Properties

Label 693.4.a.p.1.5
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(4.79323\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.79323 q^{2} +14.9751 q^{4} +6.25369 q^{5} +7.00000 q^{7} +33.4331 q^{8} +O(q^{10})\) \(q+4.79323 q^{2} +14.9751 q^{4} +6.25369 q^{5} +7.00000 q^{7} +33.4331 q^{8} +29.9754 q^{10} -11.0000 q^{11} -35.7637 q^{13} +33.5526 q^{14} +40.4519 q^{16} +133.102 q^{17} +161.508 q^{19} +93.6494 q^{20} -52.7255 q^{22} +66.2680 q^{23} -85.8913 q^{25} -171.424 q^{26} +104.825 q^{28} +208.993 q^{29} -39.3732 q^{31} -73.5692 q^{32} +637.987 q^{34} +43.7759 q^{35} +197.404 q^{37} +774.146 q^{38} +209.080 q^{40} -434.978 q^{41} +375.872 q^{43} -164.726 q^{44} +317.638 q^{46} -503.794 q^{47} +49.0000 q^{49} -411.697 q^{50} -535.563 q^{52} -44.8246 q^{53} -68.7906 q^{55} +234.031 q^{56} +1001.75 q^{58} -582.890 q^{59} +73.2219 q^{61} -188.725 q^{62} -676.249 q^{64} -223.655 q^{65} -928.317 q^{67} +1993.21 q^{68} +209.828 q^{70} +755.968 q^{71} +277.345 q^{73} +946.204 q^{74} +2418.60 q^{76} -77.0000 q^{77} +651.033 q^{79} +252.974 q^{80} -2084.95 q^{82} -282.009 q^{83} +832.378 q^{85} +1801.64 q^{86} -367.764 q^{88} -1040.08 q^{89} -250.346 q^{91} +992.367 q^{92} -2414.80 q^{94} +1010.02 q^{95} +1116.81 q^{97} +234.868 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 21 q^{4} - 21 q^{5} + 35 q^{7} + 42 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + q^{2} + 21 q^{4} - 21 q^{5} + 35 q^{7} + 42 q^{8} - 23 q^{10} - 55 q^{11} + 101 q^{13} + 7 q^{14} - 7 q^{16} + 20 q^{17} + 237 q^{19} - 85 q^{20} - 11 q^{22} + 80 q^{23} + 486 q^{25} - 165 q^{26} + 147 q^{28} + 11 q^{29} + 316 q^{31} - 453 q^{32} + 936 q^{34} - 147 q^{35} + 319 q^{37} - 89 q^{38} + 624 q^{40} - 1190 q^{41} + 88 q^{43} - 231 q^{44} + 1000 q^{46} - 377 q^{47} + 245 q^{49} + 644 q^{50} + 1001 q^{52} + 992 q^{53} + 231 q^{55} + 294 q^{56} + 721 q^{58} - 71 q^{59} - 574 q^{61} - 272 q^{62} - 1380 q^{64} - 589 q^{65} - 527 q^{67} + 2974 q^{68} - 161 q^{70} + 1156 q^{71} + 1061 q^{73} + 1609 q^{74} + 2399 q^{76} - 385 q^{77} + 588 q^{79} + 1643 q^{80} - 2602 q^{82} + 212 q^{83} + 1918 q^{85} + 4760 q^{86} - 462 q^{88} - 1030 q^{89} + 707 q^{91} + 1174 q^{92} - 1799 q^{94} + 3593 q^{95} + 2488 q^{97} + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.79323 1.69466 0.847331 0.531064i \(-0.178208\pi\)
0.847331 + 0.531064i \(0.178208\pi\)
\(3\) 0 0
\(4\) 14.9751 1.87188
\(5\) 6.25369 0.559347 0.279674 0.960095i \(-0.409774\pi\)
0.279674 + 0.960095i \(0.409774\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 33.4331 1.47755
\(9\) 0 0
\(10\) 29.9754 0.947905
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −35.7637 −0.763005 −0.381503 0.924368i \(-0.624593\pi\)
−0.381503 + 0.924368i \(0.624593\pi\)
\(14\) 33.5526 0.640522
\(15\) 0 0
\(16\) 40.4519 0.632061
\(17\) 133.102 1.89894 0.949468 0.313863i \(-0.101623\pi\)
0.949468 + 0.313863i \(0.101623\pi\)
\(18\) 0 0
\(19\) 161.508 1.95013 0.975067 0.221912i \(-0.0712299\pi\)
0.975067 + 0.221912i \(0.0712299\pi\)
\(20\) 93.6494 1.04703
\(21\) 0 0
\(22\) −52.7255 −0.510960
\(23\) 66.2680 0.600775 0.300388 0.953817i \(-0.402884\pi\)
0.300388 + 0.953817i \(0.402884\pi\)
\(24\) 0 0
\(25\) −85.8913 −0.687131
\(26\) −171.424 −1.29304
\(27\) 0 0
\(28\) 104.825 0.707505
\(29\) 208.993 1.33824 0.669121 0.743153i \(-0.266671\pi\)
0.669121 + 0.743153i \(0.266671\pi\)
\(30\) 0 0
\(31\) −39.3732 −0.228117 −0.114059 0.993474i \(-0.536385\pi\)
−0.114059 + 0.993474i \(0.536385\pi\)
\(32\) −73.5692 −0.406416
\(33\) 0 0
\(34\) 637.987 3.21806
\(35\) 43.7759 0.211413
\(36\) 0 0
\(37\) 197.404 0.877109 0.438555 0.898705i \(-0.355491\pi\)
0.438555 + 0.898705i \(0.355491\pi\)
\(38\) 774.146 3.30482
\(39\) 0 0
\(40\) 209.080 0.826462
\(41\) −434.978 −1.65688 −0.828440 0.560078i \(-0.810771\pi\)
−0.828440 + 0.560078i \(0.810771\pi\)
\(42\) 0 0
\(43\) 375.872 1.33302 0.666511 0.745495i \(-0.267787\pi\)
0.666511 + 0.745495i \(0.267787\pi\)
\(44\) −164.726 −0.564394
\(45\) 0 0
\(46\) 317.638 1.01811
\(47\) −503.794 −1.56353 −0.781765 0.623574i \(-0.785680\pi\)
−0.781765 + 0.623574i \(0.785680\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −411.697 −1.16445
\(51\) 0 0
\(52\) −535.563 −1.42826
\(53\) −44.8246 −0.116172 −0.0580861 0.998312i \(-0.518500\pi\)
−0.0580861 + 0.998312i \(0.518500\pi\)
\(54\) 0 0
\(55\) −68.7906 −0.168650
\(56\) 234.031 0.558460
\(57\) 0 0
\(58\) 1001.75 2.26787
\(59\) −582.890 −1.28620 −0.643100 0.765782i \(-0.722352\pi\)
−0.643100 + 0.765782i \(0.722352\pi\)
