Properties

Label 693.4.a.p.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.59998\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.59998 q^{2} -5.44007 q^{4} +17.2762 q^{5} +7.00000 q^{7} +21.5038 q^{8} +O(q^{10})\) \(q-1.59998 q^{2} -5.44007 q^{4} +17.2762 q^{5} +7.00000 q^{7} +21.5038 q^{8} -27.6416 q^{10} -11.0000 q^{11} +46.1062 q^{13} -11.1999 q^{14} +9.11483 q^{16} -19.8752 q^{17} +76.5707 q^{19} -93.9838 q^{20} +17.5998 q^{22} +163.205 q^{23} +173.468 q^{25} -73.7690 q^{26} -38.0805 q^{28} -158.858 q^{29} +170.768 q^{31} -186.614 q^{32} +31.7999 q^{34} +120.934 q^{35} -245.971 q^{37} -122.511 q^{38} +371.505 q^{40} +3.33673 q^{41} -122.798 q^{43} +59.8407 q^{44} -261.125 q^{46} -390.972 q^{47} +49.0000 q^{49} -277.545 q^{50} -250.821 q^{52} +410.957 q^{53} -190.038 q^{55} +150.527 q^{56} +254.169 q^{58} -408.774 q^{59} -21.9747 q^{61} -273.225 q^{62} +225.660 q^{64} +796.541 q^{65} +618.424 q^{67} +108.122 q^{68} -193.491 q^{70} -929.041 q^{71} +868.090 q^{73} +393.549 q^{74} -416.549 q^{76} -77.0000 q^{77} +152.702 q^{79} +157.470 q^{80} -5.33871 q^{82} +100.924 q^{83} -343.368 q^{85} +196.475 q^{86} -236.542 q^{88} +1063.23 q^{89} +322.743 q^{91} -887.848 q^{92} +625.547 q^{94} +1322.85 q^{95} +1415.50 q^{97} -78.3990 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 21 q^{4} - 21 q^{5} + 35 q^{7} + 42 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + q^{2} + 21 q^{4} - 21 q^{5} + 35 q^{7} + 42 q^{8} - 23 q^{10} - 55 q^{11} + 101 q^{13} + 7 q^{14} - 7 q^{16} + 20 q^{17} + 237 q^{19} - 85 q^{20} - 11 q^{22} + 80 q^{23} + 486 q^{25} - 165 q^{26} + 147 q^{28} + 11 q^{29} + 316 q^{31} - 453 q^{32} + 936 q^{34} - 147 q^{35} + 319 q^{37} - 89 q^{38} + 624 q^{40} - 1190 q^{41} + 88 q^{43} - 231 q^{44} + 1000 q^{46} - 377 q^{47} + 245 q^{49} + 644 q^{50} + 1001 q^{52} + 992 q^{53} + 231 q^{55} + 294 q^{56} + 721 q^{58} - 71 q^{59} - 574 q^{61} - 272 q^{62} - 1380 q^{64} - 589 q^{65} - 527 q^{67} + 2974 q^{68} - 161 q^{70} + 1156 q^{71} + 1061 q^{73} + 1609 q^{74} + 2399 q^{76} - 385 q^{77} + 588 q^{79} + 1643 q^{80} - 2602 q^{82} + 212 q^{83} + 1918 q^{85} + 4760 q^{86} - 462 q^{88} - 1030 q^{89} + 707 q^{91} + 1174 q^{92} - 1799 q^{94} + 3593 q^{95} + 2488 q^{97} + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.59998 −0.565678 −0.282839 0.959167i \(-0.591276\pi\)
−0.282839 + 0.959167i \(0.591276\pi\)
\(3\) 0 0
\(4\) −5.44007 −0.680008
\(5\) 17.2762 1.54523 0.772616 0.634873i \(-0.218948\pi\)
0.772616 + 0.634873i \(0.218948\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 21.5038 0.950344
\(9\) 0 0
\(10\) −27.6416 −0.874104
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 46.1062 0.983658 0.491829 0.870692i \(-0.336328\pi\)
0.491829 + 0.870692i \(0.336328\pi\)
\(14\) −11.1999 −0.213806
\(15\) 0 0
\(16\) 9.11483 0.142419
\(17\) −19.8752 −0.283555 −0.141778 0.989899i \(-0.545282\pi\)
−0.141778 + 0.989899i \(0.545282\pi\)
\(18\) 0 0
\(19\) 76.5707 0.924553 0.462277 0.886736i \(-0.347033\pi\)
0.462277 + 0.886736i \(0.347033\pi\)
\(20\) −93.9838 −1.05077
\(21\) 0 0
\(22\) 17.5998 0.170558
\(23\) 163.205 1.47960 0.739798 0.672829i \(-0.234921\pi\)
0.739798 + 0.672829i \(0.234921\pi\)
\(24\) 0 0
\(25\) 173.468 1.38774
\(26\) −73.7690 −0.556434
\(27\) 0 0
\(28\) −38.0805 −0.257019
\(29\) −158.858 −1.01721 −0.508605 0.861000i \(-0.669839\pi\)
−0.508605 + 0.861000i \(0.669839\pi\)
\(30\) 0 0
\(31\) 170.768 0.989380 0.494690 0.869069i \(-0.335282\pi\)
0.494690 + 0.869069i \(0.335282\pi\)
\(32\) −186.614 −1.03091
\(33\) 0 0
\(34\) 31.7999 0.160401
\(35\) 120.934 0.584043
\(36\) 0 0
\(37\) −245.971 −1.09290 −0.546452 0.837490i \(-0.684022\pi\)
−0.546452 + 0.837490i \(0.684022\pi\)
\(38\) −122.511 −0.523000
\(39\) 0 0
\(40\) 371.505 1.46850
\(41\) 3.33673 0.0127100 0.00635500 0.999980i \(-0.497977\pi\)
0.00635500 + 0.999980i \(0.497977\pi\)
\(42\) 0 0
\(43\) −122.798 −0.435502 −0.217751 0.976004i \(-0.569872\pi\)
−0.217751 + 0.976004i \(0.569872\pi\)
\(44\) 59.8407 0.205030
\(45\) 0 0
\(46\) −261.125 −0.836975
\(47\) −390.972 −1.21338 −0.606692 0.794937i \(-0.707504\pi\)
−0.606692 + 0.794937i \(0.707504\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −277.545 −0.785016
\(51\) 0 0
\(52\) −250.821 −0.668896
\(53\) 410.957 1.06508 0.532541 0.846404i \(-0.321237\pi\)
0.532541 + 0.846404i \(0.321237\pi\)
\(54\) 0 0
\(55\) −190.038 −0.465905
\(56\) 150.527 0.359196
\(57\) 0 0
\(58\) 254.169 0.575414
\(59\) −408.774 −0.901998 −0.450999 0.892524i \(-0.648932\pi\)
−0.450999 + 0.892524i \(0.648932\pi\)
