Properties

Label 693.4.a.q.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.02173\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.02173 q^{2} +17.2178 q^{4} -20.4371 q^{5} -7.00000 q^{7} -46.2894 q^{8} +O(q^{10})\) \(q-5.02173 q^{2} +17.2178 q^{4} -20.4371 q^{5} -7.00000 q^{7} -46.2894 q^{8} +102.630 q^{10} +11.0000 q^{11} -0.0115563 q^{13} +35.1521 q^{14} +94.7106 q^{16} +9.52800 q^{17} -93.4260 q^{19} -351.882 q^{20} -55.2391 q^{22} -99.9552 q^{23} +292.676 q^{25} +0.0580324 q^{26} -120.525 q^{28} -276.183 q^{29} -181.425 q^{31} -105.296 q^{32} -47.8471 q^{34} +143.060 q^{35} -404.794 q^{37} +469.160 q^{38} +946.022 q^{40} +27.8263 q^{41} +76.9875 q^{43} +189.396 q^{44} +501.948 q^{46} +136.979 q^{47} +49.0000 q^{49} -1469.74 q^{50} -0.198973 q^{52} -170.391 q^{53} -224.808 q^{55} +324.026 q^{56} +1386.92 q^{58} +585.593 q^{59} -530.953 q^{61} +911.070 q^{62} -228.916 q^{64} +0.236177 q^{65} -354.952 q^{67} +164.051 q^{68} -718.408 q^{70} -1119.80 q^{71} -785.389 q^{73} +2032.77 q^{74} -1608.59 q^{76} -77.0000 q^{77} -937.289 q^{79} -1935.61 q^{80} -139.736 q^{82} -471.454 q^{83} -194.725 q^{85} -386.611 q^{86} -509.183 q^{88} -563.040 q^{89} +0.0808938 q^{91} -1721.01 q^{92} -687.874 q^{94} +1909.36 q^{95} +895.067 q^{97} -246.065 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} + 12 q^{8} + 113 q^{10} + 55 q^{11} + 23 q^{13} - 7 q^{14} + 281 q^{16} + 102 q^{17} - 155 q^{19} - 291 q^{20} + 11 q^{22} - 192 q^{23} + 394 q^{25} - 41 q^{26} - 147 q^{28} - 591 q^{29} + 366 q^{31} + 87 q^{32} + 594 q^{34} + 49 q^{35} + 259 q^{37} - 175 q^{38} + 1890 q^{40} + 104 q^{41} + 224 q^{43} + 231 q^{44} + 1416 q^{46} + 453 q^{47} + 245 q^{49} - 1350 q^{50} + 815 q^{52} - 1032 q^{53} - 77 q^{55} - 84 q^{56} + 293 q^{58} + 517 q^{59} + 958 q^{61} + 3030 q^{62} + 516 q^{64} + 197 q^{65} + 361 q^{67} + 1680 q^{68} - 791 q^{70} - 548 q^{71} - 1035 q^{73} + 2555 q^{74} - 5201 q^{76} - 385 q^{77} + 776 q^{79} + 1273 q^{80} + 376 q^{82} + 1974 q^{83} + 1838 q^{85} - 1224 q^{86} + 132 q^{88} - 2710 q^{89} - 161 q^{91} + 2834 q^{92} - 563 q^{94} + 355 q^{95} + 1988 q^{97} + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.02173 −1.77545 −0.887726 0.460373i \(-0.847716\pi\)
−0.887726 + 0.460373i \(0.847716\pi\)
\(3\) 0 0
\(4\) 17.2178 2.15223
\(5\) −20.4371 −1.82795 −0.913975 0.405769i \(-0.867004\pi\)
−0.913975 + 0.405769i \(0.867004\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −46.2894 −2.04572
\(9\) 0 0
\(10\) 102.630 3.24544
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −0.0115563 −0.000246548 0 −0.000123274 1.00000i \(-0.500039\pi\)
−0.000123274 1.00000i \(0.500039\pi\)
\(14\) 35.1521 0.671057
\(15\) 0 0
\(16\) 94.7106 1.47985
\(17\) 9.52800 0.135934 0.0679670 0.997688i \(-0.478349\pi\)
0.0679670 + 0.997688i \(0.478349\pi\)
\(18\) 0 0
\(19\) −93.4260 −1.12807 −0.564037 0.825750i \(-0.690752\pi\)
−0.564037 + 0.825750i \(0.690752\pi\)
\(20\) −351.882 −3.93416
\(21\) 0 0
\(22\) −55.2391 −0.535319
\(23\) −99.9552 −0.906178 −0.453089 0.891465i \(-0.649678\pi\)
−0.453089 + 0.891465i \(0.649678\pi\)
\(24\) 0 0
\(25\) 292.676 2.34140
\(26\) 0.0580324 0.000437735 0
\(27\) 0 0
\(28\) −120.525 −0.813465
\(29\) −276.183 −1.76848 −0.884239 0.467035i \(-0.845322\pi\)
−0.884239 + 0.467035i \(0.845322\pi\)
\(30\) 0 0
\(31\) −181.425 −1.05113 −0.525564 0.850754i \(-0.676146\pi\)
−0.525564 + 0.850754i \(0.676146\pi\)
\(32\) −105.296 −0.581684
\(33\) 0 0
\(34\) −47.8471 −0.241344
\(35\) 143.060 0.690901
\(36\) 0 0
\(37\) −404.794 −1.79859 −0.899294 0.437344i \(-0.855919\pi\)
−0.899294 + 0.437344i \(0.855919\pi\)
\(38\) 469.160 2.00284
\(39\) 0 0
\(40\) 946.022 3.73948
\(41\) 27.8263 0.105993 0.0529967 0.998595i \(-0.483123\pi\)
0.0529967 + 0.998595i \(0.483123\pi\)
\(42\) 0 0
\(43\) 76.9875 0.273034 0.136517 0.990638i \(-0.456409\pi\)
0.136517 + 0.990638i \(0.456409\pi\)
\(44\) 189.396 0.648921
\(45\) 0 0
\(46\) 501.948 1.60887
\(47\) 136.979 0.425117 0.212559 0.977148i \(-0.431820\pi\)
0.212559 + 0.977148i \(0.431820\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −1469.74 −4.15705
\(51\) 0 0
\(52\) −0.198973 −0.000530628 0
\(53\) −170.391 −0.441604 −0.220802 0.975319i \(-0.570867\pi\)
−0.220802 + 0.975319i \(0.570867\pi\)
\(54\) 0 0
\(55\) −224.808 −0.551148
\(56\) 324.026 0.773210
\(57\) 0 0
\(58\) 1386.92 3.13985
\(59\) 585.593 1.29216 0.646082 0.763268i \(-0.276406\pi\)
0.646082 + 0.763268i \(0.276406\pi\)
\(60\) 0 0
\(61\) −530.953 −1.11445 −0.557226 0.830361i \(-0.688134\pi\)
