 0
\(643\) −7915.19 −0.485451 −0.242725 0.970095i \(-0.578041\pi\)
−0.242725 + 0.970095i \(0.578041\pi\)
\(644\) −2615.37 −0.160031
\(645\) 0 0
\(646\) −4130.51 −0.251567
\(647\) −6116.20 −0.371642 −0.185821 0.982584i \(-0.559494\pi\)
−0.185821 + 0.982584i \(0.559494\pi\)
\(648\) 0 0
\(649\) 7190.28 0.434889
\(650\) 16689.1 1.00708
\(651\) 0 0
\(652\) 2514.76 0.151052
\(653\) −6143.47 −0.368166 −0.184083 0.982911i \(-0.558932\pi\)
−0.184083 + 0.982911i \(0.558932\pi\)
\(654\) 0 0
\(655\) 17.4513 0.00104104
\(656\) 1030.55 0.0613359
\(657\) 0 0
\(658\) −1291.68 −0.0765271
\(659\) −18463.0 −1.09138 −0.545688 0.837989i \(-0.683731\pi\)
−0.545688 + 0.837989i \(0.683731\pi\)
\(660\) 0 0
\(661\) −22732.1 −1.33764 −0.668818 0.743426i \(-0.733200\pi\)
−0.668818 + 0.743426i \(0.733200\pi\)
\(662\) 13744.1 0.806916
\(663\) 0 0
\(664\) −1234.38 −0.0721433
\(665\) 29.1830 0.00170176
\(666\) 0 0
\(667\) 8893.59 0.516283
\(668\) 14948.1 0.865806
\(669\) 0 0
\(670\) 19.1877 0.00110640
\(671\) 3246.24 0.186765
\(672\) 0 0
\(673\) −5912.78 −0.338664 −0.169332 0.985559i \(-0.554161\pi\)
−0.169332 + 0.985559i \(0.554161\pi\)
\(674\) 3620.00 0.206880
\(675\) 0 0
\(676\) −32530.2 −1.85083
\(677\) 23649.2 1.34256 0.671280 0.741204i \(-0.265745\pi\)
0.671280 + 0.741204i \(0.265745\pi\)
\(678\) 0 0
\(679\) −134.117 −0.00758015
\(680\) −328.036 −0.0184994
\(681\) 0 0
\(682\) 1453.82 0.0816270
\(683\) 17165.7 0.961677 0.480839 0.876809i \(-0.340332\pi\)
0.480839 + 0.876809i \(0.340332\pi\)
\(684\) 0 0
\(685\) 220.075 0.0122754
\(686\) 516.311 0.0287360
\(687\) 0 0
\(688\) 4328.61 0.239864
\(689\) −12431.6 −0.687381
\(690\) 0 0
\(691\) −6932.25 −0.381643 −0.190821 0.981625i \(-0.561115\pi\)
−0.190821 + 0.981625i \(0.561115\pi\)
\(692\) −25795.0 −1.41702
\(693\) 0 0
\(694\) 10911.4 0.596819
\(695\) 52.2291 0.00285059
\(696\) 0 0
\(697\) −7138.57 −0.387938
\(698\) 6248.29 0.338827
\(699\) 0 0
\(700\) −5016.39 −0.270860
\(701\) 12751.9 0.687065 0.343533 0.939141i \(-0.388376\pi\)
0.343533 + 0.939141i \(0.388376\pi\)
\(702\) 0 0
\(703\) −10503.6 −0.563515
\(704\) 1807.97 0.0967905
\(705\) 0 0
\(706\) 2397.67 0.127815
\(707\) −251.811 −0.0133951
\(708\) 0 0
\(709\) −7860.09 −0.416350 −0.208175 0.978092i \(-0.566752\pi\)
−0.208175 + 0.978092i \(0.566752\pi\)
\(710\) −135.418 −0.00715794
\(711\) 0 0
\(712\) 5795.78 0.305065
\(713\) 5720.95 0.300493