\(60\) 0 0
\(61\) −21.9747 −0.0461241 −0.0230621 0.999734i \(-0.507342\pi\)
−0.0230621 + 0.999734i \(0.507342\pi\)
\(62\) −273.225 −0.559671
\(63\) 0 0
\(64\) 225.660 0.440743
\(65\) 796.541 1.51998
\(66\) 0 0
\(67\) 618.424 1.12765 0.563824 0.825895i \(-0.309329\pi\)
0.563824 + 0.825895i \(0.309329\pi\)
\(68\) 108.122 0.192820
\(69\) 0 0
\(70\) −193.491 −0.330380
\(71\) −929.041 −1.55291 −0.776457 0.630171i \(-0.782985\pi\)
−0.776457 + 0.630171i \(0.782985\pi\)
\(72\) 0 0
\(73\) 868.090 1.39181 0.695906 0.718133i \(-0.255003\pi\)
0.695906 + 0.718133i \(0.255003\pi\)
\(74\) 393.549 0.618232
\(75\) 0 0
\(76\) −416.549 −0.628704
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 152.702 0.217472 0.108736 0.994071i \(-0.465320\pi\)
0.108736 + 0.994071i \(0.465320\pi\)
\(80\) 157.470 0.220071
\(81\) 0 0
\(82\) −5.33871 −0.00718977
\(83\) 100.924 0.133469 0.0667343 0.997771i \(-0.478742\pi\)
0.0667343 + 0.997771i \(0.478742\pi\)
\(84\) 0 0
\(85\) −343.368 −0.438159
\(86\) 196.475 0.246354
\(87\) 0 0
\(88\) −236.542 −0.286540
\(89\) 1063.23 1.26631 0.633156 0.774024i \(-0.281759\pi\)
0.633156 + 0.774024i \(0.281759\pi\)
\(90\) 0 0
\(91\) 322.743 0.371788
\(92\) −887.848 −1.00614
\(93\) 0 0
\(94\) 625.547 0.686385
\(95\) 1322.85 1.42865
\(96\) 0 0
\(97\) 1415.50 1.48167 0.740836 0.671686i \(-0.234430\pi\)
0.740836 + 0.671686i \(0.234430\pi\)
\(98\) −78.3990 −0.0808112
\(99\) 0 0
\(100\) −943.677 −0.943677
\(101\) 774.140 0.762671 0.381336 0.924437i \(-0.375464\pi\)
0.381336 + 0.924437i \(0.375464\pi\)
\(102\) 0 0
\(103\) 759.159 0.726235 0.363118 0.931743i \(-0.381712\pi\)
0.363118 + 0.931743i \(0.381712\pi\)
\(104\) 991.460 0.934814
\(105\) 0 0
\(106\) −657.523 −0.602493
\(107\) 1181.22 1.06722 0.533612 0.845729i \(-0.320834\pi\)
0.533612 + 0.845729i \(0.320834\pi\)
\(108\) 0 0
\(109\) 738.091 0.648590 0.324295 0.945956i \(-0.394873\pi\)
0.324295 + 0.945956i \(0.394873\pi\)
\(110\) 304.058 0.263552
\(111\) 0 0
\(112\) 63.8038 0.0538294
\(113\) −620.181 −0.516298 −0.258149 0.966105i \(-0.583113\pi\)
−0.258149 + 0.966105i \(0.583113\pi\)
\(114\) 0 0
\(115\) 2819.57 2.28632
\(116\) 864.195 0.691711
\(117\) 0 0
\(118\) 654.031 0.510241
\(119\) −139.126 −0.107174
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 35.1591 0.0260914
\(123\) 0 0
\(124\) −928.988 −0.672787
\(125\) 837.342 0.599153
\(126\) 0 0
\(127\) −2291.79 −1.60129 −0.800645 0.599139i \(-0.795510\pi\)
−0.800645 + 0.599139i \(0.795510\pi\)
\(128\) 1131.86 0.781589
\(129\) 0 0
\(130\) −1274.45 −0.859820
\(131\) 1491.77 0.994938 0.497469 0.867482i \(-0.334263\pi\)
0.497469 + 0.867482i \(0.334263\pi\)
\(132\) 0 0
\(133\) 535.995 0.349448
\(134\) −989.465 −0.637886
\(135\) 0 0
\(136\) −427.393 −0.269475
\(137\) −2590.79 −1.61566 −0.807831 0.589414i \(-0.799359\pi\)
−0.807831 + 0.589414i \(0.799359\pi\)
\(138\) 0 0
\(139\) 2674.14 1.63178 0.815890 0.578207i \(-0.196248\pi\)
0.815890 + 0.578207i \(0.196248\pi\)
\(140\) −657.886 −0.397154
\(141\) 0 0
\(142\) 1486.45 0.878449
\(143\) −507.168 −0.296584
\(144\) 0 0
\(145\) −2744.46 −1.57183
\(146\) −1388.93 −0.787318
\(147\) 0 0
\(148\) 1338.10 0.743184
\(149\) −822.355 −0.452147 −0.226074 0.974110i \(-0.572589\pi\)
−0.226074 + 0.974110i \(0.572589\pi\)
\(150\) 0 0
\(151\) −138.803 −0.0748053 −0.0374027 0.999300i \(-0.511908\pi\)
−0.0374027 + 0.999300i \(0.511908\pi\)
\(152\) 1646.56 0.878644
\(153\) 0 0
\(154\) 123.198 0.0644650
\(155\) 2950.22 1.52882
\(156\) 0 0
\(157\) −634.746 −0.322664 −0.161332 0.986900i \(-0.551579\pi\)
−0.161332 + 0.986900i \(0.551579\pi\)
\(158\) −244.320 −0.123019
\(159\) 0 0
\(160\) −3223.99 −1.59299
\(161\) 1142.44 0.559235
\(162\) 0 0
\(163\) −608.367 −0.292337 −0.146169 0.989260i \(-0.546694\pi\)
−0.146169 + 0.989260i \(0.546694\pi\)
\(164\) −18.1520 −0.00864291
\(165\) 0 0
\(166\) −161.477 −0.0755003
\(167\) 1545.50 0.716135 0.358067 0.933696i \(-0.383436\pi\)
0.358067 + 0.933696i \(0.383436\pi\)
\(168\) 0 0
\(169\) −71.2185 −0.0324163
\(170\) 549.382 0.247857
\(171\) 0 0
\(172\) 668.031 0.296145
\(173\) −126.598 −0.0556362 −0.0278181 0.999613i \(-0.508856\pi\)
−0.0278181 + 0.999613i \(0.508856\pi\)
\(174\) 0 0
\(175\) 1214.28 0.524518
\(176\) −100.263 −0.0429410
\(177\) 0 0
\(178\) −1701.14 −0.716325
\(179\) 144.263 0.0602387 0.0301194 0.999546i \(-0.490411\pi\)
0.0301194 + 0.999546i \(0.490411\pi\)
\(180\) 0 0
\(181\) 2925.01 1.20118 0.600591 0.799556i \(-0.294932\pi\)
0.600591 + 0.799556i \(0.294932\pi\)
\(182\) −516.383 −0.210312
\(183\) 0 0
\(184\) 3509.54 1.40612
