Properties

Label 693.4.a.p.1.4
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.63074\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.63074 q^{2} +5.18226 q^{4} -21.1113 q^{5} +7.00000 q^{7} -10.2305 q^{8} +O(q^{10})\) \(q+3.63074 q^{2} +5.18226 q^{4} -21.1113 q^{5} +7.00000 q^{7} -10.2305 q^{8} -76.6494 q^{10} -11.0000 q^{11} +87.3602 q^{13} +25.4152 q^{14} -78.6023 q^{16} +28.2691 q^{17} -97.9284 q^{19} -109.404 q^{20} -39.9381 q^{22} +112.065 q^{23} +320.685 q^{25} +317.182 q^{26} +36.2758 q^{28} -14.9213 q^{29} +138.440 q^{31} -203.540 q^{32} +102.638 q^{34} -147.779 q^{35} +206.944 q^{37} -355.552 q^{38} +215.978 q^{40} -321.063 q^{41} +285.198 q^{43} -57.0048 q^{44} +406.877 q^{46} +303.300 q^{47} +49.0000 q^{49} +1164.32 q^{50} +452.723 q^{52} +554.639 q^{53} +232.224 q^{55} -71.6134 q^{56} -54.1752 q^{58} +693.110 q^{59} +156.761 q^{61} +502.638 q^{62} -110.184 q^{64} -1844.28 q^{65} +584.667 q^{67} +146.498 q^{68} -536.546 q^{70} -363.745 q^{71} -747.424 q^{73} +751.360 q^{74} -507.490 q^{76} -77.0000 q^{77} +419.344 q^{79} +1659.39 q^{80} -1165.70 q^{82} -1178.20 q^{83} -596.796 q^{85} +1035.48 q^{86} +112.535 q^{88} +397.908 q^{89} +611.521 q^{91} +580.748 q^{92} +1101.20 q^{94} +2067.39 q^{95} -1333.21 q^{97} +177.906 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 21 q^{4} - 21 q^{5} + 35 q^{7} + 42 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + q^{2} + 21 q^{4} - 21 q^{5} + 35 q^{7} + 42 q^{8} - 23 q^{10} - 55 q^{11} + 101 q^{13} + 7 q^{14} - 7 q^{16} + 20 q^{17} + 237 q^{19} - 85 q^{20} - 11 q^{22} + 80 q^{23} + 486 q^{25} - 165 q^{26} + 147 q^{28} + 11 q^{29} + 316 q^{31} - 453 q^{32} + 936 q^{34} - 147 q^{35} + 319 q^{37} - 89 q^{38} + 624 q^{40} - 1190 q^{41} + 88 q^{43} - 231 q^{44} + 1000 q^{46} - 377 q^{47} + 245 q^{49} + 644 q^{50} + 1001 q^{52} + 992 q^{53} + 231 q^{55} + 294 q^{56} + 721 q^{58} - 71 q^{59} - 574 q^{61} - 272 q^{62} - 1380 q^{64} - 589 q^{65} - 527 q^{67} + 2974 q^{68} - 161 q^{70} + 1156 q^{71} + 1061 q^{73} + 1609 q^{74} + 2399 q^{76} - 385 q^{77} + 588 q^{79} + 1643 q^{80} - 2602 q^{82} + 212 q^{83} + 1918 q^{85} + 4760 q^{86} - 462 q^{88} - 1030 q^{89} + 707 q^{91} + 1174 q^{92} - 1799 q^{94} + 3593 q^{95} + 2488 q^{97} + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.63074 1.28366 0.641830 0.766847i \(-0.278176\pi\)
0.641830 + 0.766847i \(0.278176\pi\)
\(3\) 0 0
\(4\) 5.18226 0.647782
\(5\) −21.1113 −1.88825 −0.944124 0.329590i \(-0.893089\pi\)
−0.944124 + 0.329590i \(0.893089\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −10.2305 −0.452128
\(9\) 0 0
\(10\) −76.6494 −2.42387
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 87.3602 1.86380 0.931898 0.362719i \(-0.118152\pi\)
0.931898 + 0.362719i \(0.118152\pi\)
\(14\) 25.4152 0.485178
\(15\) 0 0
\(16\) −78.6023 −1.22816
\(17\) 28.2691 0.403309 0.201655 0.979457i \(-0.435368\pi\)
0.201655 + 0.979457i \(0.435368\pi\)
\(18\) 0 0
\(19\) −97.9284 −1.18244 −0.591219 0.806511i \(-0.701353\pi\)
−0.591219 + 0.806511i \(0.701353\pi\)
\(20\) −109.404 −1.22317
\(21\) 0 0
\(22\) −39.9381 −0.387038
\(23\) 112.065 1.01596 0.507980 0.861369i \(-0.330392\pi\)
0.507980 + 0.861369i \(0.330392\pi\)
\(24\) 0 0
\(25\) 320.685 2.56548
\(26\) 317.182 2.39248
\(27\) 0 0
\(28\) 36.2758 0.244839
\(29\) −14.9213 −0.0955451 −0.0477725 0.998858i \(-0.515212\pi\)
−0.0477725 + 0.998858i \(0.515212\pi\)
\(30\) 0 0
\(31\) 138.440 0.802081 0.401040 0.916060i \(-0.368649\pi\)
0.401040 + 0.916060i \(0.368649\pi\)
\(32\) −203.540 −1.12441
\(33\) 0 0
\(34\) 102.638 0.517712
\(35\) −147.779 −0.713691
\(36\) 0 0
\(37\) 206.944 0.919498 0.459749 0.888049i \(-0.347939\pi\)
0.459749 + 0.888049i \(0.347939\pi\)
\(38\) −355.552 −1.51785
\(39\) 0 0
\(40\) 215.978 0.853729
\(41\) −321.063 −1.22297 −0.611483 0.791257i \(-0.709427\pi\)
−0.611483 + 0.791257i \(0.709427\pi\)
\(42\) 0 0
\(43\) 285.198 1.01145 0.505724 0.862696i \(-0.331226\pi\)
0.505724 + 0.862696i \(0.331226\pi\)
\(44\) −57.0048 −0.195314
\(45\) 0 0
\(46\) 406.877 1.30415
\(47\) 303.300 0.941293 0.470647 0.882322i \(-0.344021\pi\)
0.470647 + 0.882322i \(0.344021\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 1164.32 3.29320
\(51\) 0 0
\(52\) 452.723 1.20733
\(53\) 554.639 1.43746 0.718732 0.695287i \(-0.244723\pi\)
0.718732 + 0.695287i \(0.244723\pi\)
\(54\) 0 0
\(55\) 232.224 0.569328
\(56\) −71.6134 −0.170888
\(57\) 0 0
\(58\) −54.1752 −0.122647
\(59\) 693.110 1.52941 0.764705 0.644380i \(-0.222885\pi\)
0.764705 + 0.644380i \(0.222885\pi\)