\(60\) 0 0
\(61\) 73.2219 0.153690 0.0768451 0.997043i \(-0.475515\pi\)
0.0768451 + 0.997043i \(0.475515\pi\)
\(62\) −188.725 −0.386582
\(63\) 0 0
\(64\) −676.249 −1.32080
\(65\) −223.655 −0.426785
\(66\) 0 0
\(67\) −928.317 −1.69272 −0.846358 0.532614i \(-0.821210\pi\)
−0.846358 + 0.532614i \(0.821210\pi\)
\(68\) 1993.21 3.55459
\(69\) 0 0
\(70\) 209.828 0.358274
\(71\) 755.968 1.26362 0.631809 0.775124i \(-0.282313\pi\)
0.631809 + 0.775124i \(0.282313\pi\)
\(72\) 0 0
\(73\) 277.345 0.444669 0.222334 0.974970i \(-0.428632\pi\)
0.222334 + 0.974970i \(0.428632\pi\)
\(74\) 946.204 1.48640
\(75\) 0 0
\(76\) 2418.60 3.65042
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 651.033 0.927177 0.463589 0.886051i \(-0.346562\pi\)
0.463589 + 0.886051i \(0.346562\pi\)
\(80\) 252.974 0.353541
\(81\) 0 0
\(82\) −2084.95 −2.80785
\(83\) −282.009 −0.372946 −0.186473 0.982460i \(-0.559706\pi\)
−0.186473 + 0.982460i \(0.559706\pi\)
\(84\) 0 0
\(85\) 832.378 1.06216
\(86\) 1801.64 2.25902
\(87\) 0 0
\(88\) −367.764 −0.445497
\(89\) −1040.08 −1.23875 −0.619373 0.785097i \(-0.712613\pi\)
−0.619373 + 0.785097i \(0.712613\pi\)
\(90\) 0 0
\(91\) −250.346 −0.288389
\(92\) 992.367 1.12458
\(93\) 0 0
\(94\) −2414.80 −2.64965
\(95\) 1010.02 1.09080
\(96\) 0 0
\(97\) 1116.81 1.16902 0.584510 0.811387i \(-0.301287\pi\)
0.584510 + 0.811387i \(0.301287\pi\)
\(98\) 234.868 0.242095
\(99\) 0 0
\(100\) −1286.23 −1.28623
\(101\) −368.860 −0.363396 −0.181698 0.983354i \(-0.558159\pi\)
−0.181698 + 0.983354i \(0.558159\pi\)
\(102\) 0 0
\(103\) −1473.16 −1.40927 −0.704636 0.709569i \(-0.748890\pi\)
−0.704636 + 0.709569i \(0.748890\pi\)
\(104\) −1195.69 −1.12738
\(105\) 0 0
\(106\) −214.854 −0.196873
\(107\) −405.943 −0.366766 −0.183383 0.983042i \(-0.558705\pi\)
−0.183383 + 0.983042i \(0.558705\pi\)
\(108\) 0 0
\(109\) 671.258 0.589861 0.294931 0.955519i \(-0.404703\pi\)
0.294931 + 0.955519i \(0.404703\pi\)
\(110\) −329.729 −0.285804
\(111\) 0 0
\(112\) 283.163 0.238897
\(113\) 686.797 0.571756 0.285878 0.958266i \(-0.407715\pi\)
0.285878 + 0.958266i \(0.407715\pi\)
\(114\) 0 0
\(115\) 414.420 0.336042
\(116\) 3129.68 2.50503
\(117\) 0 0
\(118\) −2793.93 −2.17968
\(119\) 931.712 0.717731
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 350.969 0.260453
\(123\) 0 0
\(124\) −589.617 −0.427009
\(125\) −1318.85 −0.943692
\(126\) 0 0
\(127\) 2058.06 1.43798 0.718988 0.695022i \(-0.244605\pi\)
0.718988 + 0.695022i \(0.244605\pi\)
\(128\) −2652.87 −1.83189
\(129\) 0 0
\(130\) −1072.03 −0.723256
\(131\) −1805.09 −1.20391 −0.601953 0.798532i \(-0.705610\pi\)
−0.601953 + 0.798532i \(0.705610\pi\)
\(132\) 0 0
\(133\) 1130.56 0.737081
\(134\) −4449.64 −2.86858
\(135\) 0 0
\(136\) 4450.00 2.80577
\(137\) −1428.36 −0.890751 −0.445375 0.895344i \(-0.646930\pi\)
−0.445375 + 0.895344i \(0.646930\pi\)
\(138\) 0 0
\(139\) 1401.90 0.855453 0.427727 0.903908i \(-0.359315\pi\)
0.427727 + 0.903908i \(0.359315\pi\)
\(140\) 655.546 0.395741
\(141\) 0 0
\(142\) 3623.53 2.14141
\(143\) 393.401 0.230055
\(144\) 0 0
\(145\) 1306.98 0.748542
\(146\) 1329.38 0.753564
\(147\) 0 0
\(148\) 2956.14 1.64185
\(149\) −1510.58 −0.830549 −0.415275 0.909696i \(-0.636315\pi\)
−0.415275 + 0.909696i \(0.636315\pi\)
\(150\) 0 0
\(151\) −187.595 −0.101101 −0.0505505 0.998722i \(-0.516098\pi\)
−0.0505505 + 0.998722i \(0.516098\pi\)
\(152\) 5399.71 2.88141
\(153\) 0 0
\(154\) −369.079 −0.193125
\(155\) −246.228 −0.127597
\(156\) 0 0
\(157\) −3332.23 −1.69389 −0.846946 0.531678i \(-0.821561\pi\)
−0.846946 + 0.531678i \(0.821561\pi\)
\(158\) 3120.55 1.57125
\(159\) 0 0
\(160\) −460.079 −0.227328
\(161\) 463.876 0.227072
\(162\) 0 0
\(163\) −1643.24 −0.789621 −0.394810 0.918763i \(-0.629190\pi\)
−0.394810 + 0.918763i \(0.629190\pi\)
\(164\) −6513.81 −3.10148
\(165\) 0 0
\(166\) −1351.74 −0.632019
\(167\) −1609.21 −0.745656 −0.372828 0.927900i \(-0.621612\pi\)
−0.372828 + 0.927900i \(0.621612\pi\)
\(168\) 0 0
\(169\) −917.958 −0.417823
\(170\) 3989.78 1.80001
\(171\) 0 0
\(172\) 5628.70 2.49526
\(173\) 700.721 0.307947 0.153974 0.988075i \(-0.450793\pi\)
0.153974 + 0.988075i \(0.450793\pi\)
\(174\) 0 0
\(175\) −601.239 −0.259711
\(176\) −444.971 −0.190573
\(177\) 0 0
\(178\) −4985.35 −2.09926
\(179\) 435.174 0.181712 0.0908559 0.995864i \(-0.471040\pi\)
0.0908559 + 0.995864i \(0.471040\pi\)
\(180\) 0 0
\(181\) 90.8432 0.0373056 0.0186528 0.999826i \(-0.494062\pi\)
0.0186528 + 0.999826i \(0.494062\pi\)
\(182\) −1199.97 −0.488722
\(183\) 0 0
\(184\) 2215.54 0.887673