\(185\) −4249.46 −1.68879
\(186\) 0 0
\(187\) 218.627 0.0854951
\(188\) 2126.91 0.825111
\(189\) 0 0
\(190\) −2116.54 −0.808156
\(191\) 3771.70 1.42885 0.714426 0.699711i \(-0.246688\pi\)
0.714426 + 0.699711i \(0.246688\pi\)
\(192\) 0 0
\(193\) −1282.92 −0.478480 −0.239240 0.970960i \(-0.576898\pi\)
−0.239240 + 0.970960i \(0.576898\pi\)
\(194\) −2264.77 −0.838149
\(195\) 0 0
\(196\) −266.563 −0.0971440
\(197\) −3052.31 −1.10390 −0.551949 0.833878i \(-0.686116\pi\)
−0.551949 + 0.833878i \(0.686116\pi\)
\(198\) 0 0
\(199\) 5040.28 1.79546 0.897729 0.440547i \(-0.145216\pi\)
0.897729 + 0.440547i \(0.145216\pi\)
\(200\) 3730.22 1.31883
\(201\) 0 0
\(202\) −1238.61 −0.431426
\(203\) −1112.00 −0.384469
\(204\) 0 0
\(205\) 57.6462 0.0196399
\(206\) −1214.64 −0.410815
\(207\) 0 0
\(208\) 420.250 0.140092
\(209\) −842.277 −0.278763
\(210\) 0 0
\(211\) 3556.28 1.16031 0.580153 0.814508i \(-0.302993\pi\)
0.580153 + 0.814508i \(0.302993\pi\)
\(212\) −2235.63 −0.724264
\(213\) 0 0
\(214\) −1889.93 −0.603706
\(215\) −2121.49 −0.672952
\(216\) 0 0
\(217\) 1195.37 0.373951
\(218\) −1180.93 −0.366893
\(219\) 0 0
\(220\) 1033.82 0.316819
\(221\) −916.369 −0.278922
\(222\) 0 0
\(223\) 1767.85 0.530870 0.265435 0.964129i \(-0.414484\pi\)
0.265435 + 0.964129i \(0.414484\pi\)
\(224\) −1306.30 −0.389646
\(225\) 0 0
\(226\) 992.277 0.292059
\(227\) −4836.74 −1.41421 −0.707105 0.707109i \(-0.749999\pi\)
−0.707105 + 0.707109i \(0.749999\pi\)
\(228\) 0 0
\(229\) 4941.30 1.42590 0.712949 0.701216i \(-0.247359\pi\)
0.712949 + 0.701216i \(0.247359\pi\)
\(230\) −4511.26 −1.29332
\(231\) 0 0
\(232\) −3416.04 −0.966700
\(233\) −4822.14 −1.35583 −0.677916 0.735140i \(-0.737117\pi\)
−0.677916 + 0.735140i \(0.737117\pi\)
\(234\) 0 0
\(235\) −6754.51 −1.87496
\(236\) 2223.76 0.613366
\(237\) 0 0
\(238\) 222.599 0.0606259
\(239\) −4821.80 −1.30501 −0.652503 0.757786i \(-0.726281\pi\)
−0.652503 + 0.757786i \(0.726281\pi\)
\(240\) 0 0
\(241\) 1544.41 0.412798 0.206399 0.978468i \(-0.433825\pi\)
0.206399 + 0.978468i \(0.433825\pi\)
\(242\) −193.598 −0.0514253
\(243\) 0 0
\(244\) 119.544 0.0313648
\(245\) 846.535 0.220747
\(246\) 0 0
\(247\) 3530.38 0.909445
\(248\) 3672.16 0.940252
\(249\) 0 0
\(250\) −1339.73 −0.338928
\(251\) 7568.20 1.90319 0.951595 0.307354i \(-0.0994436\pi\)
0.951595 + 0.307354i \(0.0994436\pi\)
\(252\) 0 0
\(253\) −1795.26 −0.446115
\(254\) 3666.82 0.905815
\(255\) 0 0
\(256\) −3616.24 −0.882871
\(257\) −1415.19 −0.343490 −0.171745 0.985141i \(-0.554941\pi\)
−0.171745 + 0.985141i \(0.554941\pi\)
\(258\) 0 0
\(259\) −1721.80 −0.413079
\(260\) −4333.23 −1.03360
\(261\) 0 0
\(262\) −2386.81 −0.562815
\(263\) 7875.57 1.84650 0.923248 0.384204i \(-0.125524\pi\)
0.923248 + 0.384204i \(0.125524\pi\)
\(264\) 0 0
\(265\) 7099.79 1.64580
\(266\) −857.580 −0.197675
\(267\) 0 0
\(268\) −3364.27 −0.766810
\(269\) 2062.01 0.467371 0.233685 0.972312i \(-0.424921\pi\)
0.233685 + 0.972312i \(0.424921\pi\)
\(270\) 0 0
\(271\) −8247.07 −1.84861 −0.924306 0.381651i \(-0.875355\pi\)
−0.924306 + 0.381651i \(0.875355\pi\)
\(272\) −181.159 −0.0403837
\(273\) 0 0
\(274\) 4145.21 0.913945
\(275\) −1908.15 −0.418420
\(276\) 0 0
\(277\) −6637.33 −1.43971 −0.719853 0.694126i \(-0.755791\pi\)
−0.719853 + 0.694126i \(0.755791\pi\)
\(278\) −4278.57 −0.923062
\(279\) 0 0
\(280\) 2600.53 0.555042
\(281\) −5600.82 −1.18903 −0.594515 0.804085i \(-0.702656\pi\)
−0.594515 + 0.804085i \(0.702656\pi\)
\(282\) 0 0
\(283\) −934.745 −0.196342 −0.0981711 0.995170i \(-0.531299\pi\)
−0.0981711 + 0.995170i \(0.531299\pi\)
\(284\) 5054.04 1.05599
\(285\) 0 0
\(286\) 811.459 0.167771
\(287\) 23.3571 0.00480393
\(288\) 0 0
\(289\) −4517.98 −0.919596
\(290\) 4391.08 0.889148
\(291\) 0 0
\(292\) −4722.47 −0.946444
\(293\) −9169.86 −1.82836 −0.914179 0.405311i \(-0.867163\pi\)
−0.914179 + 0.405311i \(0.867163\pi\)
\(294\) 0 0
\(295\) −7062.08 −1.39380
\(296\) −5289.33 −1.03864
\(297\) 0 0
\(298\) 1315.75 0.255770
\(299\) 7524.78 1.45542
\(300\) 0 0
\(301\) −859.589 −0.164604
\(302\) 222.081 0.0423157
\(303\) 0 0
\(304\) 697.929 0.131674
\(305\) −379.640 −0.0712725
\(306\) 0 0
\(307\) −6193.71 −1.15144 −0.575722 0.817645i \(-0.695279\pi\)
−0.575722 + 0.817645i \(0.695279\pi\)
\(308\) 418.885 0.0774941
\(309\) 0 0
\(310\) −4720.29 −0.864822
\(311\) 3373.58 0.615106 0.307553 0.951531i \(-0.400490\pi\)
0.307553 + 0.951531i \(0.400490\pi\)
\(312\) 0 0
\(313\) 7175.09 1.29572 0.647860 0.761760i \(-0.275664\pi\)
0.647860 + 0.761760i \(0.275664\pi\)
\(314\) 1015.58 0.182524
\(315\) 0 0