−0.557226 + 0.830361i \(0.688134\pi\)
\(62\) 911.070 1.86623
\(63\) 0 0
\(64\) −228.916 −0.447101
\(65\) 0.236177 0.000450678 0
\(66\) 0 0
\(67\) −354.952 −0.647228 −0.323614 0.946189i \(-0.604898\pi\)
−0.323614 + 0.946189i \(0.604898\pi\)
\(68\) 164.051 0.292561
\(69\) 0 0
\(70\) −718.408 −1.22666
\(71\) −1119.80 −1.87177 −0.935887 0.352301i \(-0.885399\pi\)
−0.935887 + 0.352301i \(0.885399\pi\)
\(72\) 0 0
\(73\) −785.389 −1.25922 −0.629608 0.776913i \(-0.716785\pi\)
−0.629608 + 0.776913i \(0.716785\pi\)
\(74\) 2032.77 3.19331
\(75\) 0 0
\(76\) −1608.59 −2.42787
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −937.289 −1.33485 −0.667425 0.744677i \(-0.732604\pi\)
−0.667425 + 0.744677i \(0.732604\pi\)
\(80\) −1935.61 −2.70510
\(81\) 0 0
\(82\) −139.736 −0.188186
\(83\) −471.454 −0.623479 −0.311740 0.950168i \(-0.600912\pi\)
−0.311740 + 0.950168i \(0.600912\pi\)
\(84\) 0 0
\(85\) −194.725 −0.248481
\(86\) −386.611 −0.484759
\(87\) 0 0
\(88\) −509.183 −0.616808
\(89\) −563.040 −0.670586 −0.335293 0.942114i \(-0.608835\pi\)
−0.335293 + 0.942114i \(0.608835\pi\)
\(90\) 0 0
\(91\) 0.0808938 9.31865e−5 0
\(92\) −1721.01 −1.95030
\(93\) 0 0
\(94\) −687.874 −0.754775
\(95\) 1909.36 2.06206
\(96\) 0 0
\(97\) 895.067 0.936910 0.468455 0.883487i \(-0.344811\pi\)
0.468455 + 0.883487i \(0.344811\pi\)
\(98\) −246.065 −0.253636
\(99\) 0 0
\(100\) 5039.23 5.03923
\(101\) 409.088 0.403027 0.201514 0.979486i \(-0.435414\pi\)
0.201514 + 0.979486i \(0.435414\pi\)
\(102\) 0 0
\(103\) 207.199 0.198213 0.0991065 0.995077i \(-0.468402\pi\)
0.0991065 + 0.995077i \(0.468402\pi\)
\(104\) 0.534932 0.000504369 0
\(105\) 0 0
\(106\) 855.658 0.784046
\(107\) 1475.53 1.33313 0.666566 0.745446i \(-0.267764\pi\)
0.666566 + 0.745446i \(0.267764\pi\)
\(108\) 0 0
\(109\) 1457.82 1.28104 0.640520 0.767941i \(-0.278719\pi\)
0.640520 + 0.767941i \(0.278719\pi\)
\(110\) 1128.93 0.978536
\(111\) 0 0
\(112\) −662.974 −0.559332
\(113\) 1307.55 1.08853 0.544265 0.838913i \(-0.316808\pi\)
0.544265 + 0.838913i \(0.316808\pi\)
\(114\) 0 0
\(115\) 2042.80 1.65645
\(116\) −4755.26 −3.80616
\(117\) 0 0
\(118\) −2940.69 −2.29417
\(119\) −66.6960 −0.0513783
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 2666.31 1.97866
\(123\) 0 0
\(124\) −3123.75 −2.26226
\(125\) −3426.80 −2.45202
\(126\) 0 0
\(127\) 2156.17 1.50653 0.753265 0.657717i \(-0.228478\pi\)
0.753265 + 0.657717i \(0.228478\pi\)
\(128\) 1991.92 1.37549
\(129\) 0 0
\(130\) −1.18602 −0.000800157 0
\(131\) 1630.72 1.08761 0.543803 0.839213i \(-0.316984\pi\)
0.543803 + 0.839213i \(0.316984\pi\)
\(132\) 0 0
\(133\) 653.982 0.426372
\(134\) 1782.47 1.14912
\(135\) 0 0
\(136\) −441.045 −0.278083
\(137\) −2939.97 −1.83342 −0.916711 0.399552i \(-0.869166\pi\)
−0.916711 + 0.399552i \(0.869166\pi\)
\(138\) 0 0
\(139\) 1519.07 0.926948 0.463474 0.886111i \(-0.346603\pi\)
0.463474 + 0.886111i \(0.346603\pi\)
\(140\) 2463.18 1.48697
\(141\) 0 0
\(142\) 5623.34 3.32324
\(143\) −0.127119 −7.43371e−5 0
\(144\) 0 0
\(145\) 5644.38 3.23269
\(146\) 3944.01 2.23568
\(147\) 0 0
\(148\) −6969.67 −3.87097
\(149\) 223.829 0.123066 0.0615329 0.998105i \(-0.480401\pi\)
0.0615329 + 0.998105i \(0.480401\pi\)
\(150\) 0 0
\(151\) −3170.98 −1.70895 −0.854474 0.519495i \(-0.826120\pi\)
−0.854474 + 0.519495i \(0.826120\pi\)
\(152\) 4324.63 2.30772
\(153\) 0 0
\(154\) 386.674 0.202331
\(155\) 3707.81 1.92141
\(156\) 0 0
\(157\) 2358.25 1.19878 0.599392 0.800456i \(-0.295409\pi\)
0.599392 + 0.800456i \(0.295409\pi\)
\(158\) 4706.81 2.36996
\(159\) 0 0
\(160\) 2151.95 1.06329
\(161\) 699.686 0.342503
\(162\) 0 0
\(163\) 2284.80 1.09791 0.548956 0.835851i \(-0.315025\pi\)
0.548956 + 0.835851i \(0.315025\pi\)
\(164\) 479.107 0.228122
\(165\) 0 0
\(166\) 2367.51 1.10696
\(167\) −2330.48 −1.07987 −0.539934 0.841707i \(-0.681551\pi\)
−0.539934 + 0.841707i \(0.681551\pi\)
\(168\) 0 0
\(169\) −2197.00 −1.00000
\(170\) 977.856 0.441166
\(171\) 0 0
\(172\) 1325.56 0.587632
\(173\) 1943.53 0.854125 0.427062 0.904222i \(-0.359549\pi\)
0.427062 + 0.904222i \(0.359549\pi\)
\(174\) 0 0
\(175\) −2048.73 −0.884968
\(176\) 1041.82 0.446192
\(177\) 0 0
\(178\) 2827.44 1.19059
\(179\) −3511.90 −1.46643 −0.733217 0.679995i \(-0.761982\pi\)
−0.733217 + 0.679995i \(0.761982\pi\)
\(180\) 0 0
\(181\) 3058.76 1.25611 0.628055 0.778169i \(-0.283851\pi\)
0.628055 + 0.778169i \(0.283851\pi\)
\(182\) −0.406227 −0.000165448 0
\(183\) 0 0
\(184\) 4626.87 1.85379
\(185\) 8272.83 3.28773
\(186\) 0 0
\(187\) 104.808 0.0409857
\(188\) 2358.49 0.914948
\(189\) 0 0