\(185\) 1234.50 0.490609
\(186\) 0 0
\(187\) −1464.12 −0.572551
\(188\) −7544.34 −2.92674
\(189\) 0 0
\(190\) 4841.27 1.84854
\(191\) −2335.80 −0.884883 −0.442441 0.896797i \(-0.645888\pi\)
−0.442441 + 0.896797i \(0.645888\pi\)
\(192\) 0 0
\(193\) 2319.35 0.865029 0.432514 0.901627i \(-0.357626\pi\)
0.432514 + 0.901627i \(0.357626\pi\)
\(194\) 5353.13 1.98109
\(195\) 0 0
\(196\) 733.778 0.267412
\(197\) −2267.56 −0.820085 −0.410043 0.912066i \(-0.634486\pi\)
−0.410043 + 0.912066i \(0.634486\pi\)
\(198\) 0 0
\(199\) −614.366 −0.218850 −0.109425 0.993995i \(-0.534901\pi\)
−0.109425 + 0.993995i \(0.534901\pi\)
\(200\) −2871.61 −1.01527
\(201\) 0 0
\(202\) −1768.03 −0.615833
\(203\) 1462.95 0.505808
\(204\) 0 0
\(205\) −2720.22 −0.926771
\(206\) −7061.21 −2.38824
\(207\) 0 0
\(208\) −1446.71 −0.482266
\(209\) −1776.59 −0.587987
\(210\) 0 0
\(211\) −506.531 −0.165266 −0.0826328 0.996580i \(-0.526333\pi\)
−0.0826328 + 0.996580i \(0.526333\pi\)
\(212\) −671.251 −0.217461
\(213\) 0 0
\(214\) −1945.78 −0.621545
\(215\) 2350.59 0.745622
\(216\) 0 0
\(217\) −275.613 −0.0862203
\(218\) 3217.49 0.999616
\(219\) 0 0
\(220\) −1030.14 −0.315692
\(221\) −4760.21 −1.44890
\(222\) 0 0
\(223\) 1555.55 0.467118 0.233559 0.972343i \(-0.424963\pi\)
0.233559 + 0.972343i \(0.424963\pi\)
\(224\) −514.985 −0.153611
\(225\) 0 0
\(226\) 3291.97 0.968933
\(227\) −131.215 −0.0383657 −0.0191829 0.999816i \(-0.506106\pi\)
−0.0191829 + 0.999816i \(0.506106\pi\)
\(228\) 0 0
\(229\) −1605.65 −0.463339 −0.231670 0.972795i \(-0.574419\pi\)
−0.231670 + 0.972795i \(0.574419\pi\)
\(230\) 1986.41 0.569478
\(231\) 0 0
\(232\) 6987.28 1.97732
\(233\) −2243.59 −0.630825 −0.315413 0.948955i \(-0.602143\pi\)
−0.315413 + 0.948955i \(0.602143\pi\)
\(234\) 0 0
\(235\) −3150.57 −0.874556
\(236\) −8728.81 −2.40762
\(237\) 0 0
\(238\) 4465.91 1.21631
\(239\) 3120.00 0.844419 0.422209 0.906498i \(-0.361255\pi\)
0.422209 + 0.906498i \(0.361255\pi\)
\(240\) 0 0
\(241\) −695.537 −0.185907 −0.0929533 0.995670i \(-0.529631\pi\)
−0.0929533 + 0.995670i \(0.529631\pi\)
\(242\) 579.981 0.154060
\(243\) 0 0
\(244\) 1096.50 0.287690
\(245\) 306.431 0.0799068
\(246\) 0 0
\(247\) −5776.13 −1.48796
\(248\) −1316.37 −0.337054
\(249\) 0 0
\(250\) −6321.55 −1.59924
\(251\) −1380.04 −0.347042 −0.173521 0.984830i \(-0.555515\pi\)
−0.173521 + 0.984830i \(0.555515\pi\)
\(252\) 0 0
\(253\) −728.948 −0.181141
\(254\) 9864.74 2.43689
\(255\) 0 0
\(256\) −7305.80 −1.78364
\(257\) 5776.54 1.40206 0.701032 0.713130i \(-0.252723\pi\)
0.701032 + 0.713130i \(0.252723\pi\)
\(258\) 0 0
\(259\) 1381.83 0.331516
\(260\) −3349.25 −0.798891
\(261\) 0 0
\(262\) −8652.22 −2.04021
\(263\) −3276.42 −0.768186 −0.384093 0.923294i \(-0.625486\pi\)
−0.384093 + 0.923294i \(0.625486\pi\)
\(264\) 0 0
\(265\) −280.319 −0.0649806
\(266\) 5419.02 1.24910
\(267\) 0 0
\(268\) −13901.6 −3.16857
\(269\) −5671.94 −1.28559 −0.642796 0.766037i \(-0.722226\pi\)
−0.642796 + 0.766037i \(0.722226\pi\)
\(270\) 0 0
\(271\) 7504.85 1.68224 0.841120 0.540849i \(-0.181897\pi\)
0.841120 + 0.540849i \(0.181897\pi\)
\(272\) 5384.22 1.20024
\(273\) 0 0
\(274\) −6846.45 −1.50952
\(275\) 944.805 0.207178
\(276\) 0 0
\(277\) −8841.46 −1.91780 −0.958902 0.283738i \(-0.908425\pi\)
−0.958902 + 0.283738i \(0.908425\pi\)
\(278\) 6719.65 1.44970
\(279\) 0 0
\(280\) 1463.56 0.312373
\(281\) −3532.31 −0.749894 −0.374947 0.927046i \(-0.622339\pi\)
−0.374947 + 0.927046i \(0.622339\pi\)
\(282\) 0 0
\(283\) −304.915 −0.0640469 −0.0320235 0.999487i \(-0.510195\pi\)
−0.0320235 + 0.999487i \(0.510195\pi\)
\(284\) 11320.7 2.36535
\(285\) 0 0
\(286\) 1885.66 0.389865
\(287\) −3044.84 −0.626242
\(288\) 0 0
\(289\) 12803.1 2.60596
\(290\) 6264.65 1.26853
\(291\) 0 0
\(292\) 4153.26 0.832368
\(293\) 5776.94 1.15185 0.575926 0.817502i \(-0.304642\pi\)
0.575926 + 0.817502i \(0.304642\pi\)
\(294\) 0 0
\(295\) −3645.22 −0.719433
\(296\) 6599.82 1.29597
\(297\) 0 0
\(298\) −7240.58 −1.40750
\(299\) −2369.99 −0.458395
\(300\) 0 0
\(301\) 2631.10 0.503835
\(302\) −899.186 −0.171332
\(303\) 0 0
\(304\) 6533.31 1.23260
\(305\) 457.907 0.0859662
\(306\) 0 0
\(307\) −5134.47 −0.954528 −0.477264 0.878760i \(-0.658371\pi\)
−0.477264 + 0.878760i \(0.658371\pi\)
\(308\) −1153.08 −0.213321
\(309\) 0 0
\(310\) −1180.23 −0.216234
\(311\) 4555.82 0.830665 0.415332 0.909670i \(-0.363665\pi\)
0.415332 + 0.909670i \(0.363665\pi\)
\(312\) 0 0
\(313\) 6114.99 1.10428 0.552140 0.833752i \(-0.313811\pi\)
0.552140 + 0.833752i \(0.313811\pi\)
\(314\) −15972.2 −2.87058