\(316\) −830.709 −0.147883
\(317\) 6302.06 1.11659 0.558295 0.829643i \(-0.311456\pi\)
0.558295 + 0.829643i \(0.311456\pi\)
\(318\) 0 0
\(319\) 1747.43 0.306700
\(320\) 3898.56 0.681050
\(321\) 0 0
\(322\) −1827.88 −0.316347
\(323\) −1521.86 −0.262162
\(324\) 0 0
\(325\) 7997.94 1.36506
\(326\) 973.375 0.165369
\(327\) 0 0
\(328\) 71.7526 0.0120789
\(329\) −2736.80 −0.458616
\(330\) 0 0
\(331\) −7404.03 −1.22949 −0.614747 0.788725i \(-0.710742\pi\)
−0.614747 + 0.788725i \(0.710742\pi\)
\(332\) −549.035 −0.0907597
\(333\) 0 0
\(334\) −2472.77 −0.405102
\(335\) 10684.0 1.74248
\(336\) 0 0
\(337\) 7008.68 1.13290 0.566450 0.824096i \(-0.308316\pi\)
0.566450 + 0.824096i \(0.308316\pi\)
\(338\) 113.948 0.0183372
\(339\) 0 0
\(340\) 1867.94 0.297952
\(341\) −1878.45 −0.298309
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −2640.64 −0.413877
\(345\) 0 0
\(346\) 202.554 0.0314722
\(347\) 10025.8 1.55104 0.775521 0.631322i \(-0.217487\pi\)
0.775521 + 0.631322i \(0.217487\pi\)
\(348\) 0 0
\(349\) −10746.5 −1.64827 −0.824136 0.566391i \(-0.808339\pi\)
−0.824136 + 0.566391i \(0.808339\pi\)
\(350\) −1942.82 −0.296708
\(351\) 0 0
\(352\) 2052.76 0.310830
\(353\) 606.136 0.0913919 0.0456960 0.998955i \(-0.485449\pi\)
0.0456960 + 0.998955i \(0.485449\pi\)
\(354\) 0 0
\(355\) −16050.3 −2.39961
\(356\) −5784.02 −0.861102
\(357\) 0 0
\(358\) −230.818 −0.0340757
\(359\) −8527.32 −1.25363 −0.626817 0.779166i \(-0.715643\pi\)
−0.626817 + 0.779166i \(0.715643\pi\)
\(360\) 0 0
\(361\) −995.934 −0.145201
\(362\) −4679.95 −0.679483
\(363\) 0 0
\(364\) −1755.75 −0.252819
\(365\) 14997.3 2.15067
\(366\) 0 0
\(367\) 5504.16 0.782874 0.391437 0.920205i \(-0.371978\pi\)
0.391437 + 0.920205i \(0.371978\pi\)
\(368\) 1487.59 0.210723
\(369\) 0 0
\(370\) 6799.05 0.955312
\(371\) 2876.70 0.402563
\(372\) 0 0
\(373\) −7091.36 −0.984387 −0.492194 0.870486i \(-0.663805\pi\)
−0.492194 + 0.870486i \(0.663805\pi\)
\(374\) −349.799 −0.0483627
\(375\) 0 0
\(376\) −8407.39 −1.15313
\(377\) −7324.32 −1.00059
\(378\) 0 0
\(379\) −77.3370 −0.0104816 −0.00524081 0.999986i \(-0.501668\pi\)
−0.00524081 + 0.999986i \(0.501668\pi\)
\(380\) −7196.40 −0.971493
\(381\) 0 0
\(382\) −6034.65 −0.808271
\(383\) −4843.75 −0.646224 −0.323112 0.946361i \(-0.604729\pi\)
−0.323112 + 0.946361i \(0.604729\pi\)
\(384\) 0 0
\(385\) −1330.27 −0.176096
\(386\) 2052.65 0.270666
\(387\) 0 0
\(388\) −7700.41 −1.00755
\(389\) −9882.00 −1.28801 −0.644007 0.765020i \(-0.722729\pi\)
−0.644007 + 0.765020i \(0.722729\pi\)
\(390\) 0 0
\(391\) −3243.74 −0.419547
\(392\) 1053.69 0.135763
\(393\) 0 0
\(394\) 4883.63 0.624451
\(395\) 2638.11 0.336045
\(396\) 0 0
\(397\) −10135.5 −1.28133 −0.640663 0.767823i \(-0.721340\pi\)
−0.640663 + 0.767823i \(0.721340\pi\)
\(398\) −8064.35 −1.01565
\(399\) 0 0
\(400\) 1581.13 0.197641
\(401\) −9220.96 −1.14831 −0.574155 0.818746i \(-0.694669\pi\)
−0.574155 + 0.818746i \(0.694669\pi\)
\(402\) 0 0
\(403\) 7873.45 0.973212
\(404\) −4211.37 −0.518623
\(405\) 0 0
\(406\) 1779.18 0.217486
\(407\) 2705.69 0.329523
\(408\) 0 0
\(409\) −5710.89 −0.690429 −0.345214 0.938524i \(-0.612194\pi\)
−0.345214 + 0.938524i \(0.612194\pi\)
\(410\) −92.2327 −0.0111099
\(411\) 0 0
\(412\) −4129.88 −0.493846
\(413\) −2861.42 −0.340923
\(414\) 0 0
\(415\) 1743.59 0.206240
\(416\) −8604.07 −1.01406
\(417\) 0 0
\(418\) 1347.63 0.157690
\(419\) −4520.73 −0.527093 −0.263547 0.964647i \(-0.584892\pi\)
−0.263547 + 0.964647i \(0.584892\pi\)
\(420\) 0 0
\(421\) 3798.26 0.439705 0.219853 0.975533i \(-0.429442\pi\)
0.219853 + 0.975533i \(0.429442\pi\)
\(422\) −5689.98 −0.656359
\(423\) 0 0
\(424\) 8837.15 1.01219
\(425\) −3447.71 −0.393502
\(426\) 0 0
\(427\) −153.823 −0.0174333
\(428\) −6425.92 −0.725721
\(429\) 0 0
\(430\) 3394.35 0.380674
\(431\) 3468.51 0.387638 0.193819 0.981037i \(-0.437912\pi\)
0.193819 + 0.981037i \(0.437912\pi\)
\(432\) 0 0
\(433\) −9859.98 −1.09432 −0.547160 0.837028i \(-0.684291\pi\)
−0.547160 + 0.837028i \(0.684291\pi\)
\(434\) −1912.57 −0.211536
\(435\) 0 0
\(436\) −4015.26 −0.441046
\(437\) 12496.8 1.36796
\(438\) 0 0
\(439\) 8464.33 0.920228 0.460114 0.887860i \(-0.347808\pi\)
0.460114 + 0.887860i \(0.347808\pi\)
\(440\) −4086.55 −0.442770
\(441\) 0 0
\(442\) 1466.17 0.157780
\(443\) 7825.41 0.839270 0.419635 0.907693i \(-0.362158\pi\)
0.419635 + 0.907693i \(0.362158\pi\)
\(444\) 0 0
\(445\) 18368.5 1.95675
\(446\) −2828.52 −0.300302
\(447\) 0 0
\(448\) 1579.62 0.166585
\(449\) −1050.94 −0.110461 −0.0552303 0.998474i \(-0.517589\pi\)