\(190\) −9588.29 −3.66109
\(191\) −4586.39 −1.73749 −0.868743 0.495264i \(-0.835071\pi\)
−0.868743 + 0.495264i \(0.835071\pi\)
\(192\) 0 0
\(193\) 693.335 0.258587 0.129294 0.991606i \(-0.458729\pi\)
0.129294 + 0.991606i \(0.458729\pi\)
\(194\) −4494.79 −1.66344
\(195\) 0 0
\(196\) 843.673 0.307461
\(197\) 239.271 0.0865346 0.0432673 0.999064i \(-0.486223\pi\)
0.0432673 + 0.999064i \(0.486223\pi\)
\(198\) 0 0
\(199\) −677.963 −0.241505 −0.120753 0.992683i \(-0.538531\pi\)
−0.120753 + 0.992683i \(0.538531\pi\)
\(200\) −13547.8 −4.78986
\(201\) 0 0
\(202\) −2054.33 −0.715555
\(203\) 1933.28 0.668422
\(204\) 0 0
\(205\) −568.688 −0.193751
\(206\) −1040.50 −0.351917
\(207\) 0 0
\(208\) −1.09450 −0.000364855 0
\(209\) −1027.69 −0.340127
\(210\) 0 0
\(211\) 736.355 0.240250 0.120125 0.992759i \(-0.461670\pi\)
0.120125 + 0.992759i \(0.461670\pi\)
\(212\) −2933.76 −0.950431
\(213\) 0 0
\(214\) −7409.73 −2.36691
\(215\) −1573.40 −0.499093
\(216\) 0 0
\(217\) 1269.98 0.397289
\(218\) −7320.76 −2.27442
\(219\) 0 0
\(220\) −3870.71 −1.18620
\(221\) −0.110108 −3.35143e−5 0
\(222\) 0 0
\(223\) −1229.51 −0.369210 −0.184605 0.982813i \(-0.559101\pi\)
−0.184605 + 0.982813i \(0.559101\pi\)
\(224\) 737.072 0.219856
\(225\) 0 0
\(226\) −6566.17 −1.93263
\(227\) 3582.28 1.04742 0.523710 0.851897i \(-0.324548\pi\)
0.523710 + 0.851897i \(0.324548\pi\)
\(228\) 0 0
\(229\) 4732.43 1.36562 0.682812 0.730594i \(-0.260757\pi\)
0.682812 + 0.730594i \(0.260757\pi\)
\(230\) −10258.4 −2.94094
\(231\) 0 0
\(232\) 12784.3 3.61781
\(233\) 3018.63 0.848744 0.424372 0.905488i \(-0.360495\pi\)
0.424372 + 0.905488i \(0.360495\pi\)
\(234\) 0 0
\(235\) −2799.46 −0.777093
\(236\) 10082.6 2.78103
\(237\) 0 0
\(238\) 334.930 0.0912196
\(239\) 2915.73 0.789133 0.394567 0.918867i \(-0.370895\pi\)
0.394567 + 0.918867i \(0.370895\pi\)
\(240\) 0 0
\(241\) 5714.30 1.52735 0.763674 0.645603i \(-0.223394\pi\)
0.763674 + 0.645603i \(0.223394\pi\)
\(242\) −607.630 −0.161405
\(243\) 0 0
\(244\) −9141.86 −2.39855
\(245\) −1001.42 −0.261136
\(246\) 0 0
\(247\) 1.07965 0.000278125 0
\(248\) 8398.07 2.15031
\(249\) 0 0
\(250\) 17208.5 4.35344
\(251\) −1047.71 −0.263471 −0.131735 0.991285i \(-0.542055\pi\)
−0.131735 + 0.991285i \(0.542055\pi\)
\(252\) 0 0
\(253\) −1099.51 −0.273223
\(254\) −10827.7 −2.67477
\(255\) 0 0
\(256\) −8171.58 −1.99501
\(257\) 2805.01 0.680825 0.340412 0.940276i \(-0.389433\pi\)
0.340412 + 0.940276i \(0.389433\pi\)
\(258\) 0 0
\(259\) 2833.56 0.679803
\(260\) 4.06644 0.000969962 0
\(261\) 0 0
\(262\) −8189.03 −1.93099
\(263\) −2178.21 −0.510699 −0.255350 0.966849i \(-0.582191\pi\)
−0.255350 + 0.966849i \(0.582191\pi\)
\(264\) 0 0
\(265\) 3482.30 0.807230
\(266\) −3284.12 −0.757002
\(267\) 0 0
\(268\) −6111.49 −1.39298
\(269\) −4036.85 −0.914985 −0.457493 0.889213i \(-0.651252\pi\)
−0.457493 + 0.889213i \(0.651252\pi\)
\(270\) 0 0
\(271\) −2166.33 −0.485591 −0.242796 0.970077i \(-0.578064\pi\)
−0.242796 + 0.970077i \(0.578064\pi\)
\(272\) 902.402 0.201162
\(273\) 0 0
\(274\) 14763.8 3.25515
\(275\) 3219.43 0.705960
\(276\) 0 0
\(277\) 2336.41 0.506791 0.253396 0.967363i \(-0.418453\pi\)
0.253396 + 0.967363i \(0.418453\pi\)
\(278\) −7628.36 −1.64575
\(279\) 0 0
\(280\) −6622.15 −1.41339
\(281\) 1200.61 0.254883 0.127442 0.991846i \(-0.459323\pi\)
0.127442 + 0.991846i \(0.459323\pi\)
\(282\) 0 0
\(283\) 6393.02 1.34285 0.671423 0.741074i \(-0.265683\pi\)
0.671423 + 0.741074i \(0.265683\pi\)
\(284\) −19280.5 −4.02848
\(285\) 0 0
\(286\) 0.638357 0.000131982 0
\(287\) −194.784 −0.0400618
\(288\) 0 0
\(289\) −4822.22 −0.981522
\(290\) −28344.6 −5.73948
\(291\) 0 0
\(292\) −13522.7 −2.71012
\(293\) 6037.85 1.20387 0.601936 0.798544i \(-0.294396\pi\)
0.601936 + 0.798544i \(0.294396\pi\)
\(294\) 0 0
\(295\) −11967.8 −2.36201
\(296\) 18737.7 3.67941
\(297\) 0 0
\(298\) −1124.01 −0.218497
\(299\) 1.15511 0.000223417 0
\(300\) 0 0
\(301\) −538.912 −0.103197
\(302\) 15923.8 3.03415
\(303\) 0 0
\(304\) −8848.43 −1.66938
\(305\) 10851.2 2.03717
\(306\) 0 0
\(307\) −2792.13 −0.519073 −0.259536 0.965733i \(-0.583570\pi\)
−0.259536 + 0.965733i \(0.583570\pi\)
\(308\) −1325.77 −0.245269
\(309\) 0 0
\(310\) −18619.6 −3.41137
\(311\) −5360.40 −0.977364 −0.488682 0.872462i \(-0.662522\pi\)
−0.488682 + 0.872462i \(0.662522\pi\)
\(312\) 0 0
\(313\) −9998.72 −1.80563 −0.902813 0.430033i \(-0.858502\pi\)
−0.902813 + 0.430033i \(0.858502\pi\)
\(314\) −11842.5 −2.12838
\(315\) 0 0
\(316\) −16138.1 −2.87290
\(317\) −1043.98 −0.184971 −0.0924855 0.995714i \(-0.529481\pi\)