\(60\) 0 0
\(61\) 156.761 0.329037 0.164518 0.986374i \(-0.447393\pi\)
0.164518 + 0.986374i \(0.447393\pi\)
\(62\) 502.638 1.02960
\(63\) 0 0
\(64\) −110.184 −0.215203
\(65\) −1844.28 −3.51931
\(66\) 0 0
\(67\) 584.667 1.06610 0.533048 0.846085i \(-0.321047\pi\)
0.533048 + 0.846085i \(0.321047\pi\)
\(68\) 146.498 0.261257
\(69\) 0 0
\(70\) −536.546 −0.916136
\(71\) −363.745 −0.608008 −0.304004 0.952671i \(-0.598324\pi\)
−0.304004 + 0.952671i \(0.598324\pi\)
\(72\) 0 0
\(73\) −747.424 −1.19835 −0.599173 0.800619i \(-0.704504\pi\)
−0.599173 + 0.800619i \(0.704504\pi\)
\(74\) 751.360 1.18032
\(75\) 0 0
\(76\) −507.490 −0.765962
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 419.344 0.597213 0.298607 0.954376i \(-0.403478\pi\)
0.298607 + 0.954376i \(0.403478\pi\)
\(80\) 1659.39 2.31907
\(81\) 0 0
\(82\) −1165.70 −1.56987
\(83\) −1178.20 −1.55812 −0.779061 0.626948i \(-0.784304\pi\)
−0.779061 + 0.626948i \(0.784304\pi\)
\(84\) 0 0
\(85\) −596.796 −0.761548
\(86\) 1035.48 1.29835
\(87\) 0 0
\(88\) 112.535 0.136322
\(89\) 397.908 0.473911 0.236956 0.971520i \(-0.423850\pi\)
0.236956 + 0.971520i \(0.423850\pi\)
\(90\) 0 0
\(91\) 611.521 0.704449
\(92\) 580.748 0.658121
\(93\) 0 0
\(94\) 1101.20 1.20830
\(95\) 2067.39 2.23274
\(96\) 0 0
\(97\) −1333.21 −1.39553 −0.697766 0.716325i \(-0.745823\pi\)
−0.697766 + 0.716325i \(0.745823\pi\)
\(98\) 177.906 0.183380
\(99\) 0 0
\(100\) 1661.87 1.66187
\(101\) −747.399 −0.736326 −0.368163 0.929761i \(-0.620013\pi\)
−0.368163 + 0.929761i \(0.620013\pi\)
\(102\) 0 0
\(103\) 548.716 0.524918 0.262459 0.964943i \(-0.415467\pi\)
0.262459 + 0.964943i \(0.415467\pi\)
\(104\) −893.737 −0.842674
\(105\) 0 0
\(106\) 2013.75 1.84521
\(107\) −273.875 −0.247444 −0.123722 0.992317i \(-0.539483\pi\)
−0.123722 + 0.992317i \(0.539483\pi\)
\(108\) 0 0
\(109\) 2026.77 1.78100 0.890500 0.454983i \(-0.150355\pi\)
0.890500 + 0.454983i \(0.150355\pi\)
\(110\) 843.144 0.730824
\(111\) 0 0
\(112\) −550.216 −0.464201
\(113\) 1048.04 0.872490 0.436245 0.899828i \(-0.356308\pi\)
0.436245 + 0.899828i \(0.356308\pi\)
\(114\) 0 0
\(115\) −2365.83 −1.91839
\(116\) −77.3258 −0.0618924
\(117\) 0 0
\(118\) 2516.50 1.96324
\(119\) 197.884 0.152437
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 569.160 0.422371
\(123\) 0 0
\(124\) 717.431 0.519574
\(125\) −4131.16 −2.95602
\(126\) 0 0
\(127\) −905.819 −0.632901 −0.316451 0.948609i \(-0.602491\pi\)
−0.316451 + 0.948609i \(0.602491\pi\)
\(128\) 1228.27 0.848166
\(129\) 0 0
\(130\) −6696.11 −4.51760
\(131\) −1887.45 −1.25883 −0.629416 0.777069i \(-0.716706\pi\)
−0.629416 + 0.777069i \(0.716706\pi\)
\(132\) 0 0
\(133\) −685.499 −0.446919
\(134\) 2122.77 1.36850
\(135\) 0 0
\(136\) −289.206 −0.182347
\(137\) −690.753 −0.430767 −0.215383 0.976530i \(-0.569100\pi\)
−0.215383 + 0.976530i \(0.569100\pi\)
\(138\) 0 0
\(139\) −1466.05 −0.894592 −0.447296 0.894386i \(-0.647613\pi\)
−0.447296 + 0.894386i \(0.647613\pi\)
\(140\) −765.828 −0.462316
\(141\) 0 0
\(142\) −1320.66 −0.780476
\(143\) −960.962 −0.561956
\(144\) 0 0
\(145\) 315.006 0.180413
\(146\) −2713.70 −1.53827
\(147\) 0 0
\(148\) 1072.44 0.595634
\(149\) −1367.88 −0.752088 −0.376044 0.926602i \(-0.622716\pi\)
−0.376044 + 0.926602i \(0.622716\pi\)
\(150\) 0 0
\(151\) 93.9161 0.0506145 0.0253072 0.999680i \(-0.491944\pi\)
0.0253072 + 0.999680i \(0.491944\pi\)
\(152\) 1001.85 0.534613
\(153\) 0 0
\(154\) −279.567 −0.146287
\(155\) −2922.64 −1.51453
\(156\) 0 0
\(157\) −72.3063 −0.0367558 −0.0183779 0.999831i \(-0.505850\pi\)
−0.0183779 + 0.999831i \(0.505850\pi\)
\(158\) 1522.53 0.766619
\(159\) 0 0
\(160\) 4296.99 2.12317
\(161\) 784.453 0.383997
\(162\) 0 0
\(163\) 34.3598 0.0165108 0.00825542 0.999966i \(-0.497372\pi\)
0.00825542 + 0.999966i \(0.497372\pi\)
\(164\) −1663.83 −0.792216
\(165\) 0 0
\(166\) −4277.73 −2.00010
\(167\) −379.079 −0.175653 −0.0878263 0.996136i \(-0.527992\pi\)
−0.0878263 + 0.996136i \(0.527992\pi\)
\(168\) 0 0
\(169\) 5434.80 2.47374
\(170\) −2166.81 −0.977569
\(171\) 0 0
\(172\) 1477.97 0.655198
\(173\) 1398.29 0.614507 0.307253 0.951628i \(-0.400590\pi\)
0.307253 + 0.951628i \(0.400590\pi\)
\(174\) 0 0
\(175\) 2244.80 0.969661
\(176\) 864.625 0.370304
\(177\) 0 0
\(178\) 1444.70 0.608341
\(179\) 2591.03 1.08191 0.540956 0.841051i \(-0.318062\pi\)
0.540956 + 0.841051i \(0.318062\pi\)
\(180\) 0 0
\(181\) 3408.35 1.39967 0.699837 0.714303i \(-0.253256\pi\)
0.699837 + 0.714303i \(0.253256\pi\)
\(182\) 2220.27 0.904273
\(183\) 0 0
\(184\) −1146.48 −0.459344