\(315\) 0 0
\(316\) 9749.26 1.73557
\(317\) 5618.31 0.995444 0.497722 0.867337i \(-0.334170\pi\)
0.497722 + 0.867337i \(0.334170\pi\)
\(318\) 0 0
\(319\) −2298.92 −0.403495
\(320\) −4229.06 −0.738786
\(321\) 0 0
\(322\) 2223.46 0.384810
\(323\) 21497.0 3.70318
\(324\) 0 0
\(325\) 3071.79 0.524284
\(326\) −7876.41 −1.33814
\(327\) 0 0
\(328\) −14542.6 −2.44812
\(329\) −3526.56 −0.590958
\(330\) 0 0
\(331\) 2766.08 0.459329 0.229664 0.973270i \(-0.426237\pi\)
0.229664 + 0.973270i \(0.426237\pi\)
\(332\) −4223.11 −0.698112
\(333\) 0 0
\(334\) −7713.32 −1.26364
\(335\) −5805.41 −0.946817
\(336\) 0 0
\(337\) −2423.16 −0.391686 −0.195843 0.980635i \(-0.562744\pi\)
−0.195843 + 0.980635i \(0.562744\pi\)
\(338\) −4399.98 −0.708070
\(339\) 0 0
\(340\) 12464.9 1.98825
\(341\) 433.106 0.0687800
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 12566.5 1.96960
\(345\) 0 0
\(346\) 3358.72 0.521867
\(347\) 9699.44 1.50056 0.750278 0.661122i \(-0.229919\pi\)
0.750278 + 0.661122i \(0.229919\pi\)
\(348\) 0 0
\(349\) −3970.28 −0.608952 −0.304476 0.952520i \(-0.598481\pi\)
−0.304476 + 0.952520i \(0.598481\pi\)
\(350\) −2881.88 −0.440123
\(351\) 0 0
\(352\) 809.262 0.122539
\(353\) −9933.97 −1.49782 −0.748912 0.662669i \(-0.769423\pi\)
−0.748912 + 0.662669i \(0.769423\pi\)
\(354\) 0 0
\(355\) 4727.59 0.706802
\(356\) −15575.3 −2.31879
\(357\) 0 0
\(358\) 2085.89 0.307940
\(359\) 12895.5 1.89582 0.947911 0.318536i \(-0.103191\pi\)
0.947911 + 0.318536i \(0.103191\pi\)
\(360\) 0 0
\(361\) 19225.9 2.80302
\(362\) 435.432 0.0632205
\(363\) 0 0
\(364\) −3748.94 −0.539830
\(365\) 1734.43 0.248724
\(366\) 0 0
\(367\) 9626.00 1.36914 0.684568 0.728949i \(-0.259991\pi\)
0.684568 + 0.728949i \(0.259991\pi\)
\(368\) 2680.67 0.379726
\(369\) 0 0
\(370\) 5917.27 0.831416
\(371\) −313.772 −0.0439090
\(372\) 0 0
\(373\) 2947.54 0.409163 0.204581 0.978850i \(-0.434417\pi\)
0.204581 + 0.978850i \(0.434417\pi\)
\(374\) −7017.86 −0.970281
\(375\) 0 0
\(376\) −16843.4 −2.31019
\(377\) −7474.36 −1.02109
\(378\) 0 0
\(379\) −3086.33 −0.418296 −0.209148 0.977884i \(-0.567069\pi\)
−0.209148 + 0.977884i \(0.567069\pi\)
\(380\) 15125.2 2.04185
\(381\) 0 0
\(382\) −11196.0 −1.49958
\(383\) −8041.26 −1.07282 −0.536409 0.843958i \(-0.680219\pi\)
−0.536409 + 0.843958i \(0.680219\pi\)
\(384\) 0 0
\(385\) −481.534 −0.0637435
\(386\) 11117.2 1.46593
\(387\) 0 0
\(388\) 16724.3 2.18827
\(389\) 6313.27 0.822868 0.411434 0.911440i \(-0.365028\pi\)
0.411434 + 0.911440i \(0.365028\pi\)
\(390\) 0 0
\(391\) 8820.39 1.14083
\(392\) 1638.22 0.211078
\(393\) 0 0
\(394\) −10868.9 −1.38977
\(395\) 4071.36 0.518614
\(396\) 0 0
\(397\) 4285.76 0.541804 0.270902 0.962607i \(-0.412678\pi\)
0.270902 + 0.962607i \(0.412678\pi\)
\(398\) −2944.80 −0.370878
\(399\) 0 0
\(400\) −3474.47 −0.434308
\(401\) 951.273 0.118465 0.0592323 0.998244i \(-0.481135\pi\)
0.0592323 + 0.998244i \(0.481135\pi\)
\(402\) 0 0
\(403\) 1408.13 0.174055
\(404\) −5523.70 −0.680234
\(405\) 0 0
\(406\) 7012.26 0.857174
\(407\) −2171.45 −0.264458
\(408\) 0 0
\(409\) −15156.0 −1.83232 −0.916158 0.400818i \(-0.868726\pi\)
−0.916158 + 0.400818i \(0.868726\pi\)
\(410\) −13038.6 −1.57056
\(411\) 0 0
\(412\) −22060.7 −2.63799
\(413\) −4080.23 −0.486138
\(414\) 0 0
\(415\) −1763.60 −0.208607
\(416\) 2631.11 0.310098
\(417\) 0 0
\(418\) −8515.61 −0.996440
\(419\) 9558.95 1.11452 0.557261 0.830337i \(-0.311852\pi\)
0.557261 + 0.830337i \(0.311852\pi\)
\(420\) 0 0
\(421\) −5919.87 −0.685313 −0.342656 0.939461i \(-0.611327\pi\)
−0.342656 + 0.939461i \(0.611327\pi\)
\(422\) −2427.92 −0.280069
\(423\) 0 0
\(424\) −1498.62 −0.171650
\(425\) −11432.3 −1.30482
\(426\) 0 0
\(427\) 512.553 0.0580894
\(428\) −6079.01 −0.686543
\(429\) 0 0
\(430\) 11266.9 1.26358
\(431\) −14272.8 −1.59512 −0.797559 0.603241i \(-0.793876\pi\)
−0.797559 + 0.603241i \(0.793876\pi\)
\(432\) 0 0
\(433\) 3731.52 0.414147 0.207073 0.978325i \(-0.433606\pi\)
0.207073 + 0.978325i \(0.433606\pi\)
\(434\) −1321.08 −0.146114
\(435\) 0 0
\(436\) 10052.1 1.10415
\(437\) 10702.8 1.17159
\(438\) 0 0
\(439\) −186.159 −0.0202389 −0.0101194 0.999949i \(-0.503221\pi\)
−0.0101194 + 0.999949i \(0.503221\pi\)
\(440\) −2299.88 −0.249188
\(441\) 0 0
\(442\) −22816.8 −2.45539
\(443\) 7883.12 0.845459 0.422730 0.906256i \(-0.361072\pi\)
0.422730 + 0.906256i \(0.361072\pi\)
\(444\) 0 0
\(445\) −6504.35 −0.692889
\(446\) 7456.11 0.791608
\(447\) 0 0
\(448\) −4733.75 −0.499215
\(449\) 4736.80 0.497869 0.248935 0.968520i \(-0.419920\pi\)
0.248935 + 0.968520i \(0.419920\pi\)