−0.0552303 + 0.998474i \(0.517589\pi\)
\(450\) 0 0
\(451\) −36.7041 −0.00383221
\(452\) 3373.83 0.351087
\(453\) 0 0
\(454\) 7738.68 0.799988
\(455\) 5575.79 0.574499
\(456\) 0 0
\(457\) 14397.2 1.47369 0.736843 0.676064i \(-0.236316\pi\)
0.736843 + 0.676064i \(0.236316\pi\)
\(458\) −7905.98 −0.806599
\(459\) 0 0
\(460\) −15338.7 −1.55472
\(461\) 5755.83 0.581509 0.290755 0.956798i \(-0.406094\pi\)
0.290755 + 0.956798i \(0.406094\pi\)
\(462\) 0 0
\(463\) −10056.0 −1.00938 −0.504689 0.863302i \(-0.668393\pi\)
−0.504689 + 0.863302i \(0.668393\pi\)
\(464\) −1447.96 −0.144870
\(465\) 0 0
\(466\) 7715.32 0.766964
\(467\) −2607.32 −0.258356 −0.129178 0.991621i \(-0.541234\pi\)
−0.129178 + 0.991621i \(0.541234\pi\)
\(468\) 0 0
\(469\) 4328.97 0.426211
\(470\) 10807.1 1.06062
\(471\) 0 0
\(472\) −8790.21 −0.857208
\(473\) 1350.78 0.131309
\(474\) 0 0
\(475\) 13282.5 1.28304
\(476\) 756.856 0.0728791
\(477\) 0 0
\(478\) 7714.79 0.738214
\(479\) 5944.97 0.567083 0.283541 0.958960i \(-0.408491\pi\)
0.283541 + 0.958960i \(0.408491\pi\)
\(480\) 0 0
\(481\) −11340.8 −1.07504
\(482\) −2471.03 −0.233511
\(483\) 0 0
\(484\) −658.248 −0.0618189
\(485\) 24454.5 2.28953
\(486\) 0 0
\(487\) 15895.1 1.47901 0.739504 0.673152i \(-0.235060\pi\)
0.739504 + 0.673152i \(0.235060\pi\)
\(488\) −472.540 −0.0438338
\(489\) 0 0
\(490\) −1354.44 −0.124872
\(491\) −3655.59 −0.335997 −0.167999 0.985787i \(-0.553730\pi\)
−0.167999 + 0.985787i \(0.553730\pi\)
\(492\) 0 0
\(493\) 3157.32 0.288435
\(494\) −5648.54 −0.514453
\(495\) 0 0
\(496\) 1556.52 0.140907
\(497\) −6503.28 −0.586946
\(498\) 0 0
\(499\) 21171.9 1.89937 0.949684 0.313208i \(-0.101404\pi\)
0.949684 + 0.313208i \(0.101404\pi\)
\(500\) −4555.19 −0.407429
\(501\) 0 0
\(502\) −12109.0 −1.07659
\(503\) 12270.3 1.08768 0.543842 0.839188i \(-0.316969\pi\)
0.543842 + 0.839188i \(0.316969\pi\)
\(504\) 0 0
\(505\) 13374.2 1.17850
\(506\) 2872.38 0.252357
\(507\) 0 0
\(508\) 12467.5 1.08889
\(509\) 3168.41 0.275908 0.137954 0.990439i \(-0.455947\pi\)
0.137954 + 0.990439i \(0.455947\pi\)
\(510\) 0 0
\(511\) 6076.63 0.526056
\(512\) −3268.99 −0.282168
\(513\) 0 0
\(514\) 2264.27 0.194305
\(515\) 13115.4 1.12220
\(516\) 0 0
\(517\) 4300.69 0.365849
\(518\) 2754.85 0.233670
\(519\) 0 0
\(520\) 17128.7 1.44450
\(521\) 1305.16 0.109751 0.0548755 0.998493i \(-0.482524\pi\)
0.0548755 + 0.998493i \(0.482524\pi\)
\(522\) 0 0
\(523\) 707.998 0.0591943 0.0295971 0.999562i \(-0.490578\pi\)
0.0295971 + 0.999562i \(0.490578\pi\)
\(524\) −8115.35 −0.676566
\(525\) 0 0
\(526\) −12600.8 −1.04452
\(527\) −3394.04 −0.280544
\(528\) 0 0
\(529\) 14469.0 1.18920
\(530\) −11359.5 −0.930992
\(531\) 0 0
\(532\) −2915.85 −0.237628
\(533\) 153.844 0.0125023
\(534\) 0 0
\(535\) 20407.0 1.64911
\(536\) 13298.5 1.07165
\(537\) 0 0
\(538\) −3299.17 −0.264382
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −5424.05 −0.431050 −0.215525 0.976498i \(-0.569146\pi\)
−0.215525 + 0.976498i \(0.569146\pi\)
\(542\) 13195.1 1.04572
\(543\) 0 0
\(544\) 3708.99 0.292319
\(545\) 12751.4 1.00222
\(546\) 0 0
\(547\) −15353.7 −1.20014 −0.600071 0.799947i \(-0.704861\pi\)
−0.600071 + 0.799947i \(0.704861\pi\)
\(548\) 14094.0 1.09866
\(549\) 0 0
\(550\) 3053.00 0.236691
\(551\) −12163.8 −0.940465
\(552\) 0 0
\(553\) 1068.91 0.0821968
\(554\) 10619.6 0.814410
\(555\) 0 0
\(556\) −14547.5 −1.10962
\(557\) −13685.2 −1.04104 −0.520519 0.853850i \(-0.674262\pi\)
−0.520519 + 0.853850i \(0.674262\pi\)
\(558\) 0 0
\(559\) −5661.77 −0.428385
\(560\) 1102.29 0.0831789
\(561\) 0 0
\(562\) 8961.21 0.672608
\(563\) 1565.67 0.117203 0.0586015 0.998281i \(-0.481336\pi\)
0.0586015 + 0.998281i \(0.481336\pi\)
\(564\) 0 0
\(565\) −10714.4 −0.797801
\(566\) 1495.57 0.111066
\(567\) 0 0
\(568\) −19977.9 −1.47580
\(569\) −20508.1 −1.51097 −0.755487 0.655164i \(-0.772600\pi\)
−0.755487 + 0.655164i \(0.772600\pi\)
\(570\) 0 0
\(571\) 971.535 0.0712040 0.0356020 0.999366i \(-0.488665\pi\)
0.0356020 + 0.999366i \(0.488665\pi\)
\(572\) 2759.03 0.201680
\(573\) 0 0
\(574\) −37.3709 −0.00271748
\(575\) 28310.9 2.05330
\(576\) 0 0
\(577\) 13961.1 1.00729 0.503647 0.863910i \(-0.331991\pi\)
0.503647 + 0.863910i \(0.331991\pi\)
\(578\) 7228.67 0.520196
\(579\) 0 0
\(580\) 14930.0 1.06885
\(581\) 706.471 0.0504464
\(582\) 0 0
\(583\) −4520.53 −0.321134
\(584\) 18667.3 1.32270
\(585\) 0 0
\(586\) 14671.6 1.03426
\(587\) 23834.3 1.67589 0.837946 0.545753i \(-0.183756\pi\)
0.837946 + 0.545753i \(0.183756\pi\)
\(588\) 0 0
\(589\) 13075.8 0.914735
\(590\) 11299.2 0.788440
\(591\) 0 0