\(185\) −4368.85 −1.73624
\(186\) 0 0
\(187\) −310.960 −0.121602
\(188\) 1571.78 0.609753
\(189\) 0 0
\(190\) 7506.16 2.86607
\(191\) 2785.74 1.05533 0.527667 0.849451i \(-0.323067\pi\)
0.527667 + 0.849451i \(0.323067\pi\)
\(192\) 0 0
\(193\) −4931.75 −1.83935 −0.919677 0.392676i \(-0.871549\pi\)
−0.919677 + 0.392676i \(0.871549\pi\)
\(194\) −4840.53 −1.79139
\(195\) 0 0
\(196\) 253.931 0.0925403
\(197\) −28.9860 −0.0104831 −0.00524154 0.999986i \(-0.501668\pi\)
−0.00524154 + 0.999986i \(0.501668\pi\)
\(198\) 0 0
\(199\) −499.588 −0.177964 −0.0889821 0.996033i \(-0.528361\pi\)
−0.0889821 + 0.996033i \(0.528361\pi\)
\(200\) −3280.76 −1.15992
\(201\) 0 0
\(202\) −2713.61 −0.945192
\(203\) −104.449 −0.0361126
\(204\) 0 0
\(205\) 6778.04 2.30926
\(206\) 1992.24 0.673816
\(207\) 0 0
\(208\) −6866.71 −2.28904
\(209\) 1077.21 0.356518
\(210\) 0 0
\(211\) 3435.50 1.12090 0.560450 0.828189i \(-0.310628\pi\)
0.560450 + 0.828189i \(0.310628\pi\)
\(212\) 2874.29 0.931164
\(213\) 0 0
\(214\) −994.369 −0.317634
\(215\) −6020.88 −1.90986
\(216\) 0 0
\(217\) 969.078 0.303158
\(218\) 7358.66 2.28620
\(219\) 0 0
\(220\) 1203.44 0.368801
\(221\) 2469.59 0.751687
\(222\) 0 0
\(223\) −707.522 −0.212463 −0.106231 0.994341i \(-0.533878\pi\)
−0.106231 + 0.994341i \(0.533878\pi\)
\(224\) −1424.78 −0.424988
\(225\) 0 0
\(226\) 3805.16 1.11998
\(227\) 500.427 0.146319 0.0731596 0.997320i \(-0.476692\pi\)
0.0731596 + 0.997320i \(0.476692\pi\)
\(228\) 0 0
\(229\) 3362.25 0.970236 0.485118 0.874449i \(-0.338777\pi\)
0.485118 + 0.874449i \(0.338777\pi\)
\(230\) −8589.69 −2.46255
\(231\) 0 0
\(232\) 152.652 0.0431986
\(233\) 2963.07 0.833122 0.416561 0.909108i \(-0.363235\pi\)
0.416561 + 0.909108i \(0.363235\pi\)
\(234\) 0 0
\(235\) −6403.03 −1.77740
\(236\) 3591.88 0.990725
\(237\) 0 0
\(238\) 718.463 0.195677
\(239\) 844.179 0.228474 0.114237 0.993454i \(-0.463558\pi\)
0.114237 + 0.993454i \(0.463558\pi\)
\(240\) 0 0
\(241\) 3616.63 0.966672 0.483336 0.875435i \(-0.339425\pi\)
0.483336 + 0.875435i \(0.339425\pi\)
\(242\) 439.319 0.116696
\(243\) 0 0
\(244\) 812.378 0.213144
\(245\) −1034.45 −0.269750
\(246\) 0 0
\(247\) −8555.04 −2.20382
\(248\) −1416.30 −0.362643
\(249\) 0 0
\(250\) −14999.2 −3.79452
\(251\) 6190.73 1.55679 0.778397 0.627772i \(-0.216033\pi\)
0.778397 + 0.627772i \(0.216033\pi\)
\(252\) 0 0
\(253\) −1232.71 −0.306324
\(254\) −3288.79 −0.812430
\(255\) 0 0
\(256\) 5341.01 1.30396
\(257\) 4990.16 1.21120 0.605598 0.795771i \(-0.292934\pi\)
0.605598 + 0.795771i \(0.292934\pi\)
\(258\) 0 0
\(259\) 1448.61 0.347537
\(260\) −9557.55 −2.27975
\(261\) 0 0
\(262\) −6852.82 −1.61591
\(263\) 672.993 0.157789 0.0788946 0.996883i \(-0.474861\pi\)
0.0788946 + 0.996883i \(0.474861\pi\)
\(264\) 0 0
\(265\) −11709.1 −2.71429
\(266\) −2488.87 −0.573692
\(267\) 0 0
\(268\) 3029.89 0.690598
\(269\) 3558.01 0.806453 0.403226 0.915100i \(-0.367889\pi\)
0.403226 + 0.915100i \(0.367889\pi\)
\(270\) 0 0
\(271\) 3305.52 0.740944 0.370472 0.928844i \(-0.379196\pi\)
0.370472 + 0.928844i \(0.379196\pi\)
\(272\) −2222.01 −0.495328
\(273\) 0 0
\(274\) −2507.94 −0.552958
\(275\) −3527.54 −0.773522
\(276\) 0 0
\(277\) 1428.48 0.309851 0.154926 0.987926i \(-0.450486\pi\)
0.154926 + 0.987926i \(0.450486\pi\)
\(278\) −5322.83 −1.14835
\(279\) 0 0
\(280\) 1511.85 0.322679
\(281\) 7156.92 1.51938 0.759691 0.650284i \(-0.225350\pi\)
0.759691 + 0.650284i \(0.225350\pi\)
\(282\) 0 0
\(283\) −2470.58 −0.518942 −0.259471 0.965751i \(-0.583548\pi\)
−0.259471 + 0.965751i \(0.583548\pi\)
\(284\) −1885.02 −0.393857
\(285\) 0 0
\(286\) −3489.00 −0.721360
\(287\) −2247.44 −0.462238
\(288\) 0 0
\(289\) −4113.86 −0.837342
\(290\) 1143.71 0.231589
\(291\) 0 0
\(292\) −3873.34 −0.776268
\(293\) −4544.57 −0.906131 −0.453066 0.891477i \(-0.649670\pi\)
−0.453066 + 0.891477i \(0.649670\pi\)
\(294\) 0 0
\(295\) −14632.4 −2.88791
\(296\) −2117.14 −0.415730
\(297\) 0 0
\(298\) −4966.41 −0.965425
\(299\) 9789.99 1.89354
\(300\) 0 0
\(301\) 1996.38 0.382291
\(302\) 340.985 0.0649717
\(303\) 0 0
\(304\) 7697.39 1.45222
\(305\) −3309.43 −0.621303
\(306\) 0 0
\(307\) 6711.77 1.24776 0.623878 0.781522i \(-0.285556\pi\)
0.623878 + 0.781522i \(0.285556\pi\)
\(308\) −399.034 −0.0738217
\(309\) 0 0
\(310\) −10611.3 −1.94414
\(311\) 3627.08 0.661328 0.330664 0.943749i \(-0.392727\pi\)
0.330664 + 0.943749i \(0.392727\pi\)
\(312\) 0 0
\(313\) 4355.14 0.786475 0.393238 0.919437i \(-0.371355\pi\)
0.393238 + 0.919437i \(0.371355\pi\)
\(314\) −262.525 −0.0471820
\(315\) 0 0