\(450\) 0 0
\(451\) 4784.75 0.499568
\(452\) 10284.8 1.07026
\(453\) 0 0
\(454\) −628.942 −0.0650170
\(455\) −1565.59 −0.161309
\(456\) 0 0
\(457\) 6351.28 0.650110 0.325055 0.945695i \(-0.394617\pi\)
0.325055 + 0.945695i \(0.394617\pi\)
\(458\) −7696.27 −0.785203
\(459\) 0 0
\(460\) 6205.96 0.629031
\(461\) −10834.9 −1.09464 −0.547320 0.836923i \(-0.684352\pi\)
−0.547320 + 0.836923i \(0.684352\pi\)
\(462\) 0 0
\(463\) −6015.91 −0.603851 −0.301925 0.953332i \(-0.597629\pi\)
−0.301925 + 0.953332i \(0.597629\pi\)
\(464\) 8454.16 0.845850
\(465\) 0 0
\(466\) −10754.0 −1.06904
\(467\) −16477.9 −1.63278 −0.816389 0.577503i \(-0.804027\pi\)
−0.816389 + 0.577503i \(0.804027\pi\)
\(468\) 0 0
\(469\) −6498.22 −0.639787
\(470\) −15101.4 −1.48208
\(471\) 0 0
\(472\) −19487.8 −1.90042
\(473\) −4134.59 −0.401921
\(474\) 0 0
\(475\) −13872.2 −1.34000
\(476\) 13952.4 1.34351
\(477\) 0 0
\(478\) 14954.9 1.43101
\(479\) 3761.95 0.358847 0.179424 0.983772i \(-0.442577\pi\)
0.179424 + 0.983772i \(0.442577\pi\)
\(480\) 0 0
\(481\) −7059.90 −0.669239
\(482\) −3333.87 −0.315049
\(483\) 0 0
\(484\) 1811.98 0.170171
\(485\) 6984.19 0.653888
\(486\) 0 0
\(487\) −9632.57 −0.896290 −0.448145 0.893961i \(-0.647915\pi\)
−0.448145 + 0.893961i \(0.647915\pi\)
\(488\) 2448.03 0.227084
\(489\) 0 0
\(490\) 1468.79 0.135415
\(491\) 12411.6 1.14079 0.570393 0.821372i \(-0.306791\pi\)
0.570393 + 0.821372i \(0.306791\pi\)
\(492\) 0 0
\(493\) 27817.3 2.54124
\(494\) −27686.3 −2.52159
\(495\) 0 0
\(496\) −1592.72 −0.144184
\(497\) 5291.78 0.477603
\(498\) 0 0
\(499\) 9706.78 0.870811 0.435406 0.900234i \(-0.356605\pi\)
0.435406 + 0.900234i \(0.356605\pi\)
\(500\) −19749.8 −1.76648
\(501\) 0 0
\(502\) −6614.87 −0.588120
\(503\) −14127.9 −1.25235 −0.626175 0.779682i \(-0.715381\pi\)
−0.626175 + 0.779682i \(0.715381\pi\)
\(504\) 0 0
\(505\) −2306.74 −0.203264
\(506\) −3494.01 −0.306972
\(507\) 0 0
\(508\) 30819.5 2.69172
\(509\) −1981.02 −0.172509 −0.0862547 0.996273i \(-0.527490\pi\)
−0.0862547 + 0.996273i \(0.527490\pi\)
\(510\) 0 0
\(511\) 1941.42 0.168069
\(512\) −13795.5 −1.19078
\(513\) 0 0
\(514\) 27688.3 2.37603
\(515\) −9212.71 −0.788273
\(516\) 0 0
\(517\) 5541.73 0.471422
\(518\) 6623.42 0.561808
\(519\) 0 0
\(520\) −7477.48 −0.630594
\(521\) −7464.83 −0.627716 −0.313858 0.949470i \(-0.601622\pi\)
−0.313858 + 0.949470i \(0.601622\pi\)
\(522\) 0 0
\(523\) −1139.06 −0.0952347 −0.0476173 0.998866i \(-0.515163\pi\)
−0.0476173 + 0.998866i \(0.515163\pi\)
\(524\) −27031.3 −2.25357
\(525\) 0 0
\(526\) −15704.7 −1.30182
\(527\) −5240.65 −0.433181
\(528\) 0 0
\(529\) −7775.55 −0.639069
\(530\) −1343.63 −0.110120
\(531\) 0 0
\(532\) 16930.2 1.37973
\(533\) 15556.4 1.26421
\(534\) 0 0
\(535\) −2538.64 −0.205150
\(536\) −31036.5 −2.50107
\(537\) 0 0
\(538\) −27186.9 −2.17865
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −420.573 −0.0334230 −0.0167115 0.999860i \(-0.505320\pi\)
−0.0167115 + 0.999860i \(0.505320\pi\)
\(542\) 35972.5 2.85083
\(543\) 0 0
\(544\) −9792.20 −0.771759
\(545\) 4197.84 0.329937
\(546\) 0 0
\(547\) 16177.8 1.26456 0.632280 0.774740i \(-0.282119\pi\)
0.632280 + 0.774740i \(0.282119\pi\)
\(548\) −21389.7 −1.66738
\(549\) 0 0
\(550\) 4528.67 0.351096
\(551\) 33754.1 2.60975
\(552\) 0 0
\(553\) 4557.23 0.350440
\(554\) −42379.1 −3.25003
\(555\) 0 0
\(556\) 20993.6 1.60131
\(557\) −6605.27 −0.502467 −0.251234 0.967926i \(-0.580836\pi\)
−0.251234 + 0.967926i \(0.580836\pi\)
\(558\) 0 0
\(559\) −13442.6 −1.01710
\(560\) 1770.82 0.133626
\(561\) 0 0
\(562\) −16931.2 −1.27082
\(563\) 14912.2 1.11630 0.558149 0.829741i \(-0.311512\pi\)
0.558149 + 0.829741i \(0.311512\pi\)
\(564\) 0 0
\(565\) 4295.01 0.319810
\(566\) −1461.53 −0.108538
\(567\) 0 0
\(568\) 25274.3 1.86706
\(569\) 21190.9 1.56128 0.780642 0.624978i \(-0.214892\pi\)
0.780642 + 0.624978i \(0.214892\pi\)
\(570\) 0 0
\(571\) 8669.22 0.635368 0.317684 0.948197i \(-0.397095\pi\)
0.317684 + 0.948197i \(0.397095\pi\)
\(572\) 5891.20 0.430635
\(573\) 0 0
\(574\) −14594.6 −1.06127
\(575\) −5691.85 −0.412811
\(576\) 0 0
\(577\) −1289.88 −0.0930649 −0.0465325 0.998917i \(-0.514817\pi\)
−0.0465325 + 0.998917i \(0.514817\pi\)
\(578\) 61368.1 4.41622
\(579\) 0 0
\(580\) 19572.1 1.40118
\(581\) −1974.07 −0.140961
\(582\) 0 0
\(583\) 493.070 0.0350272
\(584\) 9272.50 0.657019
\(585\) 0 0
\(586\) 27690.2 1.95200
\(587\) 6734.31 0.473517 0.236759 0.971568i \(-0.423915\pi\)
0.236759 + 0.971568i \(0.423915\pi\)
\(588\) 0 0
\(589\) −6359.10 −0.444860