−0.0924855 + 0.995714i \(0.529481\pi\)
\(318\) 0 0
\(319\) −3038.01 −0.533216
\(320\) 4678.38 0.817279
\(321\) 0 0
\(322\) −3513.64 −0.608098
\(323\) −890.163 −0.153344
\(324\) 0 0
\(325\) −3.38223 −0.000577269 0
\(326\) −11473.7 −1.94929
\(327\) 0 0
\(328\) −1288.06 −0.216833
\(329\) −958.856 −0.160679
\(330\) 0 0
\(331\) −826.343 −0.137220 −0.0686102 0.997644i \(-0.521856\pi\)
−0.0686102 + 0.997644i \(0.521856\pi\)
\(332\) −8117.40 −1.34187
\(333\) 0 0
\(334\) 11703.0 1.91725
\(335\) 7254.19 1.18310
\(336\) 0 0
\(337\) 460.594 0.0744515 0.0372258 0.999307i \(-0.488148\pi\)
0.0372258 + 0.999307i \(0.488148\pi\)
\(338\) 11032.7 1.77545
\(339\) 0 0
\(340\) −3352.74 −0.534787
\(341\) −1995.68 −0.316927
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −3563.70 −0.558552
\(345\) 0 0
\(346\) −9759.87 −1.51646
\(347\) −4459.48 −0.689906 −0.344953 0.938620i \(-0.612105\pi\)
−0.344953 + 0.938620i \(0.612105\pi\)
\(348\) 0 0
\(349\) 7902.74 1.21210 0.606051 0.795426i \(-0.292753\pi\)
0.606051 + 0.795426i \(0.292753\pi\)
\(350\) 10288.2 1.57122
\(351\) 0 0
\(352\) −1158.26 −0.175384
\(353\) 1159.24 0.174787 0.0873936 0.996174i \(-0.472146\pi\)
0.0873936 + 0.996174i \(0.472146\pi\)
\(354\) 0 0
\(355\) 22885.5 3.42151
\(356\) −9694.32 −1.44325
\(357\) 0 0
\(358\) 17635.8 2.60358
\(359\) −3164.04 −0.465158 −0.232579 0.972577i \(-0.574716\pi\)
−0.232579 + 0.972577i \(0.574716\pi\)
\(360\) 0 0
\(361\) 1869.42 0.272549
\(362\) −15360.3 −2.23016
\(363\) 0 0
\(364\) 1.39281 0.000200559 0
\(365\) 16051.1 2.30179
\(366\) 0 0
\(367\) 6586.11 0.936763 0.468382 0.883526i \(-0.344837\pi\)
0.468382 + 0.883526i \(0.344837\pi\)
\(368\) −9466.81 −1.34101
\(369\) 0 0
\(370\) −41543.9 −5.83721
\(371\) 1192.74 0.166911
\(372\) 0 0
\(373\) 1210.44 0.168027 0.0840135 0.996465i \(-0.473226\pi\)
0.0840135 + 0.996465i \(0.473226\pi\)
\(374\) −526.318 −0.0727680
\(375\) 0 0
\(376\) −6340.70 −0.869671
\(377\) 3.19164 0.000436015 0
\(378\) 0 0
\(379\) −5802.28 −0.786393 −0.393197 0.919454i \(-0.628631\pi\)
−0.393197 + 0.919454i \(0.628631\pi\)
\(380\) 32875.0 4.43803
\(381\) 0 0
\(382\) 23031.6 3.08482
\(383\) 3704.97 0.494295 0.247147 0.968978i \(-0.420507\pi\)
0.247147 + 0.968978i \(0.420507\pi\)
\(384\) 0 0
\(385\) 1573.66 0.208314
\(386\) −3481.74 −0.459109
\(387\) 0 0
\(388\) 15411.1 2.01644
\(389\) −3365.36 −0.438638 −0.219319 0.975653i \(-0.570384\pi\)
−0.219319 + 0.975653i \(0.570384\pi\)
\(390\) 0 0
\(391\) −952.373 −0.123180
\(392\) −2268.18 −0.292246
\(393\) 0 0
\(394\) −1201.55 −0.153638
\(395\) 19155.5 2.44004
\(396\) 0 0
\(397\) −10914.1 −1.37976 −0.689879 0.723925i \(-0.742336\pi\)
−0.689879 + 0.723925i \(0.742336\pi\)
\(398\) 3404.55 0.428781
\(399\) 0 0
\(400\) 27719.5 3.46493
\(401\) −4980.45 −0.620228 −0.310114 0.950699i \(-0.600367\pi\)
−0.310114 + 0.950699i \(0.600367\pi\)
\(402\) 0 0
\(403\) 2.09660 0.000259154 0
\(404\) 7043.59 0.867406
\(405\) 0 0
\(406\) −9708.41 −1.18675
\(407\) −4452.74 −0.542295
\(408\) 0 0
\(409\) −9813.28 −1.18639 −0.593197 0.805057i \(-0.702135\pi\)
−0.593197 + 0.805057i \(0.702135\pi\)
\(410\) 2855.80 0.343995
\(411\) 0 0
\(412\) 3567.51 0.426599
\(413\) −4099.15 −0.488392
\(414\) 0 0
\(415\) 9635.15 1.13969
\(416\) 1.21683 0.000143413 0
\(417\) 0 0
\(418\) 5160.77 0.603879
\(419\) −14050.0 −1.63815 −0.819077 0.573683i \(-0.805514\pi\)
−0.819077 + 0.573683i \(0.805514\pi\)
\(420\) 0 0
\(421\) 10403.9 1.20441 0.602203 0.798343i \(-0.294290\pi\)
0.602203 + 0.798343i \(0.294290\pi\)
\(422\) −3697.78 −0.426553
\(423\) 0 0
\(424\) 7887.29 0.903398
\(425\) 2788.61 0.318277
\(426\) 0 0
\(427\) 3716.67 0.421224
\(428\) 25405.4 2.86920
\(429\) 0 0
\(430\) 7901.20 0.886116
\(431\) −1181.89 −0.132087 −0.0660437 0.997817i \(-0.521038\pi\)
−0.0660437 + 0.997817i \(0.521038\pi\)
\(432\) 0 0
\(433\) −7028.94 −0.780113 −0.390057 0.920791i \(-0.627545\pi\)
−0.390057 + 0.920791i \(0.627545\pi\)
\(434\) −6377.49 −0.705367
\(435\) 0 0
\(436\) 25100.4 2.75709
\(437\) 9338.41 1.02224
\(438\) 0 0
\(439\) 5758.63 0.626069 0.313034 0.949742i \(-0.398654\pi\)
0.313034 + 0.949742i \(0.398654\pi\)
\(440\) 10406.2 1.12750
\(441\) 0 0
\(442\) 0.552933 5.95030e−5 0
\(443\) 13270.7 1.42327 0.711636 0.702548i \(-0.247955\pi\)
0.711636 + 0.702548i \(0.247955\pi\)
\(444\) 0 0
\(445\) 11506.9 1.22580
\(446\) 6174.25 0.655514
\(447\) 0 0
\(448\) 1602.41 0.168988
\(449\) −8609.07 −0.904871 −0.452435 0.891797i \(-0.649445\pi\)
−0.452435 + 0.891797i \(0.649445\pi\)
\(450\) 0 0
\(451\) 306.089 0.0319582
\(452\) 22513.2 2.34276