\(316\) 2173.15 0.386864
\(317\) 9227.18 1.63486 0.817429 0.576029i \(-0.195398\pi\)
0.817429 + 0.576029i \(0.195398\pi\)
\(318\) 0 0
\(319\) 164.134 0.0288079
\(320\) 2326.12 0.406356
\(321\) 0 0
\(322\) 2848.14 0.492922
\(323\) −2768.35 −0.476888
\(324\) 0 0
\(325\) 28015.1 4.78154
\(326\) 124.751 0.0211943
\(327\) 0 0
\(328\) 3284.63 0.552937
\(329\) 2123.10 0.355775
\(330\) 0 0
\(331\) 837.223 0.139027 0.0695135 0.997581i \(-0.477855\pi\)
0.0695135 + 0.997581i \(0.477855\pi\)
\(332\) −6105.73 −1.00932
\(333\) 0 0
\(334\) −1376.34 −0.225478
\(335\) −12343.0 −2.01305
\(336\) 0 0
\(337\) −9563.00 −1.54579 −0.772893 0.634536i \(-0.781191\pi\)
−0.772893 + 0.634536i \(0.781191\pi\)
\(338\) 19732.3 3.17544
\(339\) 0 0
\(340\) −3092.75 −0.493317
\(341\) −1522.84 −0.241837
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −2917.71 −0.457303
\(345\) 0 0
\(346\) 5076.81 0.788818
\(347\) 7584.04 1.17329 0.586646 0.809843i \(-0.300448\pi\)
0.586646 + 0.809843i \(0.300448\pi\)
\(348\) 0 0
\(349\) −1800.32 −0.276128 −0.138064 0.990423i \(-0.544088\pi\)
−0.138064 + 0.990423i \(0.544088\pi\)
\(350\) 8150.27 1.24471
\(351\) 0 0
\(352\) 2238.94 0.339023
\(353\) −9042.84 −1.36346 −0.681731 0.731603i \(-0.738772\pi\)
−0.681731 + 0.731603i \(0.738772\pi\)
\(354\) 0 0
\(355\) 7679.11 1.14807
\(356\) 2062.06 0.306991
\(357\) 0 0
\(358\) 9407.33 1.38881
\(359\) −8915.34 −1.31068 −0.655339 0.755335i \(-0.727474\pi\)
−0.655339 + 0.755335i \(0.727474\pi\)
\(360\) 0 0
\(361\) 2730.97 0.398159
\(362\) 12374.8 1.79671
\(363\) 0 0
\(364\) 3169.06 0.456330
\(365\) 15779.1 2.26278
\(366\) 0 0
\(367\) −11721.9 −1.66724 −0.833622 0.552335i \(-0.813737\pi\)
−0.833622 + 0.552335i \(0.813737\pi\)
\(368\) −8808.53 −1.24776
\(369\) 0 0
\(370\) −15862.2 −2.22874
\(371\) 3882.48 0.543310
\(372\) 0 0
\(373\) −8089.21 −1.12291 −0.561453 0.827509i \(-0.689757\pi\)
−0.561453 + 0.827509i \(0.689757\pi\)
\(374\) −1129.01 −0.156096
\(375\) 0 0
\(376\) −3102.90 −0.425585
\(377\) −1303.52 −0.178077
\(378\) 0 0
\(379\) −10580.4 −1.43398 −0.716989 0.697084i \(-0.754480\pi\)
−0.716989 + 0.697084i \(0.754480\pi\)
\(380\) 10713.8 1.44633
\(381\) 0 0
\(382\) 10114.3 1.35469
\(383\) −10512.0 −1.40245 −0.701224 0.712941i \(-0.747363\pi\)
−0.701224 + 0.712941i \(0.747363\pi\)
\(384\) 0 0
\(385\) 1625.57 0.215186
\(386\) −17905.9 −2.36110
\(387\) 0 0
\(388\) −6909.02 −0.904001
\(389\) −1019.47 −0.132878 −0.0664388 0.997790i \(-0.521164\pi\)
−0.0664388 + 0.997790i \(0.521164\pi\)
\(390\) 0 0
\(391\) 3167.96 0.409746
\(392\) −501.294 −0.0645897
\(393\) 0 0
\(394\) −105.241 −0.0134567
\(395\) −8852.87 −1.12769
\(396\) 0 0
\(397\) 11793.5 1.49093 0.745467 0.666543i \(-0.232227\pi\)
0.745467 + 0.666543i \(0.232227\pi\)
\(398\) −1813.87 −0.228445
\(399\) 0 0
\(400\) −25206.6 −3.15082
\(401\) 5342.21 0.665280 0.332640 0.943054i \(-0.392061\pi\)
0.332640 + 0.943054i \(0.392061\pi\)
\(402\) 0 0
\(403\) 12094.1 1.49492
\(404\) −3873.21 −0.476979
\(405\) 0 0
\(406\) −379.226 −0.0463563
\(407\) −2276.39 −0.277239
\(408\) 0 0
\(409\) −8535.63 −1.03193 −0.515965 0.856610i \(-0.672567\pi\)
−0.515965 + 0.856610i \(0.672567\pi\)
\(410\) 24609.3 2.96431
\(411\) 0 0
\(412\) 2843.59 0.340033
\(413\) 4851.77 0.578063
\(414\) 0 0
\(415\) 24873.3 2.94212
\(416\) −17781.3 −2.09568
\(417\) 0 0
\(418\) 3911.08 0.457648
\(419\) −4300.54 −0.501420 −0.250710 0.968062i \(-0.580664\pi\)
−0.250710 + 0.968062i \(0.580664\pi\)
\(420\) 0 0
\(421\) −5917.77 −0.685070 −0.342535 0.939505i \(-0.611285\pi\)
−0.342535 + 0.939505i \(0.611285\pi\)
\(422\) 12473.4 1.43885
\(423\) 0 0
\(424\) −5674.23 −0.649917
\(425\) 9065.47 1.03468
\(426\) 0 0
\(427\) 1097.33 0.124364
\(428\) −1419.29 −0.160290
\(429\) 0 0
\(430\) −21860.2 −2.45161
\(431\) −8110.20 −0.906391 −0.453196 0.891411i \(-0.649716\pi\)
−0.453196 + 0.891411i \(0.649716\pi\)
\(432\) 0 0
\(433\) −4242.54 −0.470862 −0.235431 0.971891i \(-0.575650\pi\)
−0.235431 + 0.971891i \(0.575650\pi\)
\(434\) 3518.47 0.389152
\(435\) 0 0
\(436\) 10503.2 1.15370
\(437\) −10974.3 −1.20131
\(438\) 0 0
\(439\) −595.983 −0.0647944 −0.0323972 0.999475i \(-0.510314\pi\)
−0.0323972 + 0.999475i \(0.510314\pi\)
\(440\) −2375.76 −0.257409
\(441\) 0 0
\(442\) 8966.44 0.964910
\(443\) 4284.60 0.459521 0.229760 0.973247i \(-0.426206\pi\)
0.229760 + 0.973247i \(0.426206\pi\)
\(444\) 0 0
\(445\) −8400.33 −0.894862
\(446\) −2568.83 −0.272730
\(447\) 0 0
\(448\) −771.286 −0.0813389
\(449\) 704.286 0.0740252 0.0370126 0.999315i \(-0.488216\pi\)
0.0370126 + 0.999315i \(0.488216\pi\)