\(590\) −17472.4 −1.21920
\(591\) 0 0
\(592\) 7985.37 0.554386
\(593\) −8224.97 −0.569577 −0.284789 0.958590i \(-0.591923\pi\)
−0.284789 + 0.958590i \(0.591923\pi\)
\(594\) 0 0
\(595\) 5826.64 0.401461
\(596\) −22621.1 −1.55469
\(597\) 0 0
\(598\) −11359.9 −0.776824
\(599\) 5061.47 0.345252 0.172626 0.984987i \(-0.444775\pi\)
0.172626 + 0.984987i \(0.444775\pi\)
\(600\) 0 0
\(601\) 7471.70 0.507117 0.253558 0.967320i \(-0.418399\pi\)
0.253558 + 0.967320i \(0.418399\pi\)
\(602\) 12611.5 0.853830
\(603\) 0 0
\(604\) −2809.24 −0.189249
\(605\) 756.697 0.0508498
\(606\) 0 0
\(607\) −6029.48 −0.403178 −0.201589 0.979470i \(-0.564611\pi\)
−0.201589 + 0.979470i \(0.564611\pi\)
\(608\) −11882.0 −0.792566
\(609\) 0 0
\(610\) 2194.85 0.145684
\(611\) 18017.5 1.19298
\(612\) 0 0
\(613\) 29623.3 1.95183 0.975916 0.218148i \(-0.0700014\pi\)
0.975916 + 0.218148i \(0.0700014\pi\)
\(614\) −24610.7 −1.61760
\(615\) 0 0
\(616\) −2574.35 −0.168382
\(617\) −26531.3 −1.73113 −0.865567 0.500793i \(-0.833042\pi\)
−0.865567 + 0.500793i \(0.833042\pi\)
\(618\) 0 0
\(619\) 16416.9 1.06599 0.532997 0.846117i \(-0.321066\pi\)
0.532997 + 0.846117i \(0.321066\pi\)
\(620\) −3687.28 −0.238846
\(621\) 0 0
\(622\) 21837.1 1.40770
\(623\) −7280.57 −0.468202
\(624\) 0 0
\(625\) 2488.74 0.159279
\(626\) 29310.5 1.87138
\(627\) 0 0
\(628\) −49900.4 −3.17077
\(629\) 26274.8 1.66557
\(630\) 0 0
\(631\) −19608.7 −1.23710 −0.618549 0.785746i \(-0.712279\pi\)
−0.618549 + 0.785746i \(0.712279\pi\)
\(632\) 21766.0 1.36995
\(633\) 0 0
\(634\) 26929.9 1.68694
\(635\) 12870.5 0.804329
\(636\) 0 0
\(637\) −1752.42 −0.109001
\(638\) −11019.3 −0.683788
\(639\) 0 0
\(640\) −16590.2 −1.02466
\(641\) 5926.25 0.365168 0.182584 0.983190i \(-0.441554\pi\)
0.182584 + 0.983190i \(0.441554\pi\)
\(642\) 0 0
\(643\) −21124.6 −1.29560 −0.647801 0.761810i \(-0.724311\pi\)
−0.647801 + 0.761810i \(0.724311\pi\)
\(644\) 6946.57 0.425051
\(645\) 0 0
\(646\) 103040. 6.27564
\(647\) 19495.9 1.18464 0.592321 0.805702i \(-0.298212\pi\)
0.592321 + 0.805702i \(0.298212\pi\)
\(648\) 0 0
\(649\) 6411.79 0.387804
\(650\) 14723.8 0.888485
\(651\) 0 0
\(652\) −24607.6 −1.47808
\(653\) 6274.73 0.376032 0.188016 0.982166i \(-0.439794\pi\)
0.188016 + 0.982166i \(0.439794\pi\)
\(654\) 0 0
\(655\) −11288.5 −0.673401
\(656\) −17595.7 −1.04725
\(657\) 0 0
\(658\) −16903.6 −1.00148
\(659\) 23654.7 1.39827 0.699133 0.714991i \(-0.253569\pi\)
0.699133 + 0.714991i \(0.253569\pi\)
\(660\) 0 0
\(661\) −22414.0 −1.31891 −0.659457 0.751742i \(-0.729214\pi\)
−0.659457 + 0.751742i \(0.729214\pi\)
\(662\) 13258.5 0.778407
\(663\) 0 0
\(664\) −9428.44 −0.551046
\(665\) 7070.16 0.412284
\(666\) 0 0
\(667\) 13849.5 0.803983
\(668\) −24098.0 −1.39578
\(669\) 0 0
\(670\) −27826.7 −1.60453
\(671\) −805.441 −0.0463393
\(672\) 0 0
\(673\) 2434.10 0.139417 0.0697085 0.997567i \(-0.477793\pi\)
0.0697085 + 0.997567i \(0.477793\pi\)
\(674\) −11614.8 −0.663775
\(675\) 0 0
\(676\) −13746.5 −0.782116
\(677\) −4575.10 −0.259728 −0.129864 0.991532i \(-0.541454\pi\)
−0.129864 + 0.991532i \(0.541454\pi\)
\(678\) 0 0
\(679\) 7817.67 0.441848
\(680\) 27828.9 1.56940
\(681\) 0 0
\(682\) 2075.98 0.116559
\(683\) −5093.80 −0.285372 −0.142686 0.989768i \(-0.545574\pi\)
−0.142686 + 0.989768i \(0.545574\pi\)
\(684\) 0 0
\(685\) −8932.51 −0.498239
\(686\) 1644.08 0.0915032
\(687\) 0 0
\(688\) 15204.7 0.842551
\(689\) 1603.09 0.0886400
\(690\) 0 0
\(691\) 20263.2 1.11556 0.557778 0.829990i \(-0.311654\pi\)
0.557778 + 0.829990i \(0.311654\pi\)
\(692\) 10493.3 0.576441
\(693\) 0 0
\(694\) 46491.6 2.54294
\(695\) 8767.08 0.478495
\(696\) 0 0
\(697\) −57896.3 −3.14631
\(698\) −19030.5 −1.03197
\(699\) 0 0
\(700\) −9003.59 −0.486148
\(701\) 7972.79 0.429569 0.214785 0.976661i \(-0.431095\pi\)
0.214785 + 0.976661i \(0.431095\pi\)
\(702\) 0 0
\(703\) 31882.4 1.71048
\(704\) 7438.74 0.398236
\(705\) 0 0
\(706\) −47615.8 −2.53831
\(707\) −2582.02 −0.137351
\(708\) 0 0
\(709\) 13085.1 0.693120 0.346560 0.938028i \(-0.387350\pi\)
0.346560 + 0.938028i \(0.387350\pi\)
\(710\) 22660.4 1.19779
\(711\) 0 0
\(712\) −34773.1 −1.83030
\(713\) −2609.19 −0.137047
\(714\) 0 0
\(715\) 2460.21 0.128680
\(716\) 6516.76 0.340143
\(717\) 0 0
\(718\) 61811.2 3.21278
\(719\) 1593.98 0.0826780 0.0413390 0.999145i \(-0.486838\pi\)
0.0413390 + 0.999145i \(0.486838\pi\)
\(720\) 0 0
\(721\) −10312.1 −0.532655
\(722\) 92154.2 4.75017
\(723\) 0 0
\(724\) 1360.38 0.0698318
\(725\) −17950.7 −0.919547
\(726\) 0 0
\(727\) 34397.6 1.75480 0.877398 0.479763i \(-0.159277\pi\)