\(453\) 0 0
\(454\) −17989.3 −1.85964
\(455\) −1.65324 −0.000170340 0
\(456\) 0 0
\(457\) 1112.50 0.113874 0.0569369 0.998378i \(-0.481867\pi\)
0.0569369 + 0.998378i \(0.481867\pi\)
\(458\) −23765.0 −2.42460
\(459\) 0 0
\(460\) 35172.5 3.56505
\(461\) −374.302 −0.0378155 −0.0189078 0.999821i \(-0.506019\pi\)
−0.0189078 + 0.999821i \(0.506019\pi\)
\(462\) 0 0
\(463\) 2731.47 0.274174 0.137087 0.990559i \(-0.456226\pi\)
0.137087 + 0.990559i \(0.456226\pi\)
\(464\) −26157.4 −2.61709
\(465\) 0 0
\(466\) −15158.8 −1.50690
\(467\) −5370.18 −0.532125 −0.266062 0.963956i \(-0.585723\pi\)
−0.266062 + 0.963956i \(0.585723\pi\)
\(468\) 0 0
\(469\) 2484.66 0.244629
\(470\) 14058.2 1.37969
\(471\) 0 0
\(472\) −27106.7 −2.64341
\(473\) 846.862 0.0823230
\(474\) 0 0
\(475\) −27343.5 −2.64128
\(476\) −1148.36 −0.110578
\(477\) 0 0
\(478\) −14642.0 −1.40107
\(479\) 3599.62 0.343363 0.171681 0.985153i \(-0.445080\pi\)
0.171681 + 0.985153i \(0.445080\pi\)
\(480\) 0 0
\(481\) 4.67791 0.000443439 0
\(482\) −28695.7 −2.71173
\(483\) 0 0
\(484\) 2083.36 0.195657
\(485\) −18292.6 −1.71263
\(486\) 0 0
\(487\) 13234.4 1.23144 0.615718 0.787966i \(-0.288866\pi\)
0.615718 + 0.787966i \(0.288866\pi\)
\(488\) 24577.5 2.27986
\(489\) 0 0
\(490\) 5028.86 0.463634
\(491\) 20613.6 1.89466 0.947330 0.320259i \(-0.103770\pi\)
0.947330 + 0.320259i \(0.103770\pi\)
\(492\) 0 0
\(493\) −2631.47 −0.240396
\(494\) −5.42174 −0.000493797 0
\(495\) 0 0
\(496\) −17182.9 −1.55551
\(497\) 7838.61 0.707464
\(498\) 0 0
\(499\) −11615.8 −1.04208 −0.521038 0.853533i \(-0.674455\pi\)
−0.521038 + 0.853533i \(0.674455\pi\)
\(500\) −59002.1 −5.27731
\(501\) 0 0
\(502\) 5261.34 0.467779
\(503\) −5414.81 −0.479989 −0.239994 0.970774i \(-0.577146\pi\)
−0.239994 + 0.970774i \(0.577146\pi\)
\(504\) 0 0
\(505\) −8360.57 −0.736714
\(506\) 5521.43 0.485094
\(507\) 0 0
\(508\) 37124.5 3.24239
\(509\) −15370.0 −1.33843 −0.669216 0.743068i \(-0.733370\pi\)
−0.669216 + 0.743068i \(0.733370\pi\)
\(510\) 0 0
\(511\) 5497.72 0.475939
\(512\) 25100.1 2.16656
\(513\) 0 0
\(514\) −14086.0 −1.20877
\(515\) −4234.55 −0.362324
\(516\) 0 0
\(517\) 1506.77 0.128178
\(518\) −14229.4 −1.20696
\(519\) 0 0
\(520\) −10.9325 −0.000921962 0
\(521\) 18605.8 1.56456 0.782281 0.622926i \(-0.214056\pi\)
0.782281 + 0.622926i \(0.214056\pi\)
\(522\) 0 0
\(523\) −1484.42 −0.124109 −0.0620545 0.998073i \(-0.519765\pi\)
−0.0620545 + 0.998073i \(0.519765\pi\)
\(524\) 28077.4 2.34078
\(525\) 0 0
\(526\) 10938.4 0.906721
\(527\) −1728.62 −0.142884
\(528\) 0 0
\(529\) −2175.96 −0.178841
\(530\) −17487.2 −1.43320
\(531\) 0 0
\(532\) 11260.1 0.917648
\(533\) −0.321567 −2.61325e−5 0
\(534\) 0 0
\(535\) −30155.6 −2.43690
\(536\) 16430.5 1.32405
\(537\) 0 0
\(538\) 20272.0 1.62451
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −3695.09 −0.293649 −0.146825 0.989163i \(-0.546905\pi\)
−0.146825 + 0.989163i \(0.546905\pi\)
\(542\) 10878.7 0.862144
\(543\) 0 0
\(544\) −1003.26 −0.0790707
\(545\) −29793.5 −2.34168
\(546\) 0 0
\(547\) −24243.6 −1.89503 −0.947516 0.319709i \(-0.896415\pi\)
−0.947516 + 0.319709i \(0.896415\pi\)
\(548\) −50619.9 −3.94594
\(549\) 0 0
\(550\) −16167.1 −1.25340
\(551\) 25802.6 1.99497
\(552\) 0 0
\(553\) 6561.02 0.504526
\(554\) −11732.8 −0.899783
\(555\) 0 0
\(556\) 26155.0 1.99500
\(557\) −17492.7 −1.33068 −0.665340 0.746541i \(-0.731713\pi\)
−0.665340 + 0.746541i \(0.731713\pi\)
\(558\) 0 0
\(559\) −0.889687 −6.73162e−5 0
\(560\) 13549.3 1.02243
\(561\) 0 0
\(562\) −6029.13 −0.452533
\(563\) 11377.4 0.851689 0.425845 0.904796i \(-0.359977\pi\)
0.425845 + 0.904796i \(0.359977\pi\)
\(564\) 0 0
\(565\) −26722.6 −1.98978
\(566\) −32104.0 −2.38416
\(567\) 0 0
\(568\) 51834.9 3.82913
\(569\) −13028.1 −0.959868 −0.479934 0.877305i \(-0.659339\pi\)
−0.479934 + 0.877305i \(0.659339\pi\)
\(570\) 0 0
\(571\) −15448.5 −1.13223 −0.566113 0.824327i \(-0.691554\pi\)
−0.566113 + 0.824327i \(0.691554\pi\)
\(572\) −2.18871 −0.000159990 0
\(573\) 0 0
\(574\) 978.153 0.0711277
\(575\) −29254.4 −2.12173
\(576\) 0 0
\(577\) −24253.5 −1.74989 −0.874944 0.484224i \(-0.839102\pi\)
−0.874944 + 0.484224i \(0.839102\pi\)
\(578\) 24215.9 1.74264
\(579\) 0 0
\(580\) 97183.8 6.95748
\(581\) 3300.18 0.235653
\(582\) 0 0
\(583\) −1874.30 −0.133149
\(584\) 36355.2 2.57601
\(585\) 0 0
\(586\) −30320.5 −2.13742
\(587\) −3081.95 −0.216705 −0.108352 0.994113i \(-0.534557\pi\)
−0.108352 + 0.994113i \(0.534557\pi\)
\(588\) 0 0
\(589\) 16949.8 1.18575
\(590\) 60099.2 4.19364
\(591\) 0 0
\(592\) −38338.3 −2.66165