\(450\) 0 0
\(451\) 3531.69 0.368738
\(452\) 5431.22 0.565184
\(453\) 0 0
\(454\) 1816.92 0.187824
\(455\) −12910.0 −1.33017
\(456\) 0 0
\(457\) −7013.21 −0.717865 −0.358932 0.933364i \(-0.616859\pi\)
−0.358932 + 0.933364i \(0.616859\pi\)
\(458\) 12207.5 1.24545
\(459\) 0 0
\(460\) −12260.3 −1.24270
\(461\) −1032.99 −0.104363 −0.0521813 0.998638i \(-0.516617\pi\)
−0.0521813 + 0.998638i \(0.516617\pi\)
\(462\) 0 0
\(463\) 12593.3 1.26406 0.632029 0.774945i \(-0.282222\pi\)
0.632029 + 0.774945i \(0.282222\pi\)
\(464\) 1172.84 0.117345
\(465\) 0 0
\(466\) 10758.1 1.06944
\(467\) 18527.1 1.83583 0.917914 0.396779i \(-0.129872\pi\)
0.917914 + 0.396779i \(0.129872\pi\)
\(468\) 0 0
\(469\) 4092.67 0.402946
\(470\) −23247.7 −2.28157
\(471\) 0 0
\(472\) −7090.85 −0.691489
\(473\) −3137.17 −0.304963
\(474\) 0 0
\(475\) −31404.2 −3.03352
\(476\) 1025.48 0.0987457
\(477\) 0 0
\(478\) 3064.99 0.293283
\(479\) 15402.2 1.46920 0.734599 0.678501i \(-0.237370\pi\)
0.734599 + 0.678501i \(0.237370\pi\)
\(480\) 0 0
\(481\) 18078.7 1.71376
\(482\) 13131.0 1.24088
\(483\) 0 0
\(484\) 627.053 0.0588893
\(485\) 28145.7 2.63511
\(486\) 0 0
\(487\) 6816.82 0.634291 0.317146 0.948377i \(-0.397276\pi\)
0.317146 + 0.948377i \(0.397276\pi\)
\(488\) −1603.74 −0.148767
\(489\) 0 0
\(490\) −3755.82 −0.346267
\(491\) −6232.66 −0.572864 −0.286432 0.958101i \(-0.592469\pi\)
−0.286432 + 0.958101i \(0.592469\pi\)
\(492\) 0 0
\(493\) −421.810 −0.0385342
\(494\) −31061.1 −2.82896
\(495\) 0 0
\(496\) −10881.7 −0.985084
\(497\) −2546.21 −0.229806
\(498\) 0 0
\(499\) −19244.6 −1.72646 −0.863232 0.504807i \(-0.831564\pi\)
−0.863232 + 0.504807i \(0.831564\pi\)
\(500\) −21408.7 −1.91486
\(501\) 0 0
\(502\) 22476.9 1.99839
\(503\) −7177.94 −0.636280 −0.318140 0.948044i \(-0.603058\pi\)
−0.318140 + 0.948044i \(0.603058\pi\)
\(504\) 0 0
\(505\) 15778.5 1.39037
\(506\) −4475.65 −0.393215
\(507\) 0 0
\(508\) −4694.19 −0.409982
\(509\) −15314.2 −1.33357 −0.666787 0.745248i \(-0.732331\pi\)
−0.666787 + 0.745248i \(0.732331\pi\)
\(510\) 0 0
\(511\) −5231.97 −0.452933
\(512\) 9565.62 0.825674
\(513\) 0 0
\(514\) 18118.0 1.55476
\(515\) −11584.1 −0.991176
\(516\) 0 0
\(517\) −3336.29 −0.283811
\(518\) 5259.52 0.446120
\(519\) 0 0
\(520\) 18867.9 1.59118
\(521\) −9650.62 −0.811519 −0.405760 0.913980i \(-0.632993\pi\)
−0.405760 + 0.913980i \(0.632993\pi\)
\(522\) 0 0
\(523\) −13116.1 −1.09661 −0.548305 0.836278i \(-0.684727\pi\)
−0.548305 + 0.836278i \(0.684727\pi\)
\(524\) −9781.23 −0.815449
\(525\) 0 0
\(526\) 2443.46 0.202548
\(527\) 3913.56 0.323487
\(528\) 0 0
\(529\) 391.484 0.0321759
\(530\) −42512.8 −3.48422
\(531\) 0 0
\(532\) −3552.43 −0.289506
\(533\) −28048.1 −2.27936
\(534\) 0 0
\(535\) 5781.85 0.467236
\(536\) −5981.42 −0.482011
\(537\) 0 0
\(538\) 12918.2 1.03521
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 18625.5 1.48017 0.740086 0.672512i \(-0.234785\pi\)
0.740086 + 0.672512i \(0.234785\pi\)
\(542\) 12001.5 0.951121
\(543\) 0 0
\(544\) −5753.90 −0.453486
\(545\) −42787.6 −3.36297
\(546\) 0 0
\(547\) −6967.57 −0.544628 −0.272314 0.962208i \(-0.587789\pi\)
−0.272314 + 0.962208i \(0.587789\pi\)
\(548\) −3579.66 −0.279043
\(549\) 0 0
\(550\) −12807.6 −0.992939
\(551\) 1461.21 0.112976
\(552\) 0 0
\(553\) 2935.41 0.225725
\(554\) 5186.42 0.397744
\(555\) 0 0
\(556\) −7597.43 −0.579501
\(557\) 17230.7 1.31075 0.655374 0.755305i \(-0.272511\pi\)
0.655374 + 0.755305i \(0.272511\pi\)
\(558\) 0 0
\(559\) 24914.9 1.88513
\(560\) 11615.7 0.876527
\(561\) 0 0
\(562\) 25984.9 1.95037
\(563\) 20751.0 1.55338 0.776688 0.629885i \(-0.216898\pi\)
0.776688 + 0.629885i \(0.216898\pi\)
\(564\) 0 0
\(565\) −22125.5 −1.64748
\(566\) −8970.01 −0.666145
\(567\) 0 0
\(568\) 3721.29 0.274897
\(569\) 15953.4 1.17540 0.587700 0.809079i \(-0.300034\pi\)
0.587700 + 0.809079i \(0.300034\pi\)
\(570\) 0 0
\(571\) 10837.6 0.794291 0.397145 0.917756i \(-0.370001\pi\)
0.397145 + 0.917756i \(0.370001\pi\)
\(572\) −4979.95 −0.364025
\(573\) 0 0
\(574\) −8159.87 −0.593356
\(575\) 35937.5 2.60643
\(576\) 0 0
\(577\) 9613.09 0.693584 0.346792 0.937942i \(-0.387271\pi\)
0.346792 + 0.937942i \(0.387271\pi\)
\(578\) −14936.3 −1.07486
\(579\) 0 0
\(580\) 1632.44 0.116868
\(581\) −8247.39 −0.588915
\(582\) 0 0
\(583\) −6101.03 −0.433412
\(584\) 7646.50 0.541806
\(585\) 0 0
\(586\) −16500.1 −1.16316
\(587\) −2169.43 −0.152542 −0.0762708 0.997087i \(-0.524301\pi\)
−0.0762708 + 0.997087i \(0.524301\pi\)
\(588\) 0 0
\(589\) −13557.2 −0.948411
\(590\) −53126.5 −3.70709