0.877398 + 0.479763i \(0.159277\pi\)
\(728\) −8369.83 −0.426108
\(729\) 0 0
\(730\) 8313.54 0.421504
\(731\) 50029.2 2.53132
\(732\) 0 0
\(733\) 16008.0 0.806645 0.403322 0.915058i \(-0.367855\pi\)
0.403322 + 0.915058i \(0.367855\pi\)
\(734\) 46139.6 2.32022
\(735\) 0 0
\(736\) −4875.29 −0.244165
\(737\) 10211.5 0.510373
\(738\) 0 0
\(739\) −21.8580 −0.00108804 −0.000544018 1.00000i \(-0.500173\pi\)
−0.000544018 1.00000i \(0.500173\pi\)
\(740\) 18486.8 0.918362
\(741\) 0 0
\(742\) −1503.98 −0.0744109
\(743\) −23767.2 −1.17353 −0.586767 0.809756i \(-0.699600\pi\)
−0.586767 + 0.809756i \(0.699600\pi\)
\(744\) 0 0
\(745\) −9446.73 −0.464566
\(746\) 14128.2 0.693393
\(747\) 0 0
\(748\) −21925.3 −1.07175
\(749\) −2841.60 −0.138624
\(750\) 0 0
\(751\) 15151.8 0.736215 0.368108 0.929783i \(-0.380006\pi\)
0.368108 + 0.929783i \(0.380006\pi\)
\(752\) −20379.4 −0.988245
\(753\) 0 0
\(754\) −35826.3 −1.73040
\(755\) −1173.16 −0.0565506
\(756\) 0 0
\(757\) −15635.8 −0.750716 −0.375358 0.926880i \(-0.622480\pi\)
−0.375358 + 0.926880i \(0.622480\pi\)
\(758\) −14793.5 −0.708870
\(759\) 0 0
\(760\) 33768.2 1.61171
\(761\) −11984.8 −0.570892 −0.285446 0.958395i \(-0.592142\pi\)
−0.285446 + 0.958395i \(0.592142\pi\)
\(762\) 0 0
\(763\) 4698.81 0.222947
\(764\) −34978.8 −1.65640
\(765\) 0 0
\(766\) −38543.6 −1.81806
\(767\) 20846.3 0.981378
\(768\) 0 0
\(769\) −79.6326 −0.00373423 −0.00186712 0.999998i \(-0.500594\pi\)
−0.00186712 + 0.999998i \(0.500594\pi\)
\(770\) −2308.11 −0.108024
\(771\) 0 0
\(772\) 34732.4 1.61923
\(773\) −6298.84 −0.293083 −0.146542 0.989205i \(-0.546814\pi\)
−0.146542 + 0.989205i \(0.546814\pi\)
\(774\) 0 0
\(775\) 3381.82 0.156747
\(776\) 37338.4 1.72728
\(777\) 0 0
\(778\) 30261.0 1.39448
\(779\) −70252.5 −3.23114
\(780\) 0 0
\(781\) −8315.65 −0.380995
\(782\) 42278.1 1.93333
\(783\) 0 0
\(784\) 1982.14 0.0902944
\(785\) −20838.8 −0.947474
\(786\) 0 0
\(787\) 18770.7 0.850193 0.425096 0.905148i \(-0.360240\pi\)
0.425096 + 0.905148i \(0.360240\pi\)
\(788\) −33956.8 −1.53510
\(789\) 0 0
\(790\) 19515.0 0.878876
\(791\) 4807.58 0.216103
\(792\) 0 0
\(793\) −2618.69 −0.117266
\(794\) 20542.6 0.918175
\(795\) 0 0
\(796\) −9200.17 −0.409662
\(797\) 7740.06 0.343999 0.171999 0.985097i \(-0.444977\pi\)
0.171999 + 0.985097i \(0.444977\pi\)
\(798\) 0 0
\(799\) −67055.8 −2.96904
\(800\) 6318.96 0.279261
\(801\) 0 0
\(802\) 4559.67 0.200758
\(803\) −3050.80 −0.134073
\(804\) 0 0
\(805\) 2900.94 0.127012
\(806\) 6749.50 0.294964
\(807\) 0 0
\(808\) −12332.1 −0.536934
\(809\) 6261.69 0.272125 0.136063 0.990700i \(-0.456555\pi\)
0.136063 + 0.990700i \(0.456555\pi\)
\(810\) 0 0
\(811\) −30638.5 −1.32659 −0.663294 0.748359i \(-0.730842\pi\)
−0.663294 + 0.748359i \(0.730842\pi\)
\(812\) 21907.8 0.946813
\(813\) 0 0
\(814\) −10408.2 −0.448168
\(815\) −10276.3 −0.441672
\(816\) 0 0
\(817\) 60706.4 2.59957
\(818\) −72646.3 −3.10516
\(819\) 0 0
\(820\) −40735.4 −1.73481
\(821\) −19473.1 −0.827790 −0.413895 0.910325i \(-0.635832\pi\)
−0.413895 + 0.910325i \(0.635832\pi\)
\(822\) 0 0
\(823\) 32950.7 1.39561 0.697807 0.716286i \(-0.254159\pi\)
0.697807 + 0.716286i \(0.254159\pi\)
\(824\) −49252.4 −2.08227
\(825\) 0 0
\(826\) −19557.5 −0.823840
\(827\) 35537.8 1.49428 0.747140 0.664667i \(-0.231427\pi\)
0.747140 + 0.664667i \(0.231427\pi\)
\(828\) 0 0
\(829\) −23814.6 −0.997727 −0.498863 0.866681i \(-0.666249\pi\)
−0.498863 + 0.866681i \(0.666249\pi\)
\(830\) −8453.34 −0.353518
\(831\) 0 0
\(832\) 24185.2 1.00778
\(833\) 6521.99 0.271277
\(834\) 0 0
\(835\) −10063.5 −0.417081
\(836\) −26604.5 −1.10064
\(837\) 0 0
\(838\) 45818.2 1.88874
\(839\) −2519.64 −0.103680 −0.0518402 0.998655i \(-0.516509\pi\)
−0.0518402 + 0.998655i \(0.516509\pi\)
\(840\) 0 0
\(841\) 19289.1 0.790892
\(842\) −28375.3 −1.16137
\(843\) 0 0
\(844\) −7585.33 −0.309358
\(845\) −5740.63 −0.233708
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −1813.24 −0.0734279
\(849\) 0 0
\(850\) −54797.6 −2.21123
\(851\) 13081.6 0.526946
\(852\) 0 0
\(853\) 35395.1 1.42076 0.710379 0.703819i \(-0.248523\pi\)
0.710379 + 0.703819i \(0.248523\pi\)
\(854\) 2456.79 0.0984420
\(855\) 0 0
\(856\) −13571.9 −0.541914
\(857\) 19373.0 0.772193 0.386096 0.922458i \(-0.373823\pi\)
0.386096 + 0.922458i \(0.373823\pi\)
\(858\) 0 0
\(859\) 20398.7 0.810237 0.405119 0.914264i \(-0.367230\pi\)
0.405119 + 0.914264i \(0.367230\pi\)
\(860\) 35200.2 1.39572
\(861\) 0 0
\(862\) −68412.7 −2.70319
\(863\) 16248.7 0.640916 0.320458 0.947263i \(-0.396163\pi\)