\(593\) 1806.94 0.125130 0.0625649 0.998041i \(-0.480072\pi\)
0.0625649 + 0.998041i \(0.480072\pi\)
\(594\) 0 0
\(595\) 1363.07 0.0939169
\(596\) 3853.85 0.264865
\(597\) 0 0
\(598\) −5.80064 −0.000396665 0
\(599\) 16213.0 1.10592 0.552958 0.833209i \(-0.313499\pi\)
0.552958 + 0.833209i \(0.313499\pi\)
\(600\) 0 0
\(601\) 28306.2 1.92119 0.960594 0.277957i \(-0.0896572\pi\)
0.960594 + 0.277957i \(0.0896572\pi\)
\(602\) 2706.27 0.183222
\(603\) 0 0
\(604\) −54597.4 −3.67804
\(605\) −2472.89 −0.166177
\(606\) 0 0
\(607\) 13513.0 0.903587 0.451794 0.892122i \(-0.350784\pi\)
0.451794 + 0.892122i \(0.350784\pi\)
\(608\) 9837.39 0.656182
\(609\) 0 0
\(610\) −54491.6 −3.61689
\(611\) −1.58297 −0.000104812 0
\(612\) 0 0
\(613\) −6645.66 −0.437873 −0.218936 0.975739i \(-0.570259\pi\)
−0.218936 + 0.975739i \(0.570259\pi\)
\(614\) 14021.3 0.921588
\(615\) 0 0
\(616\) 3564.28 0.233132
\(617\) 6054.73 0.395063 0.197532 0.980297i \(-0.436707\pi\)
0.197532 + 0.980297i \(0.436707\pi\)
\(618\) 0 0
\(619\) 2193.31 0.142418 0.0712089 0.997461i \(-0.477314\pi\)
0.0712089 + 0.997461i \(0.477314\pi\)
\(620\) 63840.4 4.13531
\(621\) 0 0
\(622\) 26918.5 1.73526
\(623\) 3941.28 0.253458
\(624\) 0 0
\(625\) 33449.5 2.14077
\(626\) 50210.9 3.20580
\(627\) 0 0
\(628\) 40603.9 2.58005
\(629\) −3856.88 −0.244490
\(630\) 0 0
\(631\) 22314.2 1.40778 0.703892 0.710307i \(-0.251444\pi\)
0.703892 + 0.710307i \(0.251444\pi\)
\(632\) 43386.5 2.73073
\(633\) 0 0
\(634\) 5242.59 0.328407
\(635\) −44065.9 −2.75386
\(636\) 0 0
\(637\) −0.566257 −3.52212e−5 0
\(638\) 15256.1 0.946699
\(639\) 0 0
\(640\) −40709.1 −2.51433
\(641\) 1276.44 0.0786524 0.0393262 0.999226i \(-0.487479\pi\)
0.0393262 + 0.999226i \(0.487479\pi\)
\(642\) 0 0
\(643\) 19610.9 1.20276 0.601382 0.798961i \(-0.294617\pi\)
0.601382 + 0.798961i \(0.294617\pi\)
\(644\) 12047.1 0.737144
\(645\) 0 0
\(646\) 4470.16 0.272254
\(647\) 1351.52 0.0821232 0.0410616 0.999157i \(-0.486926\pi\)
0.0410616 + 0.999157i \(0.486926\pi\)
\(648\) 0 0
\(649\) 6441.52 0.389602
\(650\) 16.9847 0.00102491
\(651\) 0 0
\(652\) 39339.3 2.36296
\(653\) 2697.61 0.161662 0.0808312 0.996728i \(-0.474243\pi\)
0.0808312 + 0.996728i \(0.474243\pi\)
\(654\) 0 0
\(655\) −33327.2 −1.98809
\(656\) 2635.44 0.156855
\(657\) 0 0
\(658\) 4815.12 0.285278
\(659\) 22130.4 1.30816 0.654080 0.756426i \(-0.273056\pi\)
0.654080 + 0.756426i \(0.273056\pi\)
\(660\) 0 0
\(661\) −12681.1 −0.746199 −0.373100 0.927791i \(-0.621705\pi\)
−0.373100 + 0.927791i \(0.621705\pi\)
\(662\) 4149.68 0.243628
\(663\) 0 0
\(664\) 21823.3 1.27546
\(665\) −13365.5 −0.779386
\(666\) 0 0
\(667\) 27605.9 1.60256
\(668\) −40125.8 −2.32412
\(669\) 0 0
\(670\) −36428.6 −2.10054
\(671\) −5840.49 −0.336020
\(672\) 0 0
\(673\) 5000.12 0.286390 0.143195 0.989694i \(-0.454262\pi\)
0.143195 + 0.989694i \(0.454262\pi\)
\(674\) −2312.98 −0.132185
\(675\) 0 0
\(676\) −37827.5 −2.15223
\(677\) −6004.13 −0.340853 −0.170427 0.985370i \(-0.554515\pi\)
−0.170427 + 0.985370i \(0.554515\pi\)
\(678\) 0 0
\(679\) −6265.47 −0.354119
\(680\) 9013.69 0.508323
\(681\) 0 0
\(682\) 10021.8 0.562688
\(683\) −15747.3 −0.882217 −0.441109 0.897454i \(-0.645415\pi\)
−0.441109 + 0.897454i \(0.645415\pi\)
\(684\) 0 0
\(685\) 60084.5 3.35140
\(686\) 1722.45 0.0958653
\(687\) 0 0
\(688\) 7291.53 0.404051
\(689\) 1.96908 0.000108877 0
\(690\) 0 0
\(691\) −206.020 −0.0113421 −0.00567105 0.999984i \(-0.501805\pi\)
−0.00567105 + 0.999984i \(0.501805\pi\)
\(692\) 33463.3 1.83827
\(693\) 0 0
\(694\) 22394.3 1.22489
\(695\) −31045.4 −1.69442
\(696\) 0 0
\(697\) 265.129 0.0144081
\(698\) −39685.4 −2.15203
\(699\) 0 0
\(700\) −35274.6 −1.90465
\(701\) 2413.37 0.130031 0.0650154 0.997884i \(-0.479290\pi\)
0.0650154 + 0.997884i \(0.479290\pi\)
\(702\) 0 0
\(703\) 37818.3 2.02894
\(704\) −2518.07 −0.134806
\(705\) 0 0
\(706\) −5821.37 −0.310326
\(707\) −2863.61 −0.152330
\(708\) 0 0
\(709\) 13211.5 0.699817 0.349908 0.936784i \(-0.386213\pi\)
0.349908 + 0.936784i \(0.386213\pi\)
\(710\) −114925. −6.07472
\(711\) 0 0
\(712\) 26062.8 1.37183
\(713\) 18134.4 0.952509
\(714\) 0 0
\(715\) 2.59794 0.000135885 0
\(716\) −60467.2 −3.15610
\(717\) 0 0
\(718\) 15889.0 0.825866
\(719\) −16242.1 −0.842458 −0.421229 0.906954i \(-0.638401\pi\)
−0.421229 + 0.906954i \(0.638401\pi\)
\(720\) 0 0
\(721\) −1450.39 −0.0749174
\(722\) −9387.71 −0.483898
\(723\) 0 0
\(724\) 52665.2 2.70344
\(725\) −80831.9 −4.14072
\(726\) 0 0
\(727\) −247.150 −0.0126084 −0.00630418 0.999980i \(-0.502007\pi\)
−0.00630418 + 0.999980i \(0.502007\pi\)