\(592\) −2241.99 −0.155651
\(593\) −25102.9 −1.73837 −0.869184 0.494489i \(-0.835355\pi\)
−0.869184 + 0.494489i \(0.835355\pi\)
\(594\) 0 0
\(595\) −2403.58 −0.165608
\(596\) 4473.66 0.307464
\(597\) 0 0
\(598\) −12039.5 −0.823297
\(599\) 12122.2 0.826875 0.413437 0.910533i \(-0.364328\pi\)
0.413437 + 0.910533i \(0.364328\pi\)
\(600\) 0 0
\(601\) 20672.9 1.40310 0.701552 0.712619i \(-0.252491\pi\)
0.701552 + 0.712619i \(0.252491\pi\)
\(602\) 1375.32 0.0931130
\(603\) 0 0
\(604\) 755.096 0.0508682
\(605\) 2090.42 0.140476
\(606\) 0 0
\(607\) −3571.58 −0.238824 −0.119412 0.992845i \(-0.538101\pi\)
−0.119412 + 0.992845i \(0.538101\pi\)
\(608\) −14289.2 −0.953129
\(609\) 0 0
\(610\) 607.416 0.0403173
\(611\) −18026.2 −1.19356
\(612\) 0 0
\(613\) −25996.1 −1.71284 −0.856420 0.516280i \(-0.827317\pi\)
−0.856420 + 0.516280i \(0.827317\pi\)
\(614\) 9909.81 0.651347
\(615\) 0 0
\(616\) −1655.79 −0.108302
\(617\) −7266.40 −0.474123 −0.237062 0.971495i \(-0.576184\pi\)
−0.237062 + 0.971495i \(0.576184\pi\)
\(618\) 0 0
\(619\) 16227.6 1.05371 0.526853 0.849957i \(-0.323372\pi\)
0.526853 + 0.849957i \(0.323372\pi\)
\(620\) −16049.4 −1.03961
\(621\) 0 0
\(622\) −5397.65 −0.347952
\(623\) 7442.58 0.478621
\(624\) 0 0
\(625\) −7217.38 −0.461912
\(626\) −11480.0 −0.732960
\(627\) 0 0
\(628\) 3453.06 0.219414
\(629\) 4888.73 0.309899
\(630\) 0 0
\(631\) −3162.02 −0.199490 −0.0997450 0.995013i \(-0.531803\pi\)
−0.0997450 + 0.995013i \(0.531803\pi\)
\(632\) 3283.68 0.206674
\(633\) 0 0
\(634\) −10083.2 −0.631630
\(635\) −39593.5 −2.47436
\(636\) 0 0
\(637\) 2259.20 0.140523
\(638\) −2795.86 −0.173494
\(639\) 0 0
\(640\) 19554.3 1.20774
\(641\) 8679.48 0.534819 0.267409 0.963583i \(-0.413832\pi\)
0.267409 + 0.963583i \(0.413832\pi\)
\(642\) 0 0
\(643\) −19226.2 −1.17917 −0.589586 0.807705i \(-0.700709\pi\)
−0.589586 + 0.807705i \(0.700709\pi\)
\(644\) −6214.94 −0.380284
\(645\) 0 0
\(646\) 2434.94 0.148299
\(647\) −11211.6 −0.681258 −0.340629 0.940198i \(-0.610640\pi\)
−0.340629 + 0.940198i \(0.610640\pi\)
\(648\) 0 0
\(649\) 4496.52 0.271963
\(650\) −12796.5 −0.772188
\(651\) 0 0
\(652\) 3309.56 0.198792
\(653\) 12404.5 0.743378 0.371689 0.928357i \(-0.378779\pi\)
0.371689 + 0.928357i \(0.378779\pi\)
\(654\) 0 0
\(655\) 25772.2 1.53741
\(656\) 30.4138 0.00181015
\(657\) 0 0
\(658\) 4378.83 0.259429
\(659\) −20954.9 −1.23868 −0.619339 0.785124i \(-0.712599\pi\)
−0.619339 + 0.785124i \(0.712599\pi\)
\(660\) 0 0
\(661\) −20349.0 −1.19741 −0.598703 0.800971i \(-0.704317\pi\)
−0.598703 + 0.800971i \(0.704317\pi\)
\(662\) 11846.3 0.695498
\(663\) 0 0
\(664\) 2170.26 0.126841
\(665\) 9259.96 0.539979
\(666\) 0 0
\(667\) −25926.4 −1.50506
\(668\) −8407.63 −0.486977
\(669\) 0 0
\(670\) −17094.2 −0.985683
\(671\) 241.722 0.0139070
\(672\) 0 0
\(673\) 31712.5 1.81639 0.908193 0.418553i \(-0.137462\pi\)
0.908193 + 0.418553i \(0.137462\pi\)
\(674\) −11213.7 −0.640857
\(675\) 0 0
\(676\) 387.433 0.0220433
\(677\) −1195.61 −0.0678744 −0.0339372 0.999424i \(-0.510805\pi\)
−0.0339372 + 0.999424i \(0.510805\pi\)
\(678\) 0 0
\(679\) 9908.49 0.560019
\(680\) −7383.73 −0.416402
\(681\) 0 0
\(682\) 3005.47 0.168747
\(683\) −16709.8 −0.936140 −0.468070 0.883691i \(-0.655051\pi\)
−0.468070 + 0.883691i \(0.655051\pi\)
\(684\) 0 0
\(685\) −44759.0 −2.49657
\(686\) −548.793 −0.0305438
\(687\) 0 0
\(688\) −1119.29 −0.0620238
\(689\) 18947.7 1.04768
\(690\) 0 0
\(691\) −11154.4 −0.614088 −0.307044 0.951695i \(-0.599340\pi\)
−0.307044 + 0.951695i \(0.599340\pi\)
\(692\) 688.701 0.0378331
\(693\) 0 0
\(694\) −16041.0 −0.877391
\(695\) 46199.0 2.52148
\(696\) 0 0
\(697\) −66.3182 −0.00360399
\(698\) 17194.2 0.932392
\(699\) 0 0
\(700\) −6605.74 −0.356676
\(701\) −10388.9 −0.559749 −0.279874 0.960037i \(-0.590293\pi\)
−0.279874 + 0.960037i \(0.590293\pi\)
\(702\) 0 0
\(703\) −18834.2 −1.01045
\(704\) −2482.26 −0.132889
\(705\) 0 0
\(706\) −969.805 −0.0516984
\(707\) 5418.98 0.288263
\(708\) 0 0
\(709\) −4288.90 −0.227183 −0.113592 0.993528i \(-0.536236\pi\)
−0.113592 + 0.993528i \(0.536236\pi\)
\(710\) 25680.2 1.35741
\(711\) 0 0
\(712\) 22863.4 1.20343
\(713\) 27870.2 1.46388
\(714\) 0 0
\(715\) −8761.95 −0.458291
\(716\) −784.800 −0.0409628
\(717\) 0 0
\(718\) 13643.5 0.709153
\(719\) −31876.4 −1.65339 −0.826697 0.562647i \(-0.809783\pi\)
−0.826697 + 0.562647i \(0.809783\pi\)
\(720\) 0 0
\(721\) 5314.12 0.274491
\(722\) 1593.47 0.0821371
\(723\) 0 0
\(724\) −15912.2 −0.816814
\(725\) −27556.7 −1.41163
\(726\) 0 0
\(727\) 14030.2 0.715754 0.357877 0.933769i \(-0.383501\pi\)