\(714\) 0 0
\(715\) 151.515 0.00792497
\(716\) 3381.82 0.176515
\(717\) 0 0
\(718\) −12778.4 −0.664188
\(719\) 17425.0 0.903816 0.451908 0.892065i \(-0.350744\pi\)
0.451908 + 0.892065i \(0.350744\pi\)
\(720\) 0 0
\(721\) −11830.2 −0.611070
\(722\) 9239.47 0.476257
\(723\) 0 0
\(724\) 13635.5 0.699946
\(725\) 17058.3 0.873833
\(726\) 0 0
\(727\) 23685.4 1.20831 0.604156 0.796866i \(-0.293510\pi\)
0.604156 + 0.796866i \(0.293510\pi\)
\(728\) −12838.3 −0.653596
\(729\) 0 0
\(730\) 28.9144 0.00146599
\(731\) −29983.9 −1.51709
\(732\) 0 0
\(733\) −21418.3 −1.07927 −0.539634 0.841899i \(-0.681438\pi\)
−0.539634 + 0.841899i \(0.681438\pi\)
\(734\) 10004.3 0.503087
\(735\) 0 0
\(736\) 12223.5 0.612179
\(737\) −903.073 −0.0451358
\(738\) 0 0
\(739\) −8761.40 −0.436121 −0.218060 0.975935i \(-0.569973\pi\)
−0.218060 + 0.975935i \(0.569973\pi\)
\(740\) −348.276 −0.0173012
\(741\) 0 0
\(742\) −1476.57 −0.0730545
\(743\) −10338.8 −0.510489 −0.255245 0.966877i \(-0.582156\pi\)
−0.255245 + 0.966877i \(0.582156\pi\)
\(744\) 0 0
\(745\) −486.105 −0.0239054
\(746\) −7693.18 −0.377570
\(747\) 0 0
\(748\) 6445.98 0.315091
\(749\) 6947.00 0.338902
\(750\) 0 0
\(751\) 14703.4 0.714426 0.357213 0.934023i \(-0.383727\pi\)
0.357213 + 0.934023i \(0.383727\pi\)
\(752\) −1808.53 −0.0877001
\(753\) 0 0
\(754\) 18227.0 0.880358
\(755\) 531.168 0.0256042
\(756\) 0 0
\(757\) −26676.3 −1.28080 −0.640400 0.768041i \(-0.721232\pi\)
−0.640400 + 0.768041i \(0.721232\pi\)
\(758\) 12340.5 0.591327
\(759\) 0 0
\(760\) −86.1887 −0.00411368
\(761\) −26816.8 −1.27741 −0.638704 0.769453i \(-0.720529\pi\)
−0.638704 + 0.769453i \(0.720529\pi\)
\(762\) 0 0
\(763\) −4253.18 −0.201803
\(764\) −21209.0 −1.00434
\(765\) 0 0
\(766\) −2886.31 −0.136144
\(767\) 57988.6 2.72992
\(768\) 0 0
\(769\) 40144.7 1.88251 0.941257 0.337690i \(-0.109646\pi\)
0.941257 + 0.337690i \(0.109646\pi\)
\(770\) 17.9963 0.000842262 0
\(771\) 0 0
\(772\) −29814.1 −1.38994
\(773\) −36628.4 −1.70431 −0.852156 0.523288i \(-0.824705\pi\)
−0.852156 + 0.523288i \(0.824705\pi\)
\(774\) 0 0
\(775\) 10973.0 0.508597
\(776\) 396.098 0.0183236
\(777\) 0 0
\(778\) 7737.14 0.356542
\(779\) −1875.60 −0.0862648
\(780\) 0 0
\(781\) 6373.47 0.292011
\(782\) −10023.4 −0.458357
\(783\) 0 0
\(784\) 722.910 0.0329314
\(785\) −262.985 −0.0119571
\(786\) 0 0
\(787\) 19339.8 0.875973 0.437987 0.898982i \(-0.355692\pi\)