\(591\) 0 0
\(592\) −16266.3 −1.12929
\(593\) −4688.62 −0.324686 −0.162343 0.986734i \(-0.551905\pi\)
−0.162343 + 0.986734i \(0.551905\pi\)
\(594\) 0 0
\(595\) −4177.57 −0.287838
\(596\) −7088.71 −0.487189
\(597\) 0 0
\(598\) 35544.9 2.43067
\(599\) −941.884 −0.0642476 −0.0321238 0.999484i \(-0.510227\pi\)
−0.0321238 + 0.999484i \(0.510227\pi\)
\(600\) 0 0
\(601\) −8131.21 −0.551879 −0.275939 0.961175i \(-0.588989\pi\)
−0.275939 + 0.961175i \(0.588989\pi\)
\(602\) 7248.34 0.490732
\(603\) 0 0
\(604\) 486.698 0.0327872
\(605\) −2554.46 −0.171659
\(606\) 0 0
\(607\) −27616.5 −1.84666 −0.923328 0.384011i \(-0.874542\pi\)
−0.923328 + 0.384011i \(0.874542\pi\)
\(608\) 19932.4 1.32955
\(609\) 0 0
\(610\) −12015.7 −0.797542
\(611\) 26496.3 1.75438
\(612\) 0 0
\(613\) 7289.82 0.480315 0.240158 0.970734i \(-0.422801\pi\)
0.240158 + 0.970734i \(0.422801\pi\)
\(614\) 24368.7 1.60169
\(615\) 0 0
\(616\) 787.747 0.0515247
\(617\) 13672.2 0.892094 0.446047 0.895010i \(-0.352831\pi\)
0.446047 + 0.895010i \(0.352831\pi\)
\(618\) 0 0
\(619\) 20157.3 1.30887 0.654435 0.756118i \(-0.272906\pi\)
0.654435 + 0.756118i \(0.272906\pi\)
\(620\) −15145.9 −0.981084
\(621\) 0 0
\(622\) 13169.0 0.848920
\(623\) 2785.35 0.179122
\(624\) 0 0
\(625\) 47128.3 3.01621
\(626\) 15812.4 1.00957
\(627\) 0 0
\(628\) −374.710 −0.0238098
\(629\) 5850.12 0.370842
\(630\) 0 0
\(631\) −21955.4 −1.38515 −0.692576 0.721345i \(-0.743524\pi\)
−0.692576 + 0.721345i \(0.743524\pi\)
\(632\) −4290.09 −0.270017
\(633\) 0 0
\(634\) 33501.5 2.09860
\(635\) 19123.0 1.19507
\(636\) 0 0
\(637\) 4280.65 0.266257
\(638\) 595.927 0.0369796
\(639\) 0 0
\(640\) −25930.4 −1.60155
\(641\) −3575.87 −0.220340 −0.110170 0.993913i \(-0.535140\pi\)
−0.110170 + 0.993913i \(0.535140\pi\)
\(642\) 0 0
\(643\) 6676.04 0.409452 0.204726 0.978819i \(-0.434370\pi\)
0.204726 + 0.978819i \(0.434370\pi\)
\(644\) 4065.24 0.248746
\(645\) 0 0
\(646\) −10051.1 −0.612162
\(647\) 12366.4 0.751430 0.375715 0.926735i \(-0.377397\pi\)
0.375715 + 0.926735i \(0.377397\pi\)
\(648\) 0 0
\(649\) −7624.21 −0.461135
\(650\) 101716. 6.13786
\(651\) 0 0
\(652\) 178.061 0.0106954
\(653\) −19797.3 −1.18642 −0.593208 0.805049i \(-0.702139\pi\)
−0.593208 + 0.805049i \(0.702139\pi\)
\(654\) 0 0
\(655\) 39846.4 2.37699
\(656\) 25236.3 1.50200
\(657\) 0 0
\(658\) 7708.41 0.456695
\(659\) 893.599 0.0528220 0.0264110 0.999651i \(-0.491592\pi\)
0.0264110 + 0.999651i \(0.491592\pi\)
\(660\) 0 0
\(661\) 16418.8 0.966137 0.483068 0.875583i \(-0.339522\pi\)
0.483068 + 0.875583i \(0.339522\pi\)
\(662\) 3039.74 0.178463
\(663\) 0 0
\(664\) 12053.5 0.704470
\(665\) 14471.7 0.843895
\(666\) 0 0
\(667\) −1672.14 −0.0970700
\(668\) −1964.48 −0.113785
\(669\) 0 0
\(670\) −44814.4 −2.58408
\(671\) −1724.38 −0.0992083
\(672\) 0 0
\(673\) −17447.6 −0.999339 −0.499670 0.866216i \(-0.666545\pi\)
−0.499670 + 0.866216i \(0.666545\pi\)
\(674\) −34720.8 −1.98426
\(675\) 0 0
\(676\) 28164.6 1.60244
\(677\) 23669.4 1.34371 0.671853 0.740685i \(-0.265499\pi\)
0.671853 + 0.740685i \(0.265499\pi\)
\(678\) 0 0
\(679\) −9332.45 −0.527462
\(680\) 6105.51 0.344317
\(681\) 0 0
\(682\) −5529.02 −0.310436
\(683\) 15236.3 0.853586 0.426793 0.904349i \(-0.359643\pi\)
0.426793 + 0.904349i \(0.359643\pi\)
\(684\) 0 0
\(685\) 14582.7 0.813394
\(686\) 1245.34 0.0693111
\(687\) 0 0
\(688\) −22417.2 −1.24222
\(689\) 48453.4 2.67914
\(690\) 0 0
\(691\) −8336.36 −0.458944 −0.229472 0.973315i \(-0.573700\pi\)
−0.229472 + 0.973315i \(0.573700\pi\)
\(692\) 7246.28 0.398067
\(693\) 0 0
\(694\) 27535.7 1.50611
\(695\) 30950.1 1.68921
\(696\) 0 0
\(697\) −9076.15 −0.493234
\(698\) −6536.48 −0.354455
\(699\) 0 0
\(700\) 11633.1 0.628129
\(701\) −798.786 −0.0430381 −0.0215191 0.999768i \(-0.506850\pi\)
−0.0215191 + 0.999768i \(0.506850\pi\)
\(702\) 0 0
\(703\) −20265.7 −1.08725
\(704\) 1212.02 0.0648860
\(705\) 0 0
\(706\) −32832.2 −1.75022
\(707\) −5231.79 −0.278305
\(708\) 0 0
\(709\) −22352.2 −1.18400 −0.591999 0.805939i \(-0.701661\pi\)
−0.591999 + 0.805939i \(0.701661\pi\)
\(710\) 27880.9 1.47373
\(711\) 0 0
\(712\) −4070.79 −0.214268
\(713\) 15514.2 0.814883
\(714\) 0 0
\(715\) 20287.1 1.06111
\(716\) 13427.4 0.700844
\(717\) 0 0
\(718\) −32369.3 −1.68247
\(719\) −13763.8 −0.713914 −0.356957 0.934121i \(-0.616186\pi\)
−0.356957 + 0.934121i \(0.616186\pi\)
\(720\) 0 0
\(721\) 3841.01 0.198400
\(722\) 9915.44 0.511100
\(723\) 0 0
\(724\) 17663.0 0.906684
\(725\) −4785.02 −0.245119
\(726\) 0 0
\(727\) 16014.2 0.816966 0.408483 0.912766i \(-0.366058\pi\)