0.357877 + 0.933769i \(0.383501\pi\)
\(728\) 6940.22 0.353326
\(729\) 0 0
\(730\) −23995.4 −1.21659
\(731\) 2440.64 0.123489
\(732\) 0 0
\(733\) −5466.09 −0.275436 −0.137718 0.990471i \(-0.543977\pi\)
−0.137718 + 0.990471i \(0.543977\pi\)
\(734\) −8806.54 −0.442855
\(735\) 0 0
\(736\) −30456.5 −1.52533
\(737\) −6802.66 −0.339999
\(738\) 0 0
\(739\) 28957.0 1.44141 0.720704 0.693243i \(-0.243819\pi\)
0.720704 + 0.693243i \(0.243819\pi\)
\(740\) 23117.3 1.14839
\(741\) 0 0
\(742\) −4602.66 −0.227721
\(743\) 17742.1 0.876037 0.438019 0.898966i \(-0.355680\pi\)
0.438019 + 0.898966i \(0.355680\pi\)
\(744\) 0 0
\(745\) −14207.2 −0.698672
\(746\) 11346.0 0.556846
\(747\) 0 0
\(748\) −1189.35 −0.0581374
\(749\) 8268.55 0.403373
\(750\) 0 0
\(751\) 30053.7 1.46029 0.730143 0.683294i \(-0.239453\pi\)
0.730143 + 0.683294i \(0.239453\pi\)
\(752\) −3563.64 −0.172809
\(753\) 0 0
\(754\) 11718.8 0.566011
\(755\) −2397.99 −0.115592
\(756\) 0 0
\(757\) −8581.32 −0.412012 −0.206006 0.978551i \(-0.566047\pi\)
−0.206006 + 0.978551i \(0.566047\pi\)
\(758\) 123.738 0.00592923
\(759\) 0 0
\(760\) 28446.4 1.35771
\(761\) −30413.3 −1.44873 −0.724363 0.689419i \(-0.757866\pi\)
−0.724363 + 0.689419i \(0.757866\pi\)
\(762\) 0 0
\(763\) 5166.63 0.245144
\(764\) −20518.3 −0.971632
\(765\) 0 0
\(766\) 7749.90 0.365555
\(767\) −18847.0 −0.887258
\(768\) 0 0
\(769\) −24735.2 −1.15992 −0.579958 0.814646i \(-0.696931\pi\)
−0.579958 + 0.814646i \(0.696931\pi\)
\(770\) 2128.40 0.0996134
\(771\) 0 0
\(772\) 6979.18 0.325371
\(773\) −25108.1 −1.16827 −0.584137 0.811655i \(-0.698567\pi\)
−0.584137 + 0.811655i \(0.698567\pi\)
\(774\) 0 0
\(775\) 29622.7 1.37301
\(776\) 30438.7 1.40810
\(777\) 0 0
\(778\) 15811.0 0.728601
\(779\) 255.496 0.0117511
\(780\) 0 0
\(781\) 10219.4 0.468221
\(782\) 5189.92 0.237329
\(783\) 0 0
\(784\) 446.627 0.0203456
\(785\) −10966.0 −0.498591
\(786\) 0 0
\(787\) −36364.0 −1.64706 −0.823531 0.567271i \(-0.807999\pi\)
−0.823531 + 0.567271i \(0.807999\pi\)
\(788\) 16604.8 0.750660
\(789\) 0 0
\(790\) −4220.93 −0.190094
\(791\) −4341.27 −0.195142
\(792\) 0 0
\(793\) −1013.17 −0.0453704
\(794\) 16216.6 0.724818
\(795\) 0 0
\(796\) −27419.5 −1.22093
\(797\) 18605.4 0.826897 0.413448 0.910528i \(-0.364324\pi\)
0.413448 + 0.910528i \(0.364324\pi\)
\(798\) 0 0
\(799\) 7770.63 0.344062
\(800\) −32371.6 −1.43063
\(801\) 0 0
\(802\) 14753.3 0.649574
\(803\) −9548.99 −0.419647
\(804\) 0 0
\(805\) 19737.0 0.864147
\(806\) −12597.4 −0.550525
\(807\) 0 0
\(808\) 16647.0 0.724800
\(809\) −26846.8 −1.16673 −0.583364 0.812211i \(-0.698264\pi\)
−0.583364 + 0.812211i \(0.698264\pi\)
\(810\) 0 0
\(811\) −32344.3 −1.40045 −0.700224 0.713924i \(-0.746916\pi\)
−0.700224 + 0.713924i \(0.746916\pi\)
\(812\) 6049.37 0.261442
\(813\) 0 0
\(814\) −4329.04 −0.186404
\(815\) −10510.3 −0.451729
\(816\) 0 0
\(817\) −9402.76 −0.402645
\(818\) 9137.31 0.390561
\(819\) 0 0
\(820\) −313.599 −0.0133553
\(821\) −16953.3 −0.720677 −0.360338 0.932822i \(-0.617339\pi\)
−0.360338 + 0.932822i \(0.617339\pi\)
\(822\) 0 0
\(823\) 37814.0 1.60159 0.800797 0.598936i \(-0.204410\pi\)
0.800797 + 0.598936i \(0.204410\pi\)
\(824\) 16324.8 0.690173
\(825\) 0 0
\(826\) 4578.21 0.192853
\(827\) 11894.6 0.500141 0.250071 0.968228i \(-0.419546\pi\)
0.250071 + 0.968228i \(0.419546\pi\)
\(828\) 0 0
\(829\) 30744.7 1.28807 0.644033 0.764998i \(-0.277260\pi\)
0.644033 + 0.764998i \(0.277260\pi\)
\(830\) −2789.71 −0.116665
\(831\) 0 0
\(832\) 10404.3 0.433540
\(833\) −973.884 −0.0405079
\(834\) 0 0
\(835\) 26700.4 1.10659
\(836\) 4582.04 0.189561
\(837\) 0 0
\(838\) 7233.08 0.298165
\(839\) 24677.8 1.01546 0.507731 0.861516i \(-0.330484\pi\)
0.507731 + 0.861516i \(0.330484\pi\)
\(840\) 0 0
\(841\) 846.708 0.0347168
\(842\) −6077.14 −0.248732
\(843\) 0 0
\(844\) −19346.4 −0.789017
\(845\) −1230.39 −0.0500907
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 3745.80 0.151688
\(849\) 0 0
\(850\) 5516.26 0.222595
\(851\) −40143.9 −1.61706
\(852\) 0 0
\(853\) −1855.69 −0.0744873 −0.0372437 0.999306i \(-0.511858\pi\)
−0.0372437 + 0.999306i \(0.511858\pi\)
\(854\) 246.114 0.00986163
\(855\) 0 0
\(856\) 25400.8 1.01423
\(857\) −3984.84 −0.158832 −0.0794162 0.996842i \(-0.525306\pi\)
−0.0794162 + 0.996842i \(0.525306\pi\)
\(858\) 0 0
\(859\) −12526.1 −0.497538 −0.248769 0.968563i \(-0.580026\pi\)
−0.248769 + 0.968563i \(0.580026\pi\)
\(860\) 11541.1 0.457613
\(861\) 0 0
\(862\) −5549.54 −0.219279
\(863\) 22040.9 0.869387 0.434693 0.900579i \(-0.356857\pi\)
0.434693 + 0.900579i \(0.356857\pi\)