0.437987 + 0.898982i \(0.355692\pi\)
\(788\) 7776.40 0.351552
\(789\) 0 0
\(790\) −98.2676 −0.00442557
\(791\) −6136.40 −0.275835
\(792\) 0 0
\(793\) 26180.4 1.17238
\(794\) −19508.5 −0.871954
\(795\) 0 0
\(796\) −14374.7 −0.640071
\(797\) −22734.8 −1.01042 −0.505211 0.862996i \(-0.668585\pi\)
−0.505211 + 0.862996i \(0.668585\pi\)
\(798\) 0 0
\(799\) 12527.6 0.554686
\(800\) 23445.2 1.03614
\(801\) 0 0
\(802\) −7967.21 −0.350788
\(803\) −1360.86 −0.0598055
\(804\) 0 0
\(805\) 70.8175 0.00310061
\(806\) 11724.8 0.512395
\(807\) 0 0
\(808\) 743.697 0.0323802
\(809\) −10636.0 −0.462228 −0.231114 0.972927i \(-0.574237\pi\)
−0.231114 + 0.972927i \(0.574237\pi\)
\(810\) 0 0
\(811\) 21207.0 0.918223 0.459112 0.888379i \(-0.348168\pi\)
0.459112 + 0.888379i \(0.348168\pi\)
\(812\) −5478.66 −0.236778
\(813\) 0 0
\(814\) −6477.27 −0.278904
\(815\) −68.0933 −0.00292663
\(816\) 0 0
\(817\) −7878.02 −0.337353
\(818\) −8346.83 −0.356773
\(819\) 0 0
\(820\) −62.1906 −0.00264853
\(821\) −24576.3 −1.04472 −0.522362 0.852724i \(-0.674949\pi\)
−0.522362 + 0.852724i \(0.674949\pi\)
\(822\) 0 0
\(823\) −31692.5 −1.34232 −0.671161 0.741312i \(-0.734204\pi\)
−0.671161 + 0.741312i \(0.734204\pi\)
\(824\) 34939.3 1.47715
\(825\) 0 0
\(826\) 6887.62 0.290134
\(827\) 28350.2 1.19206 0.596029 0.802963i \(-0.296744\pi\)
0.596029 + 0.802963i \(0.296744\pi\)
\(828\) 0 0
\(829\) −14688.3 −0.615375 −0.307688 0.951487i \(-0.599555\pi\)
−0.307688 + 0.951487i \(0.599555\pi\)
\(830\) 13.9547 0.000583586 0
\(831\) 0 0
\(832\) 14581.0 0.607580
\(833\) −5007.54 −0.208285
\(834\) 0 0
\(835\) −404.755 −0.0167750
\(836\) 1693.62 0.0700661
\(837\) 0 0
\(838\) 5256.91 0.216703
\(839\) −35911.1 −1.47770 −0.738849 0.673871i \(-0.764631\pi\)
−0.738849 + 0.673871i \(0.764631\pi\)
\(840\) 0 0
\(841\) −5758.78 −0.236122
\(842\) −23253.9 −0.951761
\(843\) 0 0
\(844\) −3619.48 −0.147615
\(845\) 880.833 0.0358598
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −2067.40 −0.0837204
\(849\) 0 0
\(850\) −19225.3 −0.775790
\(851\) −25488.8 −1.02673
\(852\) 0 0
\(853\) 37842.1 1.51898 0.759490 0.650519i \(-0.225449\pi\)
0.759490 + 0.650519i \(0.225449\pi\)
\(854\) 3109.59 0.124599
\(855\) 0 0
\(856\) −20517.2 −0.819233
\(857\) 41429.0 1.65133 0.825663 0.564164i \(-0.190801\pi\)
0.825663 + 0.564164i \(0.190801\pi\)
\(858\) 0 0
\(859\) 2803.59 0.111359 0.0556795 0.998449i \(-0.482268\pi\)