0.408483 + 0.912766i \(0.366058\pi\)
\(728\) −6256.16 −0.318501
\(729\) 0 0
\(730\) 57289.6 2.90463
\(731\) 8062.27 0.407926
\(732\) 0 0
\(733\) 21073.3 1.06188 0.530942 0.847408i \(-0.321838\pi\)
0.530942 + 0.847408i \(0.321838\pi\)
\(734\) −42559.2 −2.14017
\(735\) 0 0
\(736\) −22809.7 −1.14236
\(737\) −6431.33 −0.321440
\(738\) 0 0
\(739\) 4570.10 0.227488 0.113744 0.993510i \(-0.463716\pi\)
0.113744 + 0.993510i \(0.463716\pi\)
\(740\) −22640.5 −1.12471
\(741\) 0 0
\(742\) 14096.3 0.697426
\(743\) −7122.27 −0.351670 −0.175835 0.984420i \(-0.556263\pi\)
−0.175835 + 0.984420i \(0.556263\pi\)
\(744\) 0 0
\(745\) 28877.7 1.42013
\(746\) −29369.8 −1.44143
\(747\) 0 0
\(748\) −1611.47 −0.0787718
\(749\) −1917.13 −0.0935251
\(750\) 0 0
\(751\) 31096.8 1.51097 0.755485 0.655166i \(-0.227401\pi\)
0.755485 + 0.655166i \(0.227401\pi\)
\(752\) −23840.0 −1.15606
\(753\) 0 0
\(754\) −4732.75 −0.228590
\(755\) −1982.69 −0.0955727
\(756\) 0 0
\(757\) 2783.78 0.133657 0.0668284 0.997764i \(-0.478712\pi\)
0.0668284 + 0.997764i \(0.478712\pi\)
\(758\) −38414.6 −1.84074
\(759\) 0 0
\(760\) −21150.4 −1.00948
\(761\) −22236.2 −1.05922 −0.529608 0.848243i \(-0.677661\pi\)
−0.529608 + 0.848243i \(0.677661\pi\)
\(762\) 0 0
\(763\) 14187.4 0.673155
\(764\) 14436.4 0.683626
\(765\) 0 0
\(766\) −38166.3 −1.80027
\(767\) 60550.2 2.85051
\(768\) 0 0
\(769\) −28682.5 −1.34502 −0.672508 0.740090i \(-0.734783\pi\)
−0.672508 + 0.740090i \(0.734783\pi\)
\(770\) 5902.01 0.276225
\(771\) 0 0
\(772\) −25557.6 −1.19150
\(773\) −27245.4 −1.26772 −0.633861 0.773447i \(-0.718531\pi\)
−0.633861 + 0.773447i \(0.718531\pi\)
\(774\) 0 0
\(775\) 44395.6 2.05772
\(776\) 13639.3 0.630959
\(777\) 0 0
\(778\) −3701.45 −0.170570
\(779\) 31441.2 1.44608
\(780\) 0 0
\(781\) 4001.19 0.183321
\(782\) 11502.0 0.525975
\(783\) 0 0
\(784\) −3851.51 −0.175451
\(785\) 1526.48 0.0694042
\(786\) 0 0
\(787\) −33427.2 −1.51404 −0.757020 0.653391i \(-0.773346\pi\)
−0.757020 + 0.653391i \(0.773346\pi\)
\(788\) −150.213 −0.00679075
\(789\) 0 0
\(790\) −32142.5 −1.44757
\(791\) 7336.29 0.329770
\(792\) 0 0
\(793\) 13694.7 0.613258
\(794\) 42819.2 1.91385
\(795\) 0 0
\(796\) −2589.00 −0.115282
\(797\) 6592.94 0.293016 0.146508 0.989209i \(-0.453197\pi\)
0.146508 + 0.989209i \(0.453197\pi\)
\(798\) 0 0
\(799\) 8574.00 0.379632
\(800\) −65272.4 −2.88466
\(801\) 0 0
\(802\) 19396.2 0.853993
\(803\) 8221.66 0.361315
\(804\) 0 0
\(805\) −16560.8 −0.725082
\(806\) 43910.6 1.91896
\(807\) 0 0
\(808\) 7646.25 0.332913
\(809\) −22661.3 −0.984830 −0.492415 0.870361i \(-0.663886\pi\)
−0.492415 + 0.870361i \(0.663886\pi\)
\(810\) 0 0
\(811\) 2938.33 0.127224 0.0636121 0.997975i \(-0.479738\pi\)
0.0636121 + 0.997975i \(0.479738\pi\)
\(812\) −541.281 −0.0233931
\(813\) 0 0
\(814\) −8264.96 −0.355881
\(815\) −725.379 −0.0311766
\(816\) 0 0
\(817\) −27928.9 −1.19597
\(818\) −30990.6 −1.32465
\(819\) 0 0
\(820\) 35125.6 1.49590
\(821\) −27511.4 −1.16949 −0.584747 0.811216i \(-0.698806\pi\)
−0.584747 + 0.811216i \(0.698806\pi\)
\(822\) 0 0
\(823\) 25092.9 1.06280 0.531400 0.847121i \(-0.321666\pi\)
0.531400 + 0.847121i \(0.321666\pi\)
\(824\) −5613.63 −0.237330
\(825\) 0 0
\(826\) 17615.5 0.742036
\(827\) −10259.3 −0.431382 −0.215691 0.976462i \(-0.569200\pi\)
−0.215691 + 0.976462i \(0.569200\pi\)
\(828\) 0 0
\(829\) −40456.9 −1.69497 −0.847483 0.530823i \(-0.821883\pi\)
−0.847483 + 0.530823i \(0.821883\pi\)
\(830\) 90308.3 3.77668
\(831\) 0 0
\(832\) −9625.67 −0.401094
\(833\) 1385.18 0.0576156
\(834\) 0 0
\(835\) 8002.83 0.331676
\(836\) 5582.39 0.230946
\(837\) 0 0
\(838\) −15614.1 −0.643652
\(839\) −11387.0 −0.468563 −0.234281 0.972169i \(-0.575274\pi\)
−0.234281 + 0.972169i \(0.575274\pi\)
\(840\) 0 0
\(841\) −24166.4 −0.990871
\(842\) −21485.9 −0.879396
\(843\) 0 0
\(844\) 17803.7 0.726099
\(845\) −114736. −4.67103
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −43595.9 −1.76544
\(849\) 0 0
\(850\) 32914.4 1.32818
\(851\) 23191.1 0.934173
\(852\) 0 0
\(853\) 8058.93 0.323485 0.161742 0.986833i \(-0.448289\pi\)
0.161742 + 0.986833i \(0.448289\pi\)
\(854\) 3984.12 0.159641
\(855\) 0 0
\(856\) 2801.87 0.111876
\(857\) −4025.02 −0.160434 −0.0802170 0.996777i \(-0.525561\pi\)
−0.0802170 + 0.996777i \(0.525561\pi\)
\(858\) 0 0
\(859\) −4319.84 −0.171584 −0.0857922 0.996313i \(-0.527342\pi\)
−0.0857922 + 0.996313i \(0.527342\pi\)
\(860\) −31201.8 −1.23718
\(861\) 0 0
\(862\) −29446.0 −1.16350
\(863\) −11967.7 −0.472055 −0.236028 0.971746i \(-0.575846\pi\)