\(728\) −3.74453 −0.000190634 0
\(729\) 0 0
\(730\) −80604.3 −4.08671
\(731\) 733.537 0.0371147
\(732\) 0 0
\(733\) 27692.4 1.39542 0.697711 0.716380i \(-0.254202\pi\)
0.697711 + 0.716380i \(0.254202\pi\)
\(734\) −33073.7 −1.66318
\(735\) 0 0
\(736\) 10524.9 0.527109
\(737\) −3904.47 −0.195147
\(738\) 0 0
\(739\) −30513.8 −1.51890 −0.759451 0.650564i \(-0.774532\pi\)
−0.759451 + 0.650564i \(0.774532\pi\)
\(740\) 142440. 7.07594
\(741\) 0 0
\(742\) −5989.61 −0.296341
\(743\) 10527.8 0.519822 0.259911 0.965633i \(-0.416307\pi\)
0.259911 + 0.965633i \(0.416307\pi\)
\(744\) 0 0
\(745\) −4574.42 −0.224958
\(746\) −6078.49 −0.298324
\(747\) 0 0
\(748\) 1804.56 0.0882104
\(749\) −10328.7 −0.503876
\(750\) 0 0
\(751\) 9111.92 0.442741 0.221371 0.975190i \(-0.428947\pi\)
0.221371 + 0.975190i \(0.428947\pi\)
\(752\) 12973.4 0.629111
\(753\) 0 0
\(754\) −16.0276 −0.000774124 0
\(755\) 64805.8 3.12387
\(756\) 0 0
\(757\) −2875.38 −0.138055 −0.0690273 0.997615i \(-0.521990\pi\)
−0.0690273 + 0.997615i \(0.521990\pi\)
\(758\) 29137.5 1.39620
\(759\) 0 0
\(760\) −88383.0 −4.21841
\(761\) 1580.96 0.0753084 0.0376542 0.999291i \(-0.488011\pi\)
0.0376542 + 0.999291i \(0.488011\pi\)
\(762\) 0 0
\(763\) −10204.7 −0.484188
\(764\) −78967.6 −3.73946
\(765\) 0 0
\(766\) −18605.3 −0.877596
\(767\) −6.76726 −0.000318581 0
\(768\) 0 0
\(769\) −24477.4 −1.14783 −0.573913 0.818916i \(-0.694575\pi\)
−0.573913 + 0.818916i \(0.694575\pi\)
\(770\) −7902.49 −0.369852
\(771\) 0 0
\(772\) 11937.7 0.556538
\(773\) 40144.4 1.86791 0.933954 0.357393i \(-0.116334\pi\)
0.933954 + 0.357393i \(0.116334\pi\)
\(774\) 0 0
\(775\) −53098.8 −2.46111
\(776\) −41432.1 −1.91666
\(777\) 0 0
\(778\) 16899.9 0.778781
\(779\) −2599.70 −0.119568
\(780\) 0 0
\(781\) −12317.8 −0.564361
\(782\) 4782.56 0.218701
\(783\) 0 0
\(784\) 4640.82 0.211408
\(785\) −48195.9 −2.19132
\(786\) 0 0
\(787\) −38095.3 −1.72548 −0.862739 0.505650i \(-0.831253\pi\)
−0.862739 + 0.505650i \(0.831253\pi\)
\(788\) 4119.72 0.186242
\(789\) 0 0
\(790\) −96193.7 −4.33217
\(791\) −9152.85 −0.411426
\(792\) 0 0
\(793\) 6.13583 0.000274767 0
\(794\) 54807.8 2.44969
\(795\) 0 0
\(796\) −11673.0 −0.519774
\(797\) 13196.7 0.586511 0.293256 0.956034i \(-0.405261\pi\)
0.293256 + 0.956034i \(0.405261\pi\)
\(798\) 0 0
\(799\) 1305.14 0.0577879
\(800\) −30817.6 −1.36196
\(801\) 0 0
\(802\) 25010.5 1.10119
\(803\) −8639.28 −0.379668
\(804\) 0 0
\(805\) −14299.6 −0.626079
\(806\) −10.5286 −0.000460115 0
\(807\) 0 0
\(808\) −18936.4 −0.824481
\(809\) 39595.8 1.72078 0.860392 0.509633i \(-0.170219\pi\)
0.860392 + 0.509633i \(0.170219\pi\)
\(810\) 0 0
\(811\) 7072.51 0.306226 0.153113 0.988209i \(-0.451070\pi\)
0.153113 + 0.988209i \(0.451070\pi\)
\(812\) 33286.8 1.43859
\(813\) 0 0
\(814\) 22360.5 0.962818
\(815\) −46694.8 −2.00693
\(816\) 0 0
\(817\) −7192.63 −0.308003
\(818\) 49279.7 2.10639
\(819\) 0 0
\(820\) −9791.57 −0.416996
\(821\) −3770.85 −0.160297 −0.0801484 0.996783i \(-0.525539\pi\)
−0.0801484 + 0.996783i \(0.525539\pi\)
\(822\) 0 0
\(823\) 34875.3 1.47713 0.738565 0.674182i \(-0.235504\pi\)
0.738565 + 0.674182i \(0.235504\pi\)
\(824\) −9591.12 −0.405489
\(825\) 0 0
\(826\) 20584.8 0.867116
\(827\) −13104.1 −0.550995 −0.275497 0.961302i \(-0.588843\pi\)
−0.275497 + 0.961302i \(0.588843\pi\)
\(828\) 0 0
\(829\) 25672.5 1.07556 0.537782 0.843084i \(-0.319262\pi\)
0.537782 + 0.843084i \(0.319262\pi\)
\(830\) −48385.2 −2.02346
\(831\) 0 0
\(832\) 2.64541 0.000110232 0
\(833\) 466.872 0.0194192
\(834\) 0 0
\(835\) 47628.3 1.97395
\(836\) −17694.5 −0.732030
\(837\) 0 0
\(838\) 70555.3 2.90846
\(839\) 12972.5 0.533804 0.266902 0.963724i \(-0.414000\pi\)
0.266902 + 0.963724i \(0.414000\pi\)
\(840\) 0 0
\(841\) 51887.9 2.12751
\(842\) −52245.6 −2.13836
\(843\) 0 0
\(844\) 12678.4 0.517073
\(845\) 44900.3 1.82795
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −16137.8 −0.653508
\(849\) 0 0
\(850\) −14003.7 −0.565085
\(851\) 40461.3 1.62984
\(852\) 0 0
\(853\) −38411.5 −1.54183 −0.770917 0.636936i \(-0.780202\pi\)
−0.770917 + 0.636936i \(0.780202\pi\)
\(854\) −18664.1 −0.747862
\(855\) 0 0
\(856\) −68301.5 −2.72722
\(857\) −29840.9 −1.18943 −0.594717 0.803935i \(-0.702736\pi\)
−0.594717 + 0.803935i \(0.702736\pi\)
\(858\) 0 0
\(859\) −6603.57 −0.262294 −0.131147 0.991363i \(-0.541866\pi\)
−0.131147 + 0.991363i \(0.541866\pi\)
\(860\) −27090.5 −1.07416
\(861\) 0 0
\(862\) 5935.14 0.234515
\(863\) 35177.7 1.38756 0.693780 0.720187i \(-0.255944\pi\)
0.693780 + 0.720187i \(0.255944\pi\)