0.0556795 + 0.998449i \(0.482268\pi\)
\(860\) −261.218 −0.0103575
\(861\) 0 0
\(862\) −10444.1 −0.412676
\(863\) −30586.2 −1.20645 −0.603225 0.797571i \(-0.706118\pi\)
−0.603225 + 0.797571i \(0.706118\pi\)
\(864\) 0 0
\(865\) 698.461 0.0274548
\(866\) 4245.36 0.166586
\(867\) 0 0
\(868\) −3524.24 −0.137812
\(869\) 4624.99 0.180543
\(870\) 0 0
\(871\) −7283.16 −0.283330
\(872\) 12561.3 0.487821
\(873\) 0 0
\(874\) −2633.56 −0.101924
\(875\) 271.688 0.0104968
\(876\) 0 0
\(877\) 37717.7 1.45226 0.726132 0.687555i \(-0.241316\pi\)
0.726132 + 0.687555i \(0.241316\pi\)
\(878\) −23364.3 −0.898072
\(879\) 0 0
\(880\) 25.1974 0.000965231 0
\(881\) −34072.2 −1.30298 −0.651488 0.758659i \(-0.725855\pi\)
−0.651488 + 0.758659i \(0.725855\pi\)
\(882\) 0 0
\(883\) 42756.6 1.62953 0.814765 0.579791i \(-0.196866\pi\)
0.814765 + 0.579791i \(0.196866\pi\)
\(884\) 51985.9 1.97791
\(885\) 0 0
\(886\) 18345.2 0.695620
\(887\) 5921.20 0.224142 0.112071 0.993700i \(-0.464252\pi\)
0.112071 + 0.993700i \(0.464252\pi\)
\(888\) 0 0
\(889\) −6620.08 −0.249753
\(890\) −65.5217 −0.00246775
\(891\) 0 0
\(892\) −15846.7 −0.594829
\(893\) 3291.51 0.123344
\(894\) 0 0
\(895\) −91.5709 −0.00341998
\(896\) −8773.60 −0.327127
\(897\) 0 0
\(898\) 13635.5 0.506707
\(899\) 11984.2 0.444600
\(900\) 0 0
\(901\) 14320.7 0.529515
\(902\) −1156.63 −0.0426956
\(903\) 0 0
\(904\) 18123.2 0.666778
\(905\) −369.215 −0.0135615
\(906\) 0 0
\(907\) −42922.8 −1.57137 −0.785683 0.618629i \(-0.787688\pi\)
−0.785683 + 0.618629i \(0.787688\pi\)
\(908\) −33274.3 −1.21613
\(909\) 0 0
\(910\) 145.138 0.00528710
\(911\) −35023.9 −1.27376 −0.636878 0.770964i \(-0.719775\pi\)
−0.636878 + 0.770964i \(0.719775\pi\)
\(912\) 0 0
\(913\) −656.784 −0.0238076
\(914\) 1611.81 0.0583302
\(915\) 0 0
\(916\) −38657.2 −1.39440
\(917\) −786.775 −0.0283333
\(918\) 0 0
\(919\) −48830.6 −1.75275 −0.876373 0.481633i \(-0.840044\pi\)
−0.876373 + 0.481633i \(0.840044\pi\)
\(920\) −209.152 −0.00749514
\(921\) 0 0
\(922\) −15608.0 −0.557509
\(923\) 51401.1 1.83303
\(924\) 0 0
\(925\) −48888.6 −1.73778
\(926\) 9536.14 0.338420
\(927\) 0 0
\(928\) 25605.7 0.905763
\(929\) −16251.5 −0.573945 −0.286972 0.957939i \(-0.592649\pi\)
−0.286972 + 0.957939i \(0.592649\pi\)
\(930\) 0 0
\(931\) −1315.69 −0.0463157
\(932\) 30726.9 1.07993
\(933\) 0 0
\(934\) −19452.1 −0.681469
\(935\) −174.540 −0.00610490