\(864\) 0 0
\(865\) −2187.14 −0.0859709
\(866\) 15775.8 0.619033
\(867\) 0 0
\(868\) −6502.91 −0.254290
\(869\) −1679.72 −0.0655704
\(870\) 0 0
\(871\) 28513.2 1.10922
\(872\) 15871.8 0.616383
\(873\) 0 0
\(874\) −19994.5 −0.773828
\(875\) 5861.39 0.226459
\(876\) 0 0
\(877\) 21039.5 0.810096 0.405048 0.914295i \(-0.367255\pi\)
0.405048 + 0.914295i \(0.367255\pi\)
\(878\) −13542.7 −0.520553
\(879\) 0 0
\(880\) −1732.17 −0.0663538
\(881\) −33610.9 −1.28533 −0.642667 0.766146i \(-0.722172\pi\)
−0.642667 + 0.766146i \(0.722172\pi\)
\(882\) 0 0
\(883\) −4618.52 −0.176020 −0.0880099 0.996120i \(-0.528051\pi\)
−0.0880099 + 0.996120i \(0.528051\pi\)
\(884\) 4985.11 0.189669
\(885\) 0 0
\(886\) −12520.5 −0.474757
\(887\) 40095.6 1.51779 0.758895 0.651213i \(-0.225740\pi\)
0.758895 + 0.651213i \(0.225740\pi\)
\(888\) 0 0
\(889\) −16042.6 −0.605231
\(890\) −29389.3 −1.10689
\(891\) 0 0
\(892\) −9617.22 −0.360996
\(893\) −29937.0 −1.12184
\(894\) 0 0
\(895\) 2492.32 0.0930828
\(896\) 7923.03 0.295413
\(897\) 0 0
\(898\) 1681.48 0.0624852
\(899\) −27127.7 −1.00641
\(900\) 0 0
\(901\) −8167.85 −0.302009
\(902\) 58.7258 0.00216780
\(903\) 0 0
\(904\) −13336.3 −0.490661
\(905\) 50533.1 1.85611
\(906\) 0 0
\(907\) −52281.2 −1.91397 −0.956984 0.290141i \(-0.906298\pi\)
−0.956984 + 0.290141i \(0.906298\pi\)
\(908\) 26312.2 0.961674
\(909\) 0 0
\(910\) −8921.15 −0.324981
\(911\) −30635.6 −1.11416 −0.557081 0.830458i \(-0.688079\pi\)
−0.557081 + 0.830458i \(0.688079\pi\)
\(912\) 0 0
\(913\) −1110.17 −0.0402423
\(914\) −23035.3 −0.833632
\(915\) 0 0
\(916\) −26881.0 −0.969622
\(917\) 10442.4 0.376051
\(918\) 0 0
\(919\) −14574.9 −0.523159 −0.261579 0.965182i \(-0.584243\pi\)
−0.261579 + 0.965182i \(0.584243\pi\)
\(920\) 60631.6 2.17279
\(921\) 0 0
\(922\) −9209.21 −0.328947
\(923\) −42834.5 −1.52754
\(924\) 0 0
\(925\) −42668.1 −1.51667
\(926\) 16089.4 0.570983
\(927\) 0 0
\(928\) 29645.1 1.04865
\(929\) 18955.8 0.669451 0.334726 0.942316i \(-0.391356\pi\)
0.334726 + 0.942316i \(0.391356\pi\)
\(930\) 0 0
\(931\) 3751.96 0.132079
\(932\) 26232.7 0.921976
\(933\) 0 0
\(934\) 4171.66 0.146147
\(935\) 3777.05 0.132110
\(936\) 0 0
\(937\) 6520.68 0.227344 0.113672 0.993518i \(-0.463739\pi\)
0.113672 + 0.993518i \(0.463739\pi\)
\(938\) −6926.26 −0.241098
\(939\) 0 0
\(940\) 36745.0 1.27499
\(941\) −12631.4 −0.437589 −0.218795 0.975771i \(-0.570212\pi\)
−0.218795 + 0.975771i \(0.570212\pi\)
\(942\) 0 0
\(943\) 544.573 0.0188057
\(944\) −3725.91 −0.128462
\(945\) 0 0
\(946\) −2161.22 −0.0742785
\(947\) 35170.9 1.20686 0.603432 0.797415i \(-0.293800\pi\)
0.603432 + 0.797415i \(0.293800\pi\)
\(948\) 0 0
\(949\) 40024.3 1.36907
\(950\) −21251.8 −0.725789
\(951\) 0 0
\(952\) −2991.75 −0.101852
\(953\) −39539.0 −1.34396 −0.671980 0.740570i \(-0.734556\pi\)
−0.671980 + 0.740570i \(0.734556\pi\)
\(954\) 0 0
\(955\) 65160.8 2.20791
\(956\) 26230.9 0.887415
\(957\) 0 0
\(958\) −9511.83 −0.320786
\(959\) −18135.5 −0.610663
\(960\) 0 0
\(961\) −629.373 −0.0211263
\(962\) 18145.1 0.608129
\(963\) 0 0
\(964\) −8401.70 −0.280706
\(965\) −22164.0 −0.739363
\(966\) 0 0
\(967\) −29986.0 −0.997194 −0.498597 0.866834i \(-0.666151\pi\)
−0.498597 + 0.866834i \(0.666151\pi\)
\(968\) 2601.96 0.0863949
\(969\) 0 0
\(970\) −39126.7 −1.29514
\(971\) 14879.8 0.491777 0.245889 0.969298i \(-0.420920\pi\)
0.245889 + 0.969298i \(0.420920\pi\)
\(972\) 0 0
\(973\) 18719.0 0.616755
\(974\) −25431.9 −0.836643
\(975\) 0 0
\(976\) −200.296 −0.00656896
\(977\) −40864.1 −1.33813 −0.669067 0.743202i \(-0.733306\pi\)
−0.669067 + 0.743202i \(0.733306\pi\)
\(978\) 0 0
\(979\) −11695.5 −0.381807
\(980\) −4605.21 −0.150110
\(981\) 0 0
\(982\) 5848.88 0.190066
\(983\) −48180.6 −1.56330 −0.781650 0.623718i \(-0.785621\pi\)
−0.781650 + 0.623718i \(0.785621\pi\)
\(984\) 0 0
\(985\) −52732.4 −1.70578
\(986\) −5051.65 −0.163162
\(987\) 0 0
\(988\) −19205.5 −0.618430
\(989\) −20041.4 −0.644367
\(990\) 0 0
\(991\) −22380.4 −0.717392 −0.358696 0.933454i \(-0.616779\pi\)
−0.358696 + 0.933454i \(0.616779\pi\)
\(992\) −31867.7 −1.01996
\(993\) 0 0
\(994\) 10405.1 0.332023
\(995\) 87077.1 2.77440
\(996\) 0 0
\(997\) −12425.1 −0.394691 −0.197346 0.980334i \(-0.563232\pi\)
−0.197346 + 0.980334i \(0.563232\pi\)
\(998\) −33874.6 −1.07443
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.p.1.2 5
3.2 odd 2 231.4.a.k.1.4 5
21.20 even 2 1617.4.a.n.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.k.1.4 5 3.2 odd 2
693.4.a.p.1.2 5 1.1 even 1 trivial
1617.4.a.n.1.4 5 21.20 even 2