0.320458 + 0.947263i \(0.396163\pi\)
\(864\) 0 0
\(865\) 4382.10 0.172249
\(866\) 17886.1 0.701839
\(867\) 0 0
\(868\) −4127.32 −0.161394
\(869\) −7161.37 −0.279554
\(870\) 0 0
\(871\) 33200.1 1.29155
\(872\) 22442.2 0.871547
\(873\) 0 0
\(874\) 51301.1 1.98545
\(875\) −9231.95 −0.356682
\(876\) 0 0
\(877\) −21500.2 −0.827833 −0.413916 0.910315i \(-0.635839\pi\)
−0.413916 + 0.910315i \(0.635839\pi\)
\(878\) −892.301 −0.0342981
\(879\) 0 0
\(880\) −2782.71 −0.106597
\(881\) −28093.4 −1.07434 −0.537169 0.843475i \(-0.680506\pi\)
−0.537169 + 0.843475i \(0.680506\pi\)
\(882\) 0 0
\(883\) 17244.0 0.657198 0.328599 0.944469i \(-0.393423\pi\)
0.328599 + 0.944469i \(0.393423\pi\)
\(884\) −71284.4 −2.71217
\(885\) 0 0
\(886\) 37785.6 1.43277
\(887\) 17179.4 0.650312 0.325156 0.945660i \(-0.394583\pi\)
0.325156 + 0.945660i \(0.394583\pi\)
\(888\) 0 0
\(889\) 14406.4 0.543504
\(890\) −31176.8 −1.17421
\(891\) 0 0
\(892\) 23294.4 0.874390
\(893\) −81366.8 −3.04909
\(894\) 0 0
\(895\) 2721.44 0.101640
\(896\) −18570.1 −0.692391
\(897\) 0 0
\(898\) 22704.6 0.843721
\(899\) −8228.73 −0.305276
\(900\) 0 0
\(901\) −5966.23 −0.220604
\(902\) 22934.4 0.846600
\(903\) 0 0
\(904\) 22961.7 0.844795
\(905\) 568.105 0.0208668
\(906\) 0 0
\(907\) −16174.7 −0.592141 −0.296070 0.955166i \(-0.595676\pi\)
−0.296070 + 0.955166i \(0.595676\pi\)
\(908\) −1964.95 −0.0718161
\(909\) 0 0
\(910\) −7504.22 −0.273365
\(911\) −14781.8 −0.537590 −0.268795 0.963197i \(-0.586625\pi\)
−0.268795 + 0.963197i \(0.586625\pi\)
\(912\) 0 0
\(913\) 3102.10 0.112448
\(914\) 30443.1 1.10172
\(915\) 0 0
\(916\) −24044.8 −0.867316
\(917\) −12635.6 −0.455033
\(918\) 0 0
\(919\) −36700.1 −1.31733 −0.658664 0.752438i \(-0.728878\pi\)
−0.658664 + 0.752438i \(0.728878\pi\)
\(920\) 13855.3 0.496518
\(921\) 0 0
\(922\) −51933.9 −1.85505
\(923\) −27036.2 −0.964148
\(924\) 0 0
\(925\) −16955.3 −0.602689
\(926\) −28835.6 −1.02332
\(927\) 0 0
\(928\) −15375.5 −0.543884
\(929\) −9845.54 −0.347709 −0.173855 0.984771i \(-0.555622\pi\)
−0.173855 + 0.984771i \(0.555622\pi\)
\(930\) 0 0
\(931\) 7913.90 0.278590
\(932\) −33597.8 −1.18083
\(933\) 0 0
\(934\) −78982.5 −2.76701
\(935\) −9156.15 −0.320255
\(936\) 0 0
\(937\) −2671.44 −0.0931401 −0.0465700 0.998915i \(-0.514829\pi\)
−0.0465700 + 0.998915i \(0.514829\pi\)
\(938\) −31147.5 −1.08422
\(939\) 0 0
\(940\) −47180.0 −1.63707
\(941\) −17228.1 −0.596834 −0.298417 0.954436i \(-0.596459\pi\)
−0.298417 + 0.954436i \(0.596459\pi\)
\(942\) 0 0
\(943\) −28825.1 −0.995412
\(944\) −23579.0 −0.812957
\(945\) 0 0
\(946\) −19818.1 −0.681121
\(947\) −40042.3 −1.37402 −0.687012 0.726646i \(-0.741078\pi\)
−0.687012 + 0.726646i \(0.741078\pi\)
\(948\) 0 0
\(949\) −9918.90 −0.339284
\(950\) −66492.4 −2.27084
\(951\) 0 0
\(952\) 31150.0 1.06048
\(953\) −37714.4 −1.28194 −0.640970 0.767566i \(-0.721468\pi\)
−0.640970 + 0.767566i \(0.721468\pi\)
\(954\) 0 0
\(955\) −14607.4 −0.494957
\(956\) 46722.2 1.58065
\(957\) 0 0
\(958\) 18031.9 0.608125
\(959\) −9998.51 −0.336672
\(960\) 0 0
\(961\) −28240.7 −0.947962
\(962\) −33839.7 −1.13413
\(963\) 0 0
\(964\) −10415.7 −0.347995
\(965\) 14504.5 0.483852
\(966\) 0 0
\(967\) 30455.1 1.01279 0.506397 0.862301i \(-0.330977\pi\)
0.506397 + 0.862301i \(0.330977\pi\)
\(968\) 4045.40 0.134322
\(969\) 0 0
\(970\) 33476.8 1.10812
\(971\) −27850.4 −0.920456 −0.460228 0.887801i \(-0.652232\pi\)
−0.460228 + 0.887801i \(0.652232\pi\)
\(972\) 0 0
\(973\) 9813.33 0.323331
\(974\) −46171.1 −1.51891
\(975\) 0 0
\(976\) 2961.96 0.0971416
\(977\) 18375.9 0.601736 0.300868 0.953666i \(-0.402724\pi\)
0.300868 + 0.953666i \(0.402724\pi\)
\(978\) 0 0
\(979\) 11440.9 0.373496
\(980\) 4588.82 0.149576
\(981\) 0 0
\(982\) 59491.5 1.93325
\(983\) −20597.9 −0.668334 −0.334167 0.942514i \(-0.608455\pi\)
−0.334167 + 0.942514i \(0.608455\pi\)
\(984\) 0 0
\(985\) −14180.6 −0.458713
\(986\) 133335. 4.30654
\(987\) 0 0
\(988\) −86497.9 −2.78529
\(989\) 24908.3 0.800846
\(990\) 0 0
\(991\) 40687.6 1.30422 0.652111 0.758124i \(-0.273884\pi\)
0.652111 + 0.758124i \(0.273884\pi\)
\(992\) 2896.66 0.0927107
\(993\) 0 0
\(994\) 25364.7 0.809376
\(995\) −3842.06 −0.122413
\(996\) 0 0
\(997\) 9152.42 0.290732 0.145366 0.989378i \(-0.453564\pi\)
0.145366 + 0.989378i \(0.453564\pi\)
\(998\) 46526.8 1.47573
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.p.1.5 5
3.2 odd 2 231.4.a.k.1.1 5
21.20 even 2 1617.4.a.n.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.k.1.1 5 3.2 odd 2
693.4.a.p.1.5 5 1.1 even 1 trivial
1617.4.a.n.1.1 5 21.20 even 2