\(936\) 0 0
\(937\) −9350.37 −0.326001 −0.163001 0.986626i \(-0.552117\pi\)
−0.163001 + 0.986626i \(0.552117\pi\)
\(938\) −865.059 −0.0301121
\(939\) 0 0
\(940\) 109.139 0.00378695
\(941\) 16381.6 0.567507 0.283754 0.958897i \(-0.408420\pi\)
0.283754 + 0.958897i \(0.408420\pi\)
\(942\) 0 0
\(943\) −4551.46 −0.157175
\(944\) 9643.65 0.332494
\(945\) 0 0
\(946\) −4858.15 −0.166968
\(947\) −11004.5 −0.377613 −0.188807 0.982014i \(-0.560462\pi\)
−0.188807 + 0.982014i \(0.560462\pi\)
\(948\) 0 0
\(949\) −10975.2 −0.375415
\(950\) −5051.27 −0.172510
\(951\) 0 0
\(952\) 14789.2 0.503489
\(953\) −45741.3 −1.55478 −0.777391 0.629018i \(-0.783457\pi\)
−0.777391 + 0.629018i \(0.783457\pi\)
\(954\) 0 0
\(955\) 574.285 0.0194591
\(956\) −29600.3 −1.00140
\(957\) 0 0
\(958\) −22099.9 −0.745318
\(959\) −9921.89 −0.334092
\(960\) 0 0
\(961\) −22082.0 −0.741229
\(962\) −52238.3 −1.75076
\(963\) 0 0
\(964\) 36725.3 1.22702
\(965\) 807.288 0.0269301
\(966\) 0 0
\(967\) 32031.8 1.06522 0.532612 0.846359i \(-0.321210\pi\)
0.532612 + 0.846359i \(0.321210\pi\)
\(968\) 2501.52 0.0830598
\(969\) 0 0
\(970\) −4.47792 −0.000148224 0
\(971\) −41167.9 −1.36060 −0.680299 0.732934i \(-0.738150\pi\)
−0.680299 + 0.732934i \(0.738150\pi\)
\(972\) 0 0
\(973\) −2354.70 −0.0775829
\(974\) −572.047 −0.0188189
\(975\) 0 0
\(976\) 4353.87 0.142791
\(977\) 34251.8 1.12161 0.560805 0.827948i \(-0.310492\pi\)
0.560805 + 0.827948i \(0.310492\pi\)
\(978\) 0 0
\(979\) 3083.80 0.100673
\(980\) −43.6253 −0.00142200
\(981\) 0 0
\(982\) −7566.25 −0.245874
\(983\) 49982.0 1.62175 0.810875 0.585220i \(-0.198992\pi\)
0.810875 + 0.585220i \(0.198992\pi\)
\(984\) 0 0
\(985\) −210.565 −0.00681132
\(986\) −20996.9 −0.678172
\(987\) 0 0
\(988\) 13658.8 0.439824
\(989\) −19117.4 −0.614658
\(990\) 0 0
\(991\) 1157.08 0.0370895 0.0185448 0.999828i \(-0.494097\pi\)
0.0185448 + 0.999828i \(0.494097\pi\)
\(992\) 16471.3 0.527181
\(993\) 0 0
\(994\) 6105.18 0.194813
\(995\) 389.229 0.0124014
\(996\) 0 0
\(997\) −17659.7 −0.560972 −0.280486 0.959858i \(-0.590496\pi\)
−0.280486 + 0.959858i \(0.590496\pi\)
\(998\) −20811.7 −0.660103
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.q.1.2 5
3.2 odd 2 231.4.a.j.1.4 5
21.20 even 2 1617.4.a.o.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.j.1.4 5 3.2 odd 2
693.4.a.q.1.2 5 1.1 even 1 trivial
1617.4.a.o.1.4 5 21.20 even 2