−0.236028 + 0.971746i \(0.575846\pi\)
\(864\) 0 0
\(865\) −29519.6 −1.16034
\(866\) −15403.5 −0.604427
\(867\) 0 0
\(868\) 5022.01 0.196380
\(869\) −4612.78 −0.180067
\(870\) 0 0
\(871\) 51076.6 1.98699
\(872\) −20734.8 −0.805239
\(873\) 0 0
\(874\) −39844.8 −1.54207
\(875\) −28918.1 −1.11727
\(876\) 0 0
\(877\) −3248.36 −0.125074 −0.0625368 0.998043i \(-0.519919\pi\)
−0.0625368 + 0.998043i \(0.519919\pi\)
\(878\) −2163.86 −0.0831740
\(879\) 0 0
\(880\) −18253.3 −0.699226
\(881\) −1264.38 −0.0483518 −0.0241759 0.999708i \(-0.507696\pi\)
−0.0241759 + 0.999708i \(0.507696\pi\)
\(882\) 0 0
\(883\) −11524.4 −0.439216 −0.219608 0.975588i \(-0.570478\pi\)
−0.219608 + 0.975588i \(0.570478\pi\)
\(884\) 12798.1 0.486929
\(885\) 0 0
\(886\) 15556.3 0.589868
\(887\) −24949.8 −0.944457 −0.472228 0.881476i \(-0.656550\pi\)
−0.472228 + 0.881476i \(0.656550\pi\)
\(888\) 0 0
\(889\) −6340.73 −0.239214
\(890\) −30499.4 −1.14870
\(891\) 0 0
\(892\) −3666.56 −0.137630
\(893\) −29701.6 −1.11302
\(894\) 0 0
\(895\) −54699.8 −2.04292
\(896\) 8597.92 0.320576
\(897\) 0 0
\(898\) 2557.08 0.0950231
\(899\) −2065.69 −0.0766349
\(900\) 0 0
\(901\) 15679.1 0.579743
\(902\) 12822.7 0.473334
\(903\) 0 0
\(904\) −10722.0 −0.394477
\(905\) −71954.6 −2.64293
\(906\) 0 0
\(907\) 40615.8 1.48691 0.743454 0.668787i \(-0.233186\pi\)
0.743454 + 0.668787i \(0.233186\pi\)
\(908\) 2593.34 0.0947830
\(909\) 0 0
\(910\) −46872.8 −1.70749
\(911\) 14594.0 0.530760 0.265380 0.964144i \(-0.414503\pi\)
0.265380 + 0.964144i \(0.414503\pi\)
\(912\) 0 0
\(913\) 12960.2 0.469792
\(914\) −25463.1 −0.921494
\(915\) 0 0
\(916\) 17424.1 0.628502
\(917\) −13212.1 −0.475794
\(918\) 0 0
\(919\) 28339.1 1.01721 0.508607 0.860999i \(-0.330161\pi\)
0.508607 + 0.860999i \(0.330161\pi\)
\(920\) 24203.5 0.867355
\(921\) 0 0
\(922\) −3750.51 −0.133966
\(923\) −31776.8 −1.13320
\(924\) 0 0
\(925\) 66363.9 2.35895
\(926\) 45722.9 1.62262
\(927\) 0 0
\(928\) 3037.08 0.107432
\(929\) −25916.5 −0.915276 −0.457638 0.889139i \(-0.651304\pi\)
−0.457638 + 0.889139i \(0.651304\pi\)
\(930\) 0 0
\(931\) −4798.49 −0.168920
\(932\) 15355.4 0.539682
\(933\) 0 0
\(934\) 67267.0 2.35658
\(935\) 6564.75 0.229615
\(936\) 0 0
\(937\) −2004.67 −0.0698930 −0.0349465 0.999389i \(-0.511126\pi\)
−0.0349465 + 0.999389i \(0.511126\pi\)
\(938\) 14859.4 0.517246
\(939\) 0 0
\(940\) −33182.2 −1.15137
\(941\) 36486.7 1.26401 0.632004 0.774965i \(-0.282233\pi\)
0.632004 + 0.774965i \(0.282233\pi\)
\(942\) 0 0
\(943\) −35979.8 −1.24249
\(944\) −54480.0 −1.87836
\(945\) 0 0
\(946\) −11390.3 −0.391468
\(947\) 26275.1 0.901611 0.450806 0.892622i \(-0.351137\pi\)
0.450806 + 0.892622i \(0.351137\pi\)
\(948\) 0 0
\(949\) −65295.1 −2.23347
\(950\) −114020. −3.89401
\(951\) 0 0
\(952\) −2024.44 −0.0689208
\(953\) 25800.3 0.876971 0.438485 0.898738i \(-0.355515\pi\)
0.438485 + 0.898738i \(0.355515\pi\)
\(954\) 0 0
\(955\) −58810.4 −1.99273
\(956\) 4374.75 0.148002
\(957\) 0 0
\(958\) 55921.5 1.88595
\(959\) −4835.27 −0.162814
\(960\) 0 0
\(961\) −10625.4 −0.356666
\(962\) 65639.0 2.19988
\(963\) 0 0
\(964\) 18742.3 0.626193
\(965\) 104115. 3.47316
\(966\) 0 0
\(967\) −24454.9 −0.813254 −0.406627 0.913594i \(-0.633295\pi\)
−0.406627 + 0.913594i \(0.633295\pi\)
\(968\) −1237.89 −0.0411025
\(969\) 0 0
\(970\) 102190. 3.38259
\(971\) 57692.0 1.90672 0.953359 0.301839i \(-0.0976004\pi\)
0.953359 + 0.301839i \(0.0976004\pi\)
\(972\) 0 0
\(973\) −10262.3 −0.338124
\(974\) 24750.1 0.814214
\(975\) 0 0
\(976\) −12321.8 −0.404110
\(977\) 6855.66 0.224495 0.112248 0.993680i \(-0.464195\pi\)
0.112248 + 0.993680i \(0.464195\pi\)
\(978\) 0 0
\(979\) −4376.98 −0.142890
\(980\) −5360.80 −0.174739
\(981\) 0 0
\(982\) −22629.2 −0.735362
\(983\) 8142.33 0.264191 0.132096 0.991237i \(-0.457829\pi\)
0.132096 + 0.991237i \(0.457829\pi\)
\(984\) 0 0
\(985\) 611.931 0.0197947
\(986\) −1531.48 −0.0494648
\(987\) 0 0
\(988\) −44334.4 −1.42760
\(989\) 31960.6 1.02759
\(990\) 0 0
\(991\) 11895.7 0.381312 0.190656 0.981657i \(-0.438938\pi\)
0.190656 + 0.981657i \(0.438938\pi\)
\(992\) −28178.1 −0.901870
\(993\) 0 0
\(994\) −9244.64 −0.294992
\(995\) 10546.9 0.336041
\(996\) 0 0
\(997\) −44608.5 −1.41702 −0.708509 0.705702i \(-0.750632\pi\)
−0.708509 + 0.705702i \(0.750632\pi\)
\(998\) −69872.0 −2.21619
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.p.1.4 5
3.2 odd 2 231.4.a.k.1.2 5
21.20 even 2 1617.4.a.n.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.k.1.2 5 3.2 odd 2
693.4.a.p.1.4 5 1.1 even 1 trivial
1617.4.a.n.1.2 5 21.20 even 2