\(864\) 0 0
\(865\) −39720.1 −1.56130
\(866\) 35297.4 1.38505
\(867\) 0 0
\(868\) 21866.2 0.855056
\(869\) −10310.2 −0.402473
\(870\) 0 0
\(871\) 4.10191 0.000159573 0
\(872\) −67481.4 −2.62065
\(873\) 0 0
\(874\) −46895.0 −1.81493
\(875\) 23987.6 0.926777
\(876\) 0 0
\(877\) −22669.6 −0.872860 −0.436430 0.899738i \(-0.643757\pi\)
−0.436430 + 0.899738i \(0.643757\pi\)
\(878\) −28918.3 −1.11155
\(879\) 0 0
\(880\) −21291.7 −0.815618
\(881\) −18705.2 −0.715317 −0.357658 0.933852i \(-0.616425\pi\)
−0.357658 + 0.933852i \(0.616425\pi\)
\(882\) 0 0
\(883\) −768.137 −0.0292750 −0.0146375 0.999893i \(-0.504659\pi\)
−0.0146375 + 0.999893i \(0.504659\pi\)
\(884\) −1.89582 −7.21304e−5 0
\(885\) 0 0
\(886\) −66641.9 −2.52695
\(887\) 32827.0 1.24264 0.621322 0.783556i \(-0.286596\pi\)
0.621322 + 0.783556i \(0.286596\pi\)
\(888\) 0 0
\(889\) −15093.2 −0.569415
\(890\) −57784.7 −2.17634
\(891\) 0 0
\(892\) −21169.4 −0.794624
\(893\) −12797.4 −0.479563
\(894\) 0 0
\(895\) 71773.1 2.68057
\(896\) −13943.5 −0.519886
\(897\) 0 0
\(898\) 43232.4 1.60655
\(899\) 50106.5 1.85890
\(900\) 0 0
\(901\) −1623.48 −0.0600290
\(902\) −1537.10 −0.0567403
\(903\) 0 0
\(904\) −60525.7 −2.22683
\(905\) −62512.3 −2.29611
\(906\) 0 0
\(907\) −12345.2 −0.451945 −0.225972 0.974134i \(-0.572556\pi\)
−0.225972 + 0.974134i \(0.572556\pi\)
\(908\) 61679.0 2.25428
\(909\) 0 0
\(910\) 8.30211 0.000302431 0
\(911\) −11001.3 −0.400098 −0.200049 0.979786i \(-0.564110\pi\)
−0.200049 + 0.979786i \(0.564110\pi\)
\(912\) 0 0
\(913\) −5185.99 −0.187986
\(914\) −5586.65 −0.202177
\(915\) 0 0
\(916\) 81482.1 2.93913
\(917\) −11415.0 −0.411077
\(918\) 0 0
\(919\) 22345.4 0.802075 0.401037 0.916062i \(-0.368650\pi\)
0.401037 + 0.916062i \(0.368650\pi\)
\(920\) −94559.8 −3.38863
\(921\) 0 0
\(922\) 1879.64 0.0671396
\(923\) 12.9407 0.000461483 0
\(924\) 0 0
\(925\) −118473. −4.21122
\(926\) −13716.7 −0.486782
\(927\) 0 0
\(928\) 29080.9 1.02869
\(929\) −41802.6 −1.47632 −0.738160 0.674626i \(-0.764305\pi\)
−0.738160 + 0.674626i \(0.764305\pi\)
\(930\) 0 0
\(931\) −4577.87 −0.161153
\(932\) 51974.3 1.82669
\(933\) 0 0
\(934\) 26967.6 0.944761
\(935\) −2141.97 −0.0749198
\(936\) 0 0
\(937\) 30060.9 1.04808 0.524038 0.851695i \(-0.324425\pi\)
0.524038 + 0.851695i \(0.324425\pi\)
\(938\) −12477.3 −0.434327
\(939\) 0 0
\(940\) −48200.6 −1.67248
\(941\) 35821.3 1.24096 0.620479 0.784223i \(-0.286938\pi\)
0.620479 + 0.784223i \(0.286938\pi\)
\(942\) 0 0
\(943\) −2781.38 −0.0960490
\(944\) 55461.8 1.91221
\(945\) 0 0
\(946\) −4252.72 −0.146160
\(947\) 6919.22 0.237428 0.118714 0.992928i \(-0.462123\pi\)
0.118714 + 0.992928i \(0.462123\pi\)
\(948\) 0 0
\(949\) 9.07616 0.000310458 0
\(950\) 137312. 4.68946
\(951\) 0 0
\(952\) 3087.32 0.105106
\(953\) 29103.4 0.989248 0.494624 0.869107i \(-0.335306\pi\)
0.494624 + 0.869107i \(0.335306\pi\)
\(954\) 0 0
\(955\) 93732.6 3.17604
\(956\) 50202.5 1.69839
\(957\) 0 0
\(958\) −18076.3 −0.609624
\(959\) 20579.8 0.692968
\(960\) 0 0
\(961\) 3124.15 0.104869
\(962\) −23.4912 −0.000787304 0
\(963\) 0 0
\(964\) 98387.8 3.28720
\(965\) −14169.8 −0.472685
\(966\) 0 0
\(967\) −8723.55 −0.290104 −0.145052 0.989424i \(-0.546335\pi\)
−0.145052 + 0.989424i \(0.546335\pi\)
\(968\) −5601.02 −0.185975
\(969\) 0 0
\(970\) 91860.5 3.04068
\(971\) −23959.2 −0.791850 −0.395925 0.918283i \(-0.629576\pi\)
−0.395925 + 0.918283i \(0.629576\pi\)
\(972\) 0 0
\(973\) −10633.5 −0.350353
\(974\) −66459.8 −2.18636
\(975\) 0 0
\(976\) −50286.9 −1.64923
\(977\) −3709.07 −0.121457 −0.0607286 0.998154i \(-0.519342\pi\)
−0.0607286 + 0.998154i \(0.519342\pi\)
\(978\) 0 0
\(979\) −6193.44 −0.202189
\(980\) −17242.2 −0.562023
\(981\) 0 0
\(982\) −103516. −3.36388
\(983\) 29542.7 0.958561 0.479281 0.877662i \(-0.340898\pi\)
0.479281 + 0.877662i \(0.340898\pi\)
\(984\) 0 0
\(985\) −4890.00 −0.158181
\(986\) 13214.5 0.426812
\(987\) 0 0
\(988\) 18.5893 0.000598587 0
\(989\) −7695.30 −0.247418
\(990\) 0 0
\(991\) −37600.9 −1.20528 −0.602640 0.798013i \(-0.705885\pi\)
−0.602640 + 0.798013i \(0.705885\pi\)
\(992\) 19103.4 0.611424
\(993\) 0 0
\(994\) −39363.4 −1.25607
\(995\) 13855.6 0.441460
\(996\) 0 0
\(997\) 24918.4 0.791547 0.395774 0.918348i \(-0.370476\pi\)
0.395774 + 0.918348i \(0.370476\pi\)
\(998\) 58331.6 1.85016
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.q.1.1 5
3.2 odd 2 231.4.a.j.1.5 5
21.20 even 2 1617.4.a.o.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.j.1.5 5 3.2 odd 2
693.4.a.q.1.1 5 1.1 even 1 trivial
1617.4.a.o.1.5 5 21.20